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DEFORMATION AND EQUIVALENCE G-STRUCTURES.
PART 1. {¢}-STRUCTURES

JArROLIM BURES, Praha

(Received November 11, 1971)

This paper is a partial solution of the problem which was suggested to me by
Professor Svec. It is a contribution to the difficult and important problem of the
equivalence of G-structures which has been already treated by many mathematicians.

Many important results in special cases were obtained already by E. CARTAN;
the latest ones are due to GUILLEMIN, STERNBERG, SINGER and others.

The contents of the paper is- the following. In the first chapter some necessary
concepts from the theory of G-structures and the notion of contact of high order of
submanifolds are introduced. The second chapter begins with the definition of defor-
mation of G-structures and with some of its basic properties.

In the next part, deformations of {e}-structures and the relation between the
deformation and the equivalence of {e}-structures is dealt with.

The deformation problem for {e}-structures is practically solved here but the study
of general G-structures remains still open.

1. G-STRUCTURES

Throughout the paper differentiability means always differentiability of class C%;
instead of differentiable manifolds we speak only manifolds, we use the usual sum-
mation convention and we take over much of the notation from the book by Stern-
berg [1].

We shall mention here only some definitions and propositions from the G-structures
theory. .

Let us denote by F(M) the principal fibre bundle of all frames of a manifold M.
The general linear group operates on F(M) from the right. For pe F(M) and a e
€ GI(n, R)") we denote this operation by p . a, = : F(M) - M denotes the projection.

1y GI(n, R) is the general linear group.
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Then F (M) = n~"(x), i.e. the fibre at x is a submanifold of F(M) diffeomorphic
with GI(n, R). Any diffeomorphism f : M; — M, induces isomorphisms f : T,M; —
= TyyM, of tangent spaces of the manifolds, thus defining a diffeomorphism
J: F(M,) —» F(M,) of the principal fibre bundles of frames.

Definition 1. Let G be a Lie subgroup of GI(n, R). G-structure B—~ M on M is
a reduction of the principal fibre bundle F(M) to the group G.

This is to say a G-structure B — M is a principal fibre bundle over M with a prin-
cipal fibre bundle morphism B — F(M) which is an imbedding and induces the iden-
tity on M.

Proposition 1. Let G be a Lie subgroup of GI(n, R). A submanifold B < F(M)
is a G-structure on M if and only if:

(1) The projection n : F(M) — M maps B onto M.
(2) If pe B, g€ F(M) such that q = p . a then q € B if and only if ae G.

(3) To any x € M there exists its neighborhood U and a cross-section o : U —
— F(M) such that ¢(U) < B.

If B~ M, is a G-structure and f : M; - M, is a diffeomorphism then the image
f(B) is a G-structure on M,.

Definition 2. Let B, - M, and B, - M, be two G-structures. If there exists
a diffcomorphism f : M; — M such that f(B;) = B, then the G-structures are said
to be equivalent with the equivalence f.

We say that G-structures B; - M and B, — M, are locally equivalent at a point
(x, y) e My x M, if there exist neighborhoods U, of x and U, of y such that the
G-structures B, [U, and B,|U, are equivalent with an equivalence f satisfying f(x) = y.

Remark. If B - M is a G-structure on M and U ¢ M an open subset, then
n~}(U) n Bis a G-structure on U which will be denoted by B|U.

For any Lie subgroup G = GI(n, R) we can define on R” the standard flat G-structure
Bg — R". Using the standard chart (x', ..., x") on R" we can define a global cross-
section of F(R") by setting o(x) = (8/0x(x), ..., 8[0x,(x)). A subset Bg < F(R")
consists of all elements of the type o(x).a, xe R", a e G.

Definition 3. A G-structure B — M is said to be flat if it is equivalent with the
standard flat G-structure on R". It is called locally flat if it is locally equivalent with
the standard flat G-structure at the point (x,0)e M x R" for any xe M (0 =
= (0, ..., 0) is the origin in R"). ,_

G-structure B — M is locally flat if and only if to any x € M there exists a chart
(x', ..., x") around it such that the field of frames (d/dx", ..., 9[0x") belongs to B.
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Examples of G-structures. (1) If G = {e} is the trivial subgroup of GI(n, R) then an
{e}-structure is a full parallelism on M.

(2) If G = O(n) is the orthogonal group, then O(n)-structures are in 1 — 1 cor-
respondence with Riemannian metrics on M.

(3) If G = C O(n) is the conformal group, C O(n)-structures are in 1 — 1 cor-
respondence with conformal structures on M.

Further examples of G-structures are almost complex structures, symplectic struc-
tures etc.

From this brief survey we can see that the majority of classical geometric structures
belong to G-structures.

If G is a closed subgroup of GI(n, R) we can define G-structure also in another
equivalent way. We know that the set of equivalent classes GI(n, R)/G is a homoge-
neous space and GI(n, R) operates from the left on it. We can define the fibre bundle
with the standard fibre GI(n, R)/G associated with F(M) and by Proposition 5,5
from [4] to identify it with the quotient space F(M)[G. The proof of the following
proposition can be found in [4] Prop. 5.6.

Proposition 2. Let G be a closed subgroup of GI(n, R). G-structures on M are
in 1 — 1 correspondence with sections of the fibre bundle F(M)|G.

Thus for a closed subgroup G = GI(n, R) we get a commutative diagram

F(M) —> F(M)[G
}\ /{c
M

of fibre bundles and their morphisms.

By Proposition 2 we can associate with any G-structure a unique cross-section
o : M — F(M)[G. This cross-section will be called the representation of the G-struc-
ture. Speaking about representations of G-structures we shall always suppose that G
is a closed subgroup of GI(n, R).

Further results in this direction can be found in [5]. If B > M, is a G-structure
on M, with the representation ¢ : M; — F(M,)/G and f: M; - M, is a diffeo-
morphism then f induces a mapping f which is a diffeomorphism F(M,)/G with
F(M,)|G and which maps the cross-section ¢ to the section f(¢) : M, —» F(M,)[G.
This cross-section is the representation of the G-structure f(B) on M,.

Thus f is an equivalence of G-structures if and only if f maps a representation into
a representation.

Definition 4. Let M be a manifold and let N, and N, be two m-dimensional sub-
manifolds of M intersecting at the point P. We say that Ny, and N, have the k-th
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order contact at P if we can find a coordinate system for M, (yy, ..., ,), defined in
a neighborhood of P, such that the equations of N, are given by

Ym+1 = 0,.., Yn = 0
and the equations of N, by

Ym+1 =fm+1(y1’ [EX) .Vm) ’

yn =fn(y1""s ym),

where f,,41, ..., f, have vanishing derivatives of all orders less then or equal to k
at the point P.

2. DEFORMATION AND EQUIVALENCE OF G-STRUCTURES

1. General definitions

Definition 1. Let G be a Lie subgroup of GI(n, R), M; and M, two manifolds.
A diffeomorphism f: M; — M, is said to be a deformation of order k at a point
u € M of G-structures B; - M and B, — M, if there exists a local diffeomorphism
of M, into M, with y(u) = u and p € B, with n(p) = f(u) such that B, and f{(B,)
have as submanifolds of F(M,) the contact of order k at the point p.

If f is a deformation of order k at every point of M,, we call it a deformation of
order k. We say that B, — M, and B, — M, are in deformation of order k at a point
(4, v) € M; x M, if there exists a local diffeomorphism from M, to M, with y/(u) = v
such that ¥ is a deformation of order k at u.

The immediate of the definition is the following:

Lemmal.Let B, » M;, i = 1, 2, 3 be G-structures,f : M; - Myand g : M, - M,
diffeomorphisms. Then

(1) If f is an equivalence of G-structures B; — M, and B, — M,, and g a defor-
mation of order k of G-structures B, - M, and By — M3 at a point ue M,
then gof is a deformation of order k of the G-structures B, - M, and
B3 — M3 at the point f~'(u) e M.

(2) If g is an equivalence of G-structures B, — M, and By — M3 and f a defor-
mation of order k at a point u € My of G-structures B; - My and B, — M,
then gof is a deformation of order k of the G-structures B, - M, and
B; — Mj; at the point u € M.
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Lemma 1 implies easily:

Lemma 2. A diffeomorphism f: M; — M, is a deformation of order k of G-
structures B; > M, and B, - M, at a point ue M, if and only if Id : M, - M,
is a deformation of order k of G-structures B; - M, and f ~*(B,) = M, at the point
ue M.

If G is a closed subgroup of GI(n, R) then any G-structure on M has a representa-
tion o : M - F(M)/G (see 1) and the terms of it we can paraphrase the notion of
deformation in the following way.

Proposition 1. A diffeomorphism f: M, - M, is a deformation of order k
of a G-structure B, — M, represented by a cross-section o, : M; — F(Ml)/G with
a G-structure B, — M, represented by a cross-section o, : M, —» F(M,)[G at
a point u € M, if and only if there exists a local diffeomorphism  of M, with
Y(u) = u such that

1) (o) = (o) .-
Remark. (1) can be written in an equivalent form
(2) j-’:(‘pdl) = Jf(f—l“z)

which will be frequently used in the sequel.

Proof. By Lemma 2 we can suppose M; = M, = M and f = Id. Thus we have
two G-structures By > M and B, —» M and a point u € M. Further, for the sake of
simplicity we can suppose that there exists p € B; N B, with n(p) = u which implies
immediately n~'(u) N By = n~'(u) n B, and therefore o,(u) = o,(u). For our
purpose it is sufficient to introduce on F(M) special fibre coordinates related with
the fiberings F(M) 5 F(M)/G 55 M.

Remark. We can see that the deformation of order k does not depend on the map-
ping ¥ but only on its (k + 1)-jet at u. Thus we can use only (k + 1)-jet with the
property (1) instead of .

Now we can formulate naturally arising problems:

(1) Under which conditions is a given mapping a deformation or order k?

(2) Under which conditions are two G-structures in deformation of order k?

(3) Is it possible for a G-structure B — M to find a non-negative integer k such that
Id : M — M is a deformation of order k the G-structure B — M with a G-structure
By - M then B = B{?

In other words: Is it possible to find such k that a deformation of order k is already
an equivalence?

In the sequel we shall study conditions equivalent to the notion of deformation and
relations between a deformation and an equivalence especially in the case of {e}-
structures.
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2. Deformation of {e}-structures

We know from the preceding chapter that an {e}-structure on a manifold M is
a full parallelism on M, i.e. a global cross-section v : M — F(M). It can be expressed
in the form v = {v,, ..., v,} where v;, i = 1, ..., n are global vector fields on M and
for any x € M the vectors v,(x), ..., v,(x) form a basis of T,(M).

If v = {vy, ..., v,} is an {e}-structure on M, we can, using the Lie brackets, define
the global vector fields v;,;,, V; 1,5, - .. o0 M as follows

(3) Vi, = [viz’ vi:]’ Vijiiy = [vi3’ [viz’ vil]]’

Remark. Obviously any two G-structures are in deformation of order 0 so that we
shall start from the deformation of order one.

Theorem. 1. A diffeomorphism f:M; — M, is a deformation of order k of
{e}-structures v = {v,,...,v,} on M, and w = {w,,...,w,} on M, at a point
ue M, if and only if there exists an isomorphism L: T,M; — Ty, M, such that

(4) L(vi, (1)) = wi,(f(u), - s L(vi, i (0) = Wi i, (F())
foralliy, ... i =1,...,n

Proof. By Lemma 2 we can suppose M = M; = M, and f = Id. We shall
proceed by induction. For k = 0 the theorem holds by the preceding remark.

Let us suppose that it holds for k = 0. If v and w are in deformation of order k
and y is a mapping realizing this deformation (in fact, a (k + 1)-jet of ) then the
{e}-structure v* = {v},...,v}} defined by v{ = y,v; i =1,...,n is equivalent
with v and in deformation of order k with w at the point u through the identity map
((k + 1)-jet of the identity map), and by induction hypothesis we have

(5) vi(w) =wiu),..,vi ;. W) =w, ;. forall ij..iu,=1..,n.

Now because v* and v are equivalent it suffices to prove the assertion for v* and w
(see Lemma 1).

Let us take a chart x = (x', ..., x") around it such that x'(u) = 0, v}’ = X7 9/ox*
and w; = Y{ 8/ox* with X%(0) = Y{(0) = &%

From the conditions (5) and the fact that Id realizes a deformation of order k
we get immediately the equalities

'Yy
6 ——
©) ox’t ... ox’

0 =—2%__(9)

T oxi . ox

forl1<l<k<nandall a,i,j,...50,=1,...,n.
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If there exists ¢ such that J§*'@o} = J&*'w, then necessarily J§o = J§(Id) and
we must study the equality of the (k + 1) derivatives of the mappings:

X227 and Yoy at 0=(0,...0
2 2o =(0,...,0).

Taking k + 1 derivatives at 0 we have the only nonzero terms

ak-’-lxl?
i
oxJt ... axTer

ak+1Yiﬂ

oxIt ... oxTrrt

O+ T (0) =

Oxt oxIt ... OxTert

(7) (0)

i.e. we get the equality

Fk+2 e+ iyp okr1xh
(8) i Jt Jr+1 (O) = J1 i + (0) - J1 i +1 (O)
ox' ox’t ... 0x’* ox/' ... OxIkH! ox’t ... ox’
and the condition:
ak+1Yiﬂ ak+lxli3

©)

(0) - (0) =

B
ak-k—lle

Caxiox ... oxIen

Ox’t ... OxJk+t oxIt ... OxTert

k+1yB
_
ox' axTr ... oxIe+1

(0) (0) -

Let us study the equality of two brackets:

(10) Vool - [V vi ] -1 (0) = [wy. [wj, - [wy,, w,T...1(0)

In the coordinate expression the brackets on the left and the right hand sides
contain derivatives up to and including the order (k + 1) of the functions X% and ¥y
respectively at the point 0. The derivatives of functions X$ and Y up to and including
the order k are equal to each other, therefore the only interesting terms are those
including derivatives of order k + 1 which are on the left-hand side:

ak+ 1Xait’
(0)

Ox' ... oxer2

k+1ya
okr1xe

Ox't 0x ... Oxe?

(0) -

and on the right-hand side:

k+1ya
oeriyz

ox' ... oxler2

k+ 1ya
o+1ye

- Ox't ox' ... Oxi+2

(0) (0).

However, the equality of these two terms is exactly the equality (9). That is, to
a (k + 1)jet a (k + 2)-jet can be constructed if and only if the (k + 1)’ brackets
are equal.
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With an {e}-structure v = {v,, ..., v,} on M we can associate a system of differen-
tiable functions ¢, ; : M — R(iy ... i, « = 1,..., n, p arbitrary) defined by

i1..ip
(11) [viz’ vil] = C?ll-ZV, >

Vi [Vi,o oo [Vip Vi, ] -] = ¢fi Ve -

In an equivalent way we can associate with an {e}-structure v a system of vector-
valued functions on M, *c,, %c,, ..., so that

(12) ic,:M » HOM(R" ® ... ® R", R")
Ly —)

I+1

is defined by
(13) lcv(xo) (el'l ®..® el'x+1) = c?l;-~~il+le‘1

{ey, ..., e,} being the standart bases on R".

Proposition 2. Diffeomorphism f: M, - M, is a deformation of order k of
{e}-structures v and w on M and M, respectively at a point u € M if and only if
the functions c, and ‘c,, just defined satisfy

(14) c(u) = ci(f(u)) for i=1,.. k.

Proof. By the theorem it suffices to study the existence of an isomorphism Lwith
the properties (4). Defining Lon the bases of the tangent spaces by

(15) L(v.(u)) = w,(f(u))

then

(16) L([vis v;]) () = L(c5i () va(w)) = c5i(u) w.(f(u))
and therefore

(17) L([vi, v;] () = [wi w;] (F(v)) = cLif(f(w)) wa(f(u))
if and only if

(18) coif() = chii(f(w) -

Similarly we find that L(w;,_; (u)) = w;,__;(f(u)) if and only if

fe,(u) = "o (f(u)) -

Remark. The functions cy;, ; and Pc, will be called structural functions of order p
of a structure v.
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Corollary. A diffeomorphism f: M, - M, is a deformation of order k of {e}-
structures v and w on M| and M, respectively if and only if

(19) ieyof =lcn, i=1,..,k.

The next paragraph will be devoted to the relation of deformation and equivalence
of {e}-structures.

3. Deformations and equivalence of {e}-structures

Ifv = {v, ..., v,} is an {e}-structure on M and / : M — R a differentiable function
we define i™ covariant derivative /f.: with respect to v by
(20) » fai=vf.

If F is a system of differentiable functions on M then the rank r,(F) of the system F
at a point p is defined to be the dimension of the suppose of T,M spanned by the
differentials {df,, f € F}. System F is called regular at p if r(F) = r,(F) for all ¢
from a neighborhood of p. We get easily:

Lemma 3. If F is regular at p and r,(F) = k, then there exists a chart (x*, ..., x")
around p such that x', ..., x*e€ F and every functions f € F can be expressed in the
form f = f(x', ..., x*). Any such chart is said to be associated with F at p.

Our definition of covariant derivative is equivalent to that from the book by Stern-
berg [1, K7]. We use also freely some definitions and lemmas from that book.

Our structural functions c? defined in § 2 satisfy the equalities

ifenik+1
p Y —_ v a Y — AY a Y
(21) Cirizis = VisCiyi, T CiyiyCiza = Ciyia;is + CiyixCisa -
Further, for any positive integer k we have
Y — 7 a 7
(22) Civoie = Ciyvipoizic T Cigovviw Cinar +

We denote by F, the system functions {c! } on M and similarly

1i2
— ¥ ?
FS - {cixiz’ tee cixminz} .

We define ky(p) = r,(F,).

The formulas (21) and (22) imply immediately that the rank of the system F is
equal to the rank of the system

(23) FS = {ch,iz > cylil}il;‘."v;'.s+l} .
From the inclusion F; < F,,, we can see that
(24) 0<k(p) Ski(p) < ... Sk(p) < n.
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Lemma 4 ([1]). Let F, be regular at p. If kp) = kys(p) then k(p) = k,(p)
fort >s.

Proof. See Sternberg [1].

Definition 2. A point p e M is called a regular point of an {e}-structure v if there
exists s such that F, is regular at p and ry(p) = r,,(p). The smallest s having this
property will be called the order at the point p of the {e}-structure v and will be
denoted by r(p). The number k, = ky(p) will be called the rank at the point p of the
{e}-structure v. A chart around p associated with F will be called associated at the
point p with the {e}-structure v.

Definition 3. A point pe M is called an s-general point of an {e}-structure v if
r{(p) = n. The smallest s having this property is called the order of generality of the
point p and will be denoted by deg, (p).

A point p is s-general if we can find a functions belonging to F, and linearly
independent at p. Of course then there exists a neighborhood of p such that for any g
from this neighborhood there is r,(q) = n and the point p is therefore a regular
point.

0-general point will be called simply a general point. At such a point differentials
of the functions cj; generate the contangent space.

Proposition 3. Let f : M; — M, be a deformation of order two of an {e}-structure v
on My with w on M,, u € M, a general point of v. Then f(u) is a general point of w
and f is a local equivalence of v with w at the point (u, f(u)) e My x M,.

Proof. By Lemma 2 § 2 we can again suppose M; = M, = M and f = Id. Thus
we have two {e}-structures v and w on M and a general point u of the {e}-structure v.
Proposition 2 implies immediately the equality of structures functions

(%) = ebif(x)s cliplx) = ehinlx) forall i,j,ky=1,...,n
on M. From these two equalities and (21) we get e.g.
del(x) (vi(x) — wi(x)) =0, xeM.

So we have v,(x) = w,(x) at all points x at which the functions {c};} have the rank n.
Because of u, being a general points of v this condition is satisfied on a neighborhood
of uy. The first part of the assertion is evident.

Proposition 3 can be generalized to:

Proposition 4. Let f : M; — M, be a deformation of order (s + 2) of {e}-struc-
tures v and w on M, and M, respectively If u, € M, is an s-general point of v
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then f(u,) is an s-general of w and f is a local equivalence of v with w at the point
(4o, f(uo)) € My x M,.

Proof. We proceed as in the proof of Proposition 3. f being a deformation of
order (s + 2) we get on M the equations (for all iy, ..., iz, k, 7 = 1,..., n).

(25) del,,(vi(x) — wi(x)) =0,

de}, i, ,(vi(x) — wi(x)) = 0.
Further, since dcl,;,(x), ..., dcl, ;.. ,(x) generate T;*M for all x from a neighborhood
of u,

vi(x) =wi(x), k=1,..,n

holds on this neighborhood. Globally this proposition can be formulated as:

Proposition 5. Let v be an {e}-structure on My such that all points from M, are
s-general points of v, w an {e}-structure on M,, and f : M; — M, a diffeomorphism.
If f is a deformation of order (s + 2) then f is an equivalence.

Proof. Proposition 5 is an immediate consequence of Proposition 4.

If an {e}-structures on M has no s-general points for any s, i.e. its rank is always
less than n, then it is not possible under the hypothesis that f is a deformation of
arbitrarily high rank to prove that f is an equivalence. It is only possible to prove the
existence of a local equivalence from the existence of a deformation of a certain order
under further additional suppositions.

If for example v is an {e}-structure with all structural functions of order one
vanishing (and then all structural functions vanish) then an arbitrary diffeomorphism
of M to itself is a deformation of arbitrarily high rank but is not necessarily a local
equivalence. But is such a case a local equivalence always exists.

Using Proposition 4 from Sternberg [1] it is possible to prove:

Proposition 6. Let p be a regular point of an {e}-structure v on M, of order r
and rank k, q a regular point of an {e}-structure w on M, of order r and rank k.
If there exists a deformation f: My — M, of order r + 2 of the {e}-structure v
with w such that f(p) = q then there exists a local equivalence v with w at the point
(p,g)e My x M.

Proof. We show that under our hypothesis the hypothesis of Proposition 4,1
from [1] is satisfied. The existence of a deformation of order (r + 2) implies im-
mediately the equality ‘¢ = ‘c for structural functions up to and including the order
(r + 1). If (x', ..., x") is a chart associated with v at p then it is also associated
with w. From the equality of the structural functions of order r + 1 the condition
(iii) from Sternberg [1] follows immediately.
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4. Flatness of G-structures

In the end I would like to present some results from a paper of Guillemin [2]. Let
us introduce the following notation and definitions (the rest of notions used here can
be fould in [2]).

A G-structure B — M is called uniformly k-flat if it is in deformation of order k
with the standard flat G-structure at any point (x, 0)e M x R".

If B, - M, and B, - M, are G-structures, we say that a difftomorphism f : M| —
— M, preserves the structure up to the order k at u € M if there exists p € n; '(f(u))
such that the G-structures B, - M, and f(B,) - M, are in contact or oder k at p.

Again this is only a property of the (k + 1)-jet of f and not of f itself, and thus we
shall speak about (k + 1)-jet preserving the structure up to the order k.

If B — M is a uniformly k-flat G-structure we can define a principal fibre bundle
n*: E¥ — M of all (k + 1)-jets with a source 0 € R" and target in M preserving the
structure up to the order k. On E, a canonical 1-form with valuesin V+ 9 + ...
.. + 9%V and structural functions

¢ : X » H*Y(9)
can be defined.

(H*'(9) is the spencer cohomology of 9)). Then we have:

Proposition 7. Let B — M be uniformly k-flat G-structure. B — M is in deforma-
tion of order (k + 1) at (x,0)e M x R" with the standard flat G-structure on R"
if and only if ¢*(p) = O for some element p e (n*)™" (x). If H**(D) = 0, then the
uniform k-flatness implies the uniform (k + 1)-flatness.
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