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C Z E C H O S L O V A K M A T H E M A T I C A L J O U R N A L 
Mathematical Institute of Czechoslovak Academy of Sciences 

VI. 23, (93) PR AHA. 21. 3. 1973, No 1 

CONCERNING CONGRUENCES 
ON SYMMETRIC INVERSE SEMIGROUPS 

H. E. SCHEIBLICH, Columbia, S. С 

(Received November 26, 1970) 

The lattice of congruences on a symmetric inverse semigroup J^x ^^^ ^^^^ deter­
mined by A. E. LIBER [2], using techniques very similar to those of A. I. MALCEV [3] 
for characterizing the congruences on a full transformation semigroup :fx' The 
purpose of this note is to derive and extend these results using more recent theorems 
on any inverse semigroup. In the course of events, it v îll be shown that ^x is embed­
ded in5^;fo, the congruences on J^x ^^^ not just those induced by congruences on ^^o? 
but A{Jx) = Л{^хУ 

I. INTRODUCTION, DEFINITIONS, AND PRELIMINARIES 

As usual, the basic notation and terminology will be that of CLIFFORD and PRES­
TON [1]. Some famiharity with that notation is assumed. Specifically, if X is a set, then 
\X\ denotes the cardinal number of X, and \X\' is the successor of |Z|. Z^ will mean 
X u {0} where 0 фХ. Jx will denote the symmetric inverse semigroup on X and 5"^ 
will denote the full transformation semigroup on X. Whenever a is a function, then |a| 
means the cardinal number of a viewed as a set of ordered pairs, and rank (a) means 
|image (a)|. Finally, whenever *S is a semigroup, Л(5) denotes the lattice of con­
gruences on S. 

The general approach of Clifford and Preston's treatment [1, Vol. 2, Chapter 10] 
of Malcev's results [3] will be followed. This involves using the usual Rees congru­
ences and also using sequences of cardinal numbers when X is infinite. The situation 
here is somewhat more simple, however, for the following reason. If S is an inverse 
semigroup and E is its set of idempotents, then £ is a commutative subsemigroup and 
there are theorems which guarantee which congruences on E can be extended to all 
ofS. 

First, using a device due to V. V. VAGNER [6] (and described in 1, vol. 2, p. 254), it 
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may be seen that if Z^ = Z u {0}, then Jx is embedded in ^x^ ^^ the following way. 
For each a e Jx^ ^^^ ^(^) be the domain of a, and let a^ e T ô by 

xa if xe U{a) 
0 if хфи{а). 

Let К = {(X e^x^ : Oa = 0, and xa = j a Ф 0 implies x = y]. Then ae Jx implies 
a^ 6 K. Conversely if a e jf̂ , then a\X = a nX x X e J'x- Furthermore, a -^ a^ 
and a -> a I X are mutually inverse isomorphisms of Jx ^^ t̂o К and of К onto Jx^ 
respectively. Notice that if a e Jx^ then |a| + 1 = rank (a°). 

Some definitions and theorems will now be stated. All are from [5], with the 
exception of Theorem 1.4, which first appeared in [4]. 

Definition 1.1. Let S be an inverse semigroup and let P = {E^ : a G J} be a partition 
of Es = E. P is Si normal partition of E if 

(1) ОС, ß e J implies there exists у e J such that E^Eß ç £^; 

(2) a G J and a e S implies there exists ß e J such that aE^a~^ ^ Eß. 

Theorem 1.2. Let P = [E^ : ae j} be a normal partition of the semilattice of 
idempotents of an inverse semigroup S. Let a = {(a, b) e S x S: there exists 
(xeJ with aa~^, bb~^ e E^ and ea = eb for some e e E^} and let Q = {(a, b) e S x 
S'.aeJ implies there exists ßeJ such that aE^a~^, bE^b~^ ^ Eß}. Then a 
and Q are respectively the smallest and largest congruences on S such that G | E — 
Q\E = Up {the equivalence relation on E induced by P). 

Definition 1.3. Let S be an inverse semigroup. Ж is a kernel normal system of S 
if Ж is a collection of inverse subsemigroups of S, Ж = {N^ : a G J } such that, 
if E^ = £jy ,̂ then 

(1) {E^ : a G J} is a normal partition of £5; 

(2) aa"^, bb~^ e E^ and a, ab~^ eN^ imply that b EN^; 

(3) aa"^, bb~^ E E^ and ab"^ EN^ and aEßa"^^ ^ E^ implies that aNßb~^ ^ N^. 

Theorem 1.4. Let S be an inverse semigroup and let Jf = {iV„ : a G J} fe^ a kernel 
normal system of S. Let Qjr = {{a, b) E S x S : aa"^, bb"^ E E^ and ab"^ EN^ 
for some a G j } . Then Qjr is a congruence on S and {N^ : ОСЕ J] is the set of idem­
potents in SJQjr. 

Conversely, let Q be a congruence on S. Then JV = {eg : e E E] is a kernel normal 
system of S and Q = Qjr, 

Theorem 1.5. Let S be an inverse semigroup and P = [E^ : ОСЕ J] be a normal 
partition of E. For each ОСЕ J, let T^ be the largest inverse subsemigroup of S such 



that Ej^ = £„, let M^ = {x e T„ : ex = e for some e e E^}, and let N^ = {x еТ^: 
Eßß ç Ey implies xEßX~^ Ç £ j . Then Jt = {M^ : a G J} and Jf = {N^\aeJ] 
are kernel normal systems of S, Q^^ = a and Qjr = Q where a and Q are defined as 
in Theorem 1.2. 

Theorem 1.6. Let S be an inverse semigroup and let 9 = {(Q, G) G Ä{S) X Ä(S) : 
^ I £ = ö- I E}. Then 

(1) в is a congruence on A{S); 
(2) each в-class is a complete modular sublattice of Ä(S); 

(3) the natural homomorphism of A(S) onto Л(5)/0 is a complete lattice homo-
morphism. 

II. FINITE PRIMARY CARDINALS 

Definition 2.1. Let S be an inverse semigroup with E as its semilattice of idem-
potents. A congruence ^ on £ is a normal congruence on E provided that {e,f) G Q 
and aeS imply (a e a~^, afa~^)e Q. 

In the Hght of Definition LI and Theorem L2, the normal congruences on E are 
just those congruences on E which may be extended to all of S. 

Lemma 2.2. Let E be the semilattice of idempotents of ^x^ ^^^ ^^^ Q be a normal 
congruence on E. Then there exists a cardinal number г}{о), 1 ^ ?/(̂ ) ^ |^ | ' , such 
that if e E E, then (e, 0) e Q if and only if \e\ < rj(^Q). 

Proof. Let A = {^ : ̂  is a cardinal number and there exists eeE such that 
\e\ = ^ and (e, 0) G Q}. Choose г](д) minimal with respect to ^ < г}{о) for each ^ in A. 
To show that г]{о) has the property asserted, assume first that ее E and (e, 0) e Q. 
Then \e\ e A and so \e\ < I]{Q). 

Conversely, assume that ее E with \e\ < г}(о). Then there exists feE such that 
(/, 0)e Q and \e\ S |/|- Let g be an extension of e such that \g\ = | / | and let a map 
U(g) one-to-one onto U(f). Then (/, 0)e Q implies {afa~^, aO a~^) = [g,0)e Q, 
and hence [eg, eO) = (e, 0) e g, concluding the proof. 

The cardinal number т](д) of Lemma 2.2 will be called the primary cardinal of g. 
If (̂  is a cardinal number such that 1 g ç g \X\\ then I^ = {ее E :\e\ < £,} is an 

ideal of E. Let /* denote the congruence on E such that £//* is the Rees quotient semi­
group Ejl^. /* is, in fact, a normal congruence on E since a e J'x and ее E imply 
\a e a~^\ ^ \e\. Similarly, J^ = {ae Jx • \^\ < ^} is an ideal of J^x-

Let D^ = {ae J'x * |^i = <̂} for 0 ^ ^ ^ \X\. It is a simple matter to compute 
that (a, b)e ^ if and only if V{a) (the range of a) = V(b), and (a, b) G ̂  if and only 
if U(a) = U(b). Consequently, (a, b)e^ if and only if \a\ = \b\ so that the ^ 
classes of Jx ^^^ just the sets D^. 



Lemma 2.3. Let g be a normal congruenee on E such that YI{Q) is finite. Then 

Proof. According to Lemma 2.2, if |c|, | / | < ц{о), then (e, 0), (/, 0) e ^ and so 
{e, f)eQ and hence 7*̂ )̂ ç Q. 

In order to show that Q Ç /*(^), let [e,f) e Q. Lemma 2.2 guarantees that if either 
of |e| and | / | is less than j^(^), then both of \e\ and | / | are less than т](о) and so {e,f) e 
/*)^. Assume then that ri{Q) ^ \e\ g | / | . If \ef\ < rj{Q), then {е/,/)ед implies 
that ( 0 , / ) G ^ , a contradiction. Assume then that rj{Q) й \ef\ and e Ф f. Choose 
G Ç U{ef) such that | G | + 1 = rj{Q) and let x e 17(/) \ U(g). Let Я = G u {x} and 
let gf, /i be the identity mappings on G and Я, respectively. Then [he, hf) = (^, /i) e ^ 
and so (0, h) e Q, again a contradiction. 

Lemma 2.4. Le^ n be an integer sueh that 1 g n ^ |X|. Then Jn+ijJn ^^ ^ eomplete-
ly 0-simple inverse semigroup. Consequently, the set of nontrivial congruences 
on J„ + IIJ„ is isomorphic to ^(G„) where G„ is the symmetric group on n symbols. 

Proof. Since J„ + i is an ideal of J^x^ then J„+i is itself an inverse semigroup and 
hence Jn + ijJn is an inverse semigroup. But J„+^ \ J„ is a ^ class of Jx ^^om which it 
follows that Jn+ijJn is 0-bisimple and hence 0-simple. Since n is finite, it follows that 
J„ + i/J„ is completely 0-simple. But any nontrivial congruence on a completely 
0-simple inverse semigroup must separate idempotents. But when S is any completely 
0-simple semigroup, the sublattice {X e A[S) : X ^ Жs\ = ^{G) where G is any 
group Ж class of S. 

Lemma 2.5. Let n be an integer, 1 ^ n ^ \X\. Let (^ e A[j^^^jj^ with о non-
trivial, and let (j"'* = г u [d I D„] и [J„ x J„]. Then o^ e A[j>x)' 

Proof. Certainly G^ is an equivalence relation on J^- Let [a, b) e o^ and с e J'x-
To see that [ac, be) e G^, the only nontrivial cases are when [a, b)e o\D„ and 

с e Jx ^^n + i- Assume that this is the case. 
Since [a, b) e a \ D„, then [a, Ь)еЖ and so V[a) = V[b). But ac = a[c \ V[a)) 

and be == b[c | V[b)). Consequently, [ac, be) e J„ x J^ if V{a) = V[b) ф 17(c) and 
[ac, Ьс)еа\ D„ if V[a) = V[b) ^ U[e). In any event, [ac, be) e a. 

Similarly, [ca, cb) e a'^ and so a^ e A[J'x). 

Lemma 2.6. Let Q e A[Jx) ^^^^ that rj[Q \ E) = n is finite. Assume further that Q 
is nontrivial [i.e., that n S | ^ | ) - Then g = a^ where a e yl(J„+i/j„), G is nontrivial, 
and (T̂  /5 defined as in Lemma 2.5. 

Proof. Since rj[g \ E) = n, then g\ E = I^ by Lemma 2.3. Since 0^ is an ideal 
of J^x^ it follows that 0^ = J„. Let т denote the maximal extension of /* to Jx-
Let ее E such that n < \e\. According to Theorem L5, the proof will be finished when 



it is shown that ez = {e], T ,̂ the largest inverse subsemigoup of J^x such that T^ n 
E = {e}, is Hg. Let a e Я^, a Ф e. Then there exists x e U{a) such that (x, x) ф a. 
L e t / = {(y, / ) : J 6 (7(e) and у Ф x}. T h e n / e £, ef = / a n d n ^ | / | . But afa"^ Ф 
/ since X G U(afa~^) and x ^ t /( /) . Hence a ^ вт and so er — {e}. 

The preceeding lemma shows that if n is an integer, 1 ^ n ^ \X\, then the set of 
extensions of J* to c/j^ is yl(G„), when G„ is the symmetric permutation group on 
n symbols, and that the set of all Q G A{^^ such that г\{^ | £) is finite forms a chain. 
Consider a congruence ^ on ^^ such that the primary cardinal of Q, rj(Q), is finite 
[1, Lemma 10.64]. The set of all such Q forms a chain and if n is a positive integer 
such that 1 й n й | ^ | , then {деЛ{^х) - ̂ (Q) = "} = ^(<^„) [1, Theorem 10.68]. 
Hence, if X itself is finite, then Ä{JX) = ^i^x)-

Recall that ^x is embedded in ^^o- Suppose ^ is a congruence on ^x^ such that 
f^(^Q^ = n where 1 < n ^ |x | . If a G J^X^ Ihen (0^, a^) E g if and only if rank a^ < n 
[1, vol 2, p. 231], that is, if and only if |a| < n — 1. This shows that g | E (where E 
is the semilattice of idempotents of ^x) is / * - i . Hence if n = 5, there are three such 
congruences g on^^^o, but /* has four extensions to J^j^. Thus the congruences on ^x 
are not precisely those induced by congruences on ^xo-

Since there is a one-to-one correspondence between the в classes of Ä(j^x) ^^^ the 
normal congruences on E, when n is an integer such that 1 S n S \X\\ let 0^ denote 
the в class which corresponds to /*. Thus |0„| = n if 1 ^ n ^ 4; 3 if 5 -^ n S \x\; 
and 1 if n = \X[. 

If S is any semigroup in which E is not empty, then в may be defined on Ä{S) as 
in Theorem 1.6 and в is always an equivalence relation. S is called в reduced if each 9 
class is a singleton. If S is an inverse semigroup and g, а,т e Ä(S) with ^ ^ a, т, 
then (or, T) G 9S if and only if (ajg, xjg) e 0 /̂̂ . Hence a congruence ^ is Ö reduced if 
and only if g is the sup of the 9 class to which it belongs, and ^ ^ т implies that т is 
the sup of the 9 class to which it belongs. 

Returning to Ух^ suppose X is finite, say \X\ = k. Let g denote the maximal 
extension of/*. Then g is the minimum 9 reduced congruence on S and SJg is also 
a semilattice. 

Some of the results of this section will be summarized in the following theorem. 

Theorem 2.7. Let X be a finite set. Then Ä[J^X) = ^(«^x)? ^ finite chain. The 
minimum 9 reduced congruence g is the minimum semilattice congruence t], 
and J^XIQ contains just two elements. 

III. INFINITE PRIMARY CARDINALS 

In this section several lemmas will be proved which will be of assistance in char­
acterizing all congruences on a symmetric inverse semigroup when the underlying 
set X is infinite. Throughout, S = J^x where X is infinite, and ^ is a normal congruence 



on E such that rj{Q) is infinite. When e,fEE, then difference (e,f) (abbreviated to 
dif (^,/)) is defined to be max { |e\ / | , | / \ ^ | } . Considering S as embedded in ^xo, 
it is routine to see that dif (^,/) = difference rank (e^.f^) if e S f or f ^ e; and 
dif{ej) + 1 = dr ( e ^ / ° ) if e Sf^ndf Se [1, vol. 2, page 228]. A consequence 
of this definition is that if | / | < \e\ and \e\ is infinite, then dif{e,f) = |e|. Whenever i 
is a cardinal number, A^= {{e,f) = E x E : dif(e,f) < ^} . Further, (e , / ) G A^^ will 
sometimes be shortened to e = / . As before, I^ — {ее E : \e\ < ^} . 

Lemma 3.1. Let {e,f)eQ with | e \ / | = \e\ = ц where t] is an infinite cardinal. 
Then I^r X /,,. Ç Q. 

Proof. Let a map U(e) one-to-one onto U(e \f). Then aea"^ = e, afa"^ = 0 and 
so (e, 0) G Q, The rest follows from Lemma 2.2. 

Lemma 3.2. Let (e, f) e Q, e < f. Then g e E with g < e and g z^ e implies 
(g, e) G Q. 

Proof. Suppose first that g satisfies the conditions stated and dif(^, e) = L 
Select ke E such that e < к -^ f and dif (e, k) = 1. Note that (e, Ще Q and choose 
{x,x)ek\e and (y, y)e e\g. Let a = g KJ {(>% x)}. Then aka"^ = e, aea~^ = g 
and so (e, ö') G ^. An obvious induction argument completes the proof of the lemma. 

Lemma 3.3. Let {e,f) e Q, \e\ = | / | = oo, e ф / , and e = f. Let g e E with g = e. 
Then (e, g) e Q. 

Proof. Since {e, ef) e Q, ef < e, and gef S ef < e, then (gef, e)e дЪу Lemma 3.2. 
If ^ = gef, the lemma is proved. Otherwise, select h, ke E with gef < h ^ e and 
gef < к ^ g and dif (/?, gef), dif(k, gef) = 1. Let (x, x)e h\gef, (y, y)ek\gef, 
and let a = gef u [(y, x)}. Then aha"^ — k, agefa"^ — gef, and so [gef, k) e Q. 

If k = g, there is nothing more to show. If к < g, let r e E such that к < r -^ g 
and dif (/c, r) = L Let (z, z) e r\k. Let Ь map l/(r) one-to-one onto C/(/c) in such 
a way that (z, y) e b. Then bkb~^ = r, bgefb~^ = k, and so (k, r) e Q. An obvious 
induction argument completes the proof. 

Corollary 3.4. Let {e,f) e Q, \e\ = | / | = oo, e Ф / , and e = f. Then (g, h) e Q for 
each g, he E with \g\ = \h\ = \e\ and g == h. 

Proof. Let a map U(g) one-to-one onto U(e). Since (e,ef)eQ, then (aea~^, 
aefa"^) = (g, aefa'~^)e Q. NOW aefa~^ Ф g, \g\ = \aefa^^\ and aefa~^ = g. 
Lemma 3.3 completes the proof. 

Lemma 3.5. Let (e,f) e Q, e < f, and dif (^,/) = ^ where ^ is an infinite cardinal. 
Then g e E with g < e and dif (̂ f, e) = ^ implies [g, e)e Q. 



Proof. Let t map U(e\g) one-to-one onto U(f\e) and let a — g \J t. Then 
afa~^ = e, aea~^ = g, and so (gf, eje Q. 

Lemma 3.6. Let (e,f)eQ and d i f (e , / ) = ä, where ^ is an infinite cardinal The 
g E E with dif (^, g) ^ ä, implies [e, g) e Q. 

Proof. Without loss of generality, assume | ^ \ / | = ç- Since {e, ef) e Q and 
dif (e, efg) = ^, then (^, efg) G Q by Lemma 3.5. Let g' be an extension of g such that 
âif(g\efg) = ^. Let t map U{g'\efg) one-to-one onto U{e\efg) and let a = 
efg u t. Then aea~^ = g\ aefga~^ = efg, and so (g\ efg) G Q. The lemma follows 
immediately from this. 

Corollary 3.7. Let (e,f)eQ, \e\ = | / | , and d i f (e , / ) = ^ where £, is an infinite 
cardinal. Then g, he E with \g\ = \h\ = \e\ and dif (^, h) ^ ^ implies (g, h) e Q. 

Proof. Again, without loss of generality, assume \e\f\ = ^. Let a map U(g) 
one-to-one onto U{e). Then [aea~^, aefa~^) = [g, aefa"^) e g and dif (̂ f, aefa"^) = 
(̂ . The rest follows from Lemma 3.6. 

Lemma 3.8. Let {e,f) G Q, \e\ = \f\ = ц and dif (e , / ) = (̂ , where r\ is an infinite 
cardinal. Then 

(i) if ^ is infinite, then (/^' x I^,) n ZĴ . ^ g; 

(ii) / / 0 < (̂  < Ко, then (/^. x I^) n A^^ я Q. 

Proof. Assume, without loss of generality, that \e \ / | = ^. Let g, he E such that 
\h\ S\g\ S rj and dif{g, h) S <?• Since (e, ef) e g, then {{e\f) e, (e\f) ef) = 
(e\f,0)e g. Thus ^ < г](д) by Lemma 2.2. and so if \g\ ^ (̂ , then [g,h)eg. 
Also, if ö' is finite, then (g, h) e g since \g\, \h\ < rj(g). For the remainder of this 
proof assume ^ < |б |̂ and g is infinite. 

(i) Assume ^ is infinite. Notice that this guarantees \h\ = \g\, since otherwise, 
1̂1 < lö'l = dif (/г, g) ^ ^ < \g\, a contradiction. Let p be an extension of g such 
that \p\ = rj and select m < g such that \m\ = ^. Then | ^ \ m | = \p\ and 
dif{p,p\m) = ^. Hence (p, p\m)e g by Corollary 3.7. Thus {pg,{p\m) g) = 
(OF, g\m)e g. But dif (^, g\m) — ^ and so (Ö ,̂ /Î) G ^ by Lemma 3.6. 

(ii) Assume 0 < (̂  < Ko- Again, \h\ = \g\, because otherwise |/i] < l̂ l̂ = 
dif(/î, ^) < Ko ^ lö'l, a contradiction. Let p be an extension of g such that 
\p\ = rj and let (x, x) e g. Then (p, p \ {(x, x)}) G ^ by Corollary 3.4. Hence (gp, 
g{p \ {(x, x)})) = (g, g \ {x, x}) G ^. Hence (Ö ,̂ h) G ^ by Lemma 3.3. 

For each cardinal number À such that A G [?;(^), |X|] let A^, = {^ : there exists 
(e , / ) G ^ such that |e| = | / | = Я and dif{e,f) = ^} . Define A* by Я* is minimal with 
respect to (̂  < Я* for each ^ G Л^. 



Lemma 3.9. Suppose that À, jii e [rj{Q), |X|] with À < fi. Then 

(i) A* ^ rj{Q) 

(ii) ^* ^ Я*. 

Proof, (i) The first part of the proof for Lemma 3.8 guarantees this. 

(ii) For a contradiction, suppose Я* < ju*. Then there exists (e,f) eg such that 
И = i / | = /̂  and Я* g dif (e , / ) = ^ < /i*. But (i) says that /x* ^ 7̂(̂ ) and so 
Я* g ^ < /I* ^ rj(g) ^ Л < fi. Assume \e\f\ = ^ and let ^ e £ such that e\f < 
g < e and l̂ l̂ = Я. Then (^e, ^/) = {g, gf) e ^. But g\gf = e\f and so 
dif (or, ö'/) = <̂  and \g\ = \gf\ = À. This contradicts the definition of A*. 

Following Chfford and Preston [1, vol. 2, page 234], the map Я -> Я* is a map 
of [г}{о), \X\] into [1, ^(^)]. The range of this map is finite, say {^j, ..., 4}^ with 
(̂^̂  < . . . < ^ j . For each /, 1 ^ / g /с, let rji be the least cardinal such that ?/* = (Jj-. 
Then 

^j, < . . . < ^, g i](^) = ^1 < . . . <r]kS Пк+1 = Щ' •> 

and {^ t̂,..., (̂ ,̂ f]^^ ..., /7̂ ]̂ is called the sequence of cardinals of Q. 
All (JJ- are infinite, except possibly ^^, and if ^j. is finite, then ĉ^̂  = 1. For, if 1 < (̂^ = 

r < Ко, then there exists {e,f) e Q with |e| = | / | = ?7̂  and dif (e , / ) = r — 1 > 0. 
Lemma 3.8 (ii) guarantees that ^i ^ KQ, a contradiction. 

Lemma 3.10. Let ^i, ?/,- (f = 1, ..., /c) be 2k cardinal numbers such that: 

(i) 4 < . . . < ^ i ^ ^ 1 < • . . < ^ . ^ | ^ | , 

(ii) All ^i and rji are infinite except possibly ^,^, and if ^k is finite, then ^j^ = 1, 

Define r on E by 

T = / * u ( J , , n / , * ) u . . . ( J , , _ . n C ) u z l , , . 
Then X is a normal congruence on E and (i) is the sequence of cardinals of т. 

Conversely, if Q is a normal congruence on E such that Q is not the universal 
congruence, г]{о) is infinite, and (i) /5 the sequence of cardinals of Q{r\{Q) = i|i), 
then Q = X. 

Proof. That T is a normal congruence on E follows from Malcev's theorem [1, 
Theorem 10.72]. For x may be viewed as the restriction to E of a congruence defined 
on all of .^;fo. 

It must be shown that (i) is the sequence of cardinals of т. First J*̂  ^ т and so 
rji ^ ^(T) by Lemma 2.2. Suppose rj^ < г](х). Let ее E with \e\ = tj^. Then (e, 0) E т 
again by Lemma 2.2. Then (e, 0) ф1^^ and (e, 0) ф Л^^ since ^j^ ^ rj^ = \e\ = dif (e, 0). 
Thus {e, 0) e A^. n /* ^̂  for some /, 1 ^ / < /c. Then rj^ = \e\ = âif{e, 0) < ц̂  ^ 
rj^, a, contradiction. Hence f|(t) = rji-



Suppose that rji ^ ц < tji+i (where rji^ + i = |X|'). To see that ?7* = ^̂ ., let (e,f) e т 
with \e\ = | / | = Г]. Then {e,f) e A^. nl^j^^ for some j . The monotone properties 
of {^i} and {;7,} imply that {e,f)eA^. гл1^.^^ and hence /7* ^ ç .̂ But if ^ < ^i, 
then certainly there exists g, h e E such that l̂ ĵ = \h\ = rj and dif (^, h) = (̂ . Hence 
(̂ r, h) e A^. n/*.^j ^ T and so /7* = ^i. This also shows that rii is the least of all 
cardinals rj such that rj^ = ^j-. 

Assume now that ^ is a normal congruence on E, not the universal congruence. 
Let (i) be the sequence of cardinals of Q with т](^о) = ^i» 

To see that ^ ^ т, let {e,f) e Q. According to Lemmas 2.1 and 3.1, either \e\, \f\ < 
< rj^, in which case (e,f)el^^ ^ т, or \e\ = | / | ^ rj^. Assume \e\ = | / | = f], 
ntun < rji+i and dif (e , / ) = ^. Then ^ < if = ^. and so (e , / ) G ZI^. n / * ^ ^ ç т. 

Finally, suppose {e,f) e т. If (e , / ) e/*^, then \e\, | / | < ?/i = ?7(̂ ) and so {e,f) e Q. 
Assume (e , / ) ф1^^. Then (e , / ) G A ^ . n /*.^^ for some /, 1 ^ г ^ k. If |e| ф | / | , say 
|e| > | / | , then dif (e , / ) = |e| so \e\ < Ci < ^i and hence (e , / ) G/*^, a contradiction. 
Hence 1̂1 = | / | = rj, say. Without loss of generality, rji ^ rj < rji+i. The dif (e , / ) < 
< ^i and so (e , / ) G ^ by Lemma 3.8 and an argument which parallels the proof for 
[1, Lemma 10.71]. 

IV. THE LATTICE A(.fx) FOR INFINITE X 

Again, S will denote the symmetric inverse semigroup on X with X infinite and E 
is the semilattice of idempotents of S. 

Lemma 4.1. Assume that g is a normal congruence on E such that г](о) is infinite. 
Then Q has a unique extension to all of S. 

Proof. First, Q has an extension to S by the remarks just after Definition 2.1. 
If Q is the universal congruence on £, and Q^ is an extension of g to S, it is immediate 
that ^* is the universal congruence on S. 

Suppose g is not the universal congruence on E. Let {(̂ ,̂ ..., Cj, rj^ = i;(^), ..., rjj^} 
be the sequence of cardinals of g (Lemma 3.10). Let E^ = eg for each ее E so that 
{Eg : ее E} is the normal partition of E induced by g. Let ^ and J^ be the kernel 
normal systems of Theorem 1.5. To prove the lemma, it suffices to show that M^ = N^ 
for each ее E. 

Assume first that ее E and \e\ < }j^. Then T^ = {a e S : \a\ < ^ J . Since 0 G £g 
and Oa = 0 for each a e T ,̂ then M^ = T^ and so M^ = N^. 

Suppose then that rj^ ^ \e\ = rj, say rji < rj ^ ^i+i- Then M^ = {ae T^ :fa = f 
for some/G £ j == {a e T^ : \{x e D{a) | xa Ф x}\ < (^J. Assume that a e T^, a ф M^. 
It will be shown that a ф N^, which guarantees that M^ = N^. 

Let Ä = [xe U(a) : xa = x} and В = {x e U(a) : xa Ф x}. Since a ф M^, then 
| Б | 't ^i. Let #" = {F Ç Б : X G F implies that хафУ}. ^ ^ О since {x} e ^ for 



each X e В; and ç is а partial order for #". A routine Zorn's Lemma argument shows 
that #" contains a maximal element C. Suppose, for a contradiction, that |C| < | Б | . 
If xa e С for each x e Б \ C, then a | (Б \ C) is an injection of Б \ С into C, a con­
tradiction. Hence, there exists xe B\C such that xa ф С. But then С u {x} e #", 
contradicting the maximality of С Thus | Б | = |C|. 

Let F = yl u C, and l e t / be the identity map on F. Notice that | / | = \e\ and xe С 
implies that xa ф A, Thus xe С implies хаф A^J С =^ F and so (x, x) ф afa~^. 
Hence \f\cifa~^\ ^ ^ j . Now E^Ef == E^^-iEj- = E^a-if = Ej, but afa~^ ФEf. 
Hence a ф N^. 

The preceeding lemma shows that if ^ is a normal congruence on E such that tj^g) 
is infinite, then the в class which corresponds to ^ is a singleton. Let Q ~ 1%^ KJ A^, 
The unique extension Q^ of ^ to S is the minimum Ö reduced congruence on 5, but Q^ 
is not a semilattice congruence. The construction of Л(5) makes it clear that A{^ = 
A{^x^ ^ A{^^ and so Chfford and Preston's result [1, Theorem 10.77] that 
Л(^х) is distributive applies to /l(S) as well. 

Theorem 4.2. Let X he an infinite set. Then A(Jx) = ^{'^x)- The minimum в 
reduced congruence Q on J'x is {(a, b) e J>x x J^x '• |^|» Щ < ts^ or a = b]. The 
universal congruence is the minimum semilattice congruence. 
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