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1. INTRODUCTION

Several results closely related to recent work of BABUSKA [1], [2], and STrRANG
and Fix [6], [12], [13] are given in this paper. (Its preliminary version appeared as
Tech. Note BN-619, Inst. for Fluid Dynamics and Applied Mathematics, University
of Maryland in June 1970.)

Basic concepts of the theory of generalized functions are introduced and their
principal properties are surveyed in Sec. 2. In addition, the main results of [1] are
given in this section. They indicate that, in approximation by hill functions in one
dimension, the quality of approximation is determined by the properties of the
hill and the smoothness of the function approximated. The properties of the hill are
particularly dependent on the length of the support of the hill. In conclusion, the
sequence o, of hill functions is introduced in this section according to [11].

In Sec. 3, the completeness of this system w, of hill functions is proven in W,f(a, b)
where k is a non-negative integer. Further a function of exponential type with an
infinite support is shown to be a limit of the hill functions w, as the length of the
support increases. Sufficient conditions for a sequence of hill functions given by
a convolution formula to have a function of exponential type as its limit are given.

A theorem concerned with the approximation by a function w € S is proven in
Sec. 4. This approximation is shown to be universal, i.e., the function w universally
gives the best possible approximation limited only by the smoothness of the function
approximated. In this approximation, a certain function n(h) making the support
of w “wider” as h — 0 is employed. A proper choice of such a function n(h) is
shown for a class of functions w € S. Finally a possibility of the approximation by
a function w € S not having a compact support is studied.

*) This research was supported in part by the Atomic Energy Commission under Contract
No. AEC AT(40-1) 3443/3 with the Institute for Fluid Dynamics and Applied Mathematics of
the University of Maryland.
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A generalization of most results can be made to n-dimensional case.

In conclusion, a simple numerical example illustrating the statements of Sec. 4 is
given in Sec. 5.

2. DEFINITIONS. APPROXIMATION BY HILL FUNCTIONS

Let us confine ourselves to the one-dimensional case (for general definitions and
statements, see [1], [7], [14]). The generalization of most results of the following
sections to the n-dimensional case can be readily obtained.

Apart from basic definitions and notations, this section contains several results of
the theory of generalized functions. The proofs may be found in [7], [14]. In addition,
the principal results of [1] are given in this section also without proofs.

Definition 2.1. Let R be a one-dimensional Euclidean space. Let us denote the set
of complex-valued continuous functions defined in R with derivatives of all orders
continuous in R by C*(R). Let us denote by S(R) the set of all rapidly decreasing
(at o) functions (i.e., the functions ¢ € C*(R) satisfying the condition

sup [x* p(x)] < oo

xeR

for all non-negative integers k, I) with the usual topology (see [14]). Let S'(R) be the
space of generalized functions over S(R). We will write simply C*®, S, S’ etc. instead
of C*(R), S(R), S’(R) wherever it will not be ambiguous.

Definition 2.2. Let w(x) = ax + b be a non-singular linear mapping of R on R
with a, b real, let fe S’. Let us denote by f(ax + b) a function from S’ satisfying
the relation

(/(ax + b), o(x)) = (f(W(x)), 9(x)) = |a|™* (/(x), ¢(w™"(x)))

for any ¢ € S. For the sake of brevity we will sometimes use the notation

fHx) = f(ax)
with b = 0.

Definition 2.3. Let f € S’, € S. A function g € S’ is said to be the product of the
functions ¥ and f, and denoted by g = yf if

(9. ¢) = (¥, 0) = (/. ¥op)
holds for any ¢ € S.
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Definition 2.4. Let us denote the Fourier transform of a function ¢ € S by
Flo) () = 3(x) = J e (i) d1

Let us introduce F(f) = ffor fe S’ by the equality

(F(f), F(¢)) = 2x(f, #)
valid for any ¢ € S.

Remark 2.1. The Fourier transform F is a linear continuous mapping of S on S
and of S" on S'. The inverse Fourier transform F~*(¢) of the function ¢ € S is given
by the formula »

F (o) (x) = i f " e gn) dt

- 00

The inverse Fourier transform F~!(f) of the function f € S’ is defined by the equality

(F7(f) ) = 21)7" (£, F(9))
valid for any ¢ € S.
Remark 2.2. Let f€ S’ and a =+ 0 be real. Then
(2.1) F(la] 1) = (F())".
Definition 2.5. Let ¢, y € S. A function 3 € S is said to be the convolution of the

functions ¢ and Y, and denoted by $ = @ * = ¥ * ¢ if

0

5(x) = J °_° o(t) wlx — 1) di =J‘ o(x — 1) Y() dt .

Let fe S, ¢ € S. A function ¢ is said to be the convolution of the functions f and ¢,
and denoted by g = f* ¢ if

3(x) = (f* 0) (x) = (/1) ¥(x - 1)).
Remark 2.3. Let ¢ € S, fe S’. Defining g = f * ¢, we obtain g € C*. Moreover,
(2.2) F(g) = F(f ) = F(0) F(f) .

Definition 2.6. Let f e S’. A closed set G = supp f is said to be the support of the
function f if (f, ¢) = 0 for all ¢ € S such that ¢(x) = 0 in some neighborhood of G.
(A support in the sense of this definition need not mean the minimal support.)
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Definition 2.7. A function g € C® is said to be a multiplier if ¢g € S for any ¢ € S
and ¢,g — 0 when ¢, € S, ¢, = 0 (as n — o) with the convergence in the topology
of S.

Let g be a multiplier, f € S’. A function h e S’ is said to be the product of the func-
tions g and f, and denoted by h = gf if (h, ) = (g9f, ¢) = (/. g¢) holds for any
peS.

A function fe S’ is said to be a convolutor if f* ¢ = Y€ S for any ¢ € S and
f*@,— O0wheng, €S, p, - 0(asn - o) with the convergence in the topology of S.

Remark 2.4. Let g be a multiplier. Then f = F~*(g) € S’ is a convolutor.
Remark 2.5. Let f € S’ have a compact support. Then F(f) is a multiplier.

Remark 2.6. Let fe S’, ¢ € S. Then
supp (f* @) = E[weR, w=x 4+ y, xesuppf, yesupp ¢].
The following theorem is a special case of Theorem 2.1 of [1].
Theorem 2.1. Let g € S’ have a compact support. Let a complex-valued function c(k)

be defined for all integers k, and let there exist constants 0 < C < o0 and 0 <
<y < oo such that |c(k)| < C|k|7. Let us write

feel

16) = 3 elk) gl = ak)

=-w

for a £ 0 real. Then fe S’ and
F(f) (t) = F(g) (t)kzz_wc(k) piakt

where F(f) e S' and F(g) is a multiplier. The convergence of both the series is
considered in the weak topology of S'.
Proof is given in [1].

Remark 2.7. Supposing g € S (instead of g € S’ with a compact support), we obtain
also the statement of Theorem 2.1. The modification of the proof is obvious.

Definition 2.8. Let us denote by W3(R), @ = 0 the set of all functions f € S’ such that

[FONI? (1 + [x[*) € Ly(R) -
Let us put

(23) 17 ey = @)~ [IFC (1 + %), -
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The normed linear space W5(R) with the norm (2.3) is said to be a fractional Sobolev
space.
Remark 2.8. Apparently W3(R) o W5(R) for 0 < « < B, and W3(R) = L,(R).
The following theorem is a special case of Theorem 4.1, the basic approximation

theorem of [1].

Theorem 2.2. Let 0 < o’ < B be real numbers. Let'we S';j = 1, ..., r be functions
with compact supports. Let y;; j=1,...,r be (complex-valued) trigonometric
polynomials such that the function

where A; = F(‘w) has the following properties:
1. '
(2.4) A(0) 0.
2. There exists a function z(k) such that
(2.5) |[A(x — 2nk)| £ z(k) |x|*
for some t = 0, all x such that
(2.6) |x| <=,
and all integers k + 0, and

3.
(2.7) ) iwzz(k) |k]** < oo .

k*0

Then there exists an operator Ay,

A(f) (x) =,-=i1 kﬁwcj(h’f, k) Jo(xh™' — k)

mapping W5 into Wg for any 0 < a < o'. Moreover,

(2.8) I = 4k)lwae = CH| ]l
where
(2.9) p=min(t —a f— a)

and 0 < C < o is a constant independent of h.
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If the support T of f is compact then there exists a constant 0 < L < oo indepen-
dent of h such that A,(f) has a compact support T' where T is an Lh-neighborhood
of T.

Proof is given in [1].

Remark 2.9. Further analysis in [1] shows that the conditions (2.4) to (2.7) are
not only sufficient but also necessary for the estimate (2.8), (2.9). Condition (2.5)
is of particular importance. It says that the function A has zeros of multiplicity ¢’
at all the points 2xk where k + 0 is an integer and ¢’ is the minimal integer not less
than ¢.

Remark 2.10. In the one-dimensional case with r = 1, it is shown in [1] that the
support of the function @ = @ cannot be less than the interval { —1#/, 1t'> in order
to satisfy (2.5). A sequence of hill functions w, given by the relations

(2.10) o(x) =1, [x| =1,
=0 > lxl > %:
(2.11) O, = W,_q * Oy

is shown to have the desired approximation properties with ¢t = ¢ = n (see [1],
[11]). These functions are piecewise polynomial ones of degree n — 1, they are
continuous for n > 1, and

(2.12) F(w,) (x) = (sin 3x)" (3x)7".

3. SOME PROPERTIES OF THE HILL FUNCTIONS o,

In this section we will closer study the properties of the hill functions w, given by
(2.10), (2.11).

Fixing the parameter h in Theorem 2.2, we may be interested in the possibility of
approximation by hill functions as n increases. Let us put & = 1 (the modification
for a general h is obvious) and assume a finite closed interval {a, b> = R. Then the
system of functions w,(x — k) is complete on this interval in W,(a, b) norm for any
non-negative integer I.

Theorem 3.1. Let [ = 0 be an integer, {a, b) = R be a finite interval. For any
¢ > 0 and any f e Wj(a, b), there exist an integer n > 0 and coefficients c(f, k, n)
such that

o

Hf(x) -k;_wc(f, k, n) wn(x - k)”Wz‘(a,b) se.
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Proof. The existence of a polynomial p,_, of a degree n — 1 such that

“f - pn—l”W;‘(u,b) se¢

follows from the properties of the space Wj(a, b). The set S(a, b) of the functions
infinitely continuously differentiable in (a, b) is dense in W;(a, b). In turn, polynomials
are dense in the set S(a, b) in the L,(a, b) norm. We approximate the function f e
€ Wj(a, b) by a function ¢ € S(a, b) and the function ¢¥ (belonging also to S(a, b))
by a polynomial 'r. Constructing successively the primitive functions ‘r such that
i=19(x) = ‘r(x), we find that they approximate the functions ¢? in the Ly(a, b)

norm and the quality of approximation is affected only by powers of b — a. Finally

we may put p,_; = °r.

Let us now show that any polynomial of degree n — 1 can be expressed in the basis
of the piecewise polynomial functions w,(x — k) on the interval {a, b). Let us write

Yus(x) = Y Ko(x—k); s=0,1,..,n—1.
k=—-wo

Then y,,eS" is a continuous piecewise polynomial function of degree at most
n — 1 (cf. Remark 2.10). From Theorem 2.1 we obtain ,, € S" where

(3.1) Uus(t) = J)n(t)k:imkseik:

and @, is a multiplier. Using (2.12) we find cu‘”(an) = 0; k = Ointeger;j = 0, 1,
, n — 1. Differentiating the relation

Y et =2r ) 8(x — 2mk)

k=-w k=~

where & is the Dirac function, and considering the fact that x/ = 2n(—i)/ 6 we
finally obtain

(e 0) = (3 () =1 55I(0) ¥ 0)
Jj=0\J
for any g € S, i.e.,

Z () s~ Jd')(s J)(O)xl
j:

and

(3.2) _ Yas(x) =,~§o (j ) =7 3= D(0) X

in the sense of generalized functions. Since both y,,(x) and x/ are continuous the
equality (3.2) holds identically in R.
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The functions x’ may be expressed in terms of ¥,(x) from the system (3.2) since
the matrix of the system is triangular and all the diagonal elements are equal to
®,(0) = 1 % 0. Thus this procedure yields

J
X =YdYx); j=01..,n—1
s=0

with the coefficients d;; uniquely determined. Eventually we can express any poly-
nomial of degree n — 1 as a linear combination of the functions g s = 0, 1, ...
...on — 1. For x € {a, b), any y,(x) is a finite linear combination of the functions
o,(x — k). Then we can in turn express any polynomial of degree n — 1 as a finite
linear combination of the functions w,(x — k), which completes the proof.

Remark 3.1. We have expressed any polynomial of a given degree in the finite
interval <a, b) as a finite linear combination of the functions w,(x — k) for suf-
ficiently large n in the course of the proof of Theorem 3.1. Therefore the statement
of the theorem holds apparently in any normed linear space B of the functions defined
on {a, b) such that polynomials are dense in B and w,, € B for all n greater than some
N > 0.

We will study the asymptotic behavior of the hill functions w, as n — oo in the
remaining part of this section. We will use certain results of the probability theory
to this end.

The convolution formula (2.11) is analogous to the convolution formula of the
probability theory describing the probability density of the sum of n independent
random variables with the same density. It leads to the conclusion that the asymptotic
behavior of w, for n increasing can be characterized by the central limit theorem.

Theorem 3.2. Let w, be given by (2.10), (2.11). Then
lim w,(x /n) \/n = /(6/) e=%**
uniformly with respect to all x € R. Moreover,
Jo(x ) J/n = J(6]) e = Cn=1
uniformly with respect to all x € R where C is a finite positive constant independent

of n.

Proof. The statements follow immediately from the corresponding statements
of [5] (Ch. XV, Sec. 5, Theorem 2, and Ch. XVI, Sec. 2, Theorem 2).

The central limit theorem holds even under assumptions weaker than in Theorem
3.2. Let us mention a version of this theorem using the so-called Lindeberg condition
as a sufficient one.
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Theorem 3.3. Let us have a sequence {¢,} of non-negative integrable functions
such that the functions 9, are defined by the convolution formula

(33) '91 = (pl s
(3.4) 9 =8,_1*%0,.
Let
52 =k21|¢>;2(0)| <
for any positive integer n and
R
lim — Y x* @i(x)dx =0

n—ow S k=1 tsn<|x]
for each fixed t > 0. Then there exist finite positive constants Y, Z such that

lim s, 9,(xs,) = Ye™%*

n- oo
uniformly with respect to all x € R.

Proof. The theorem is a special case of the Lindeberg theorem (see [5], Ch. XV,
Sec. 6, Theorem 1).

Using Theorem 3.3 we may examine the asymptotic behavior of more general
one-dimensional hills mentioned in [6].

Theorem 3.4. Let ¢, € S’ be a non-negative integrable function with a compact
support and let
[#7(0)] = 5® < .
Let us put
(35) ox) =1, |x]
=0, |x|>% for n=2,3,...

1,

IIA

Let the sequence {9,} of hill functions be given by the formulae (3.3), (3.4) with ¢,
from (3.5). Then there exist finite positive constants Y, Z such that

lim /(@ +n — 1) 8,(x /(& + n — 1)) = Ye 2
holds uniformly with respect to all x € R.
Proof. It is sufficient to verify the assumptions of the previous theorem. We have
B(x) =sindx(3x)"'; n=23,...,
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comparing (3.5) with (2.10) and using (2.12), and

720 = 53: m=23...
Then

(3.6) st=15(¢ +n—1)
is an increasing function of n. Writing

supp ¢, = <_d’ d> )
we obtain

lim = (f x? oy(x)dx + Y
tsn<|x| =

k=2 tsn<|x|

%2 oy() dx) —0

since all the integrals vanish for
(3.7) s, >t~ max (3, d).

According to (3.6), for any ¢ > 0 there exists an n, such that (3.7) is satisfied for all
n > n,. The statement of the theorem follows then from Theorem 3.3.

Remark 3.2. The statement of Theorem 3.2 concerning the convergence follows
immediately from Theorem 3.4 if we put ¢; = ¢,. In addition, Theorem 3.2 yields
the explicit values of the constants Y, Z and the rate of the convergence.

4. UNIVERSAL APPROXIMATION

Constructing an approximation according to Theorem 2.2, we are always con-
cerned with a hill function satisfying the condition (2.5) for some fixed ¢. In practice,
the number B may be very large. Then the exponent (2.9) is given by the formula

p=t—a

and, trying to get as good approximation (2.8) as possible, we have to use a function &
with a very high parameter ¢.

Unafortunately, we usually do not know the exact value of f and this makes the
choice of t rather difficult. Therefore there is a question if it is possible to find
a function that would give universally the order of approximation (2.8) equal to

p=p—ua.

Let us show now the main idea of our further considerations. Following the
asymptotic considerations of Section 3 (in particular, Theorem 3.2), let us define
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a function w} by the formula
a2() = () e~

for any n > 0 real. Not paying for a while attention to the fact that supp w; is not
compact, we find easily that

:o"'"(x) = g mx¥24
n .

~Y
The function w, does not satisfy (2.5) for any ¢ = 0 because it has no zeros at all
(cf. Remark 2.9). But this function decreases so rapidly as |x| — oo that a statement
analogous to that of Theorem 2.2 with u = f — « — & can be proven supposing that
n = n(h) increases in a definite way as h — 0.

We will prove a more general statement concerning a ““universal hill function” w in
Theorem 4.1 but the main idea is the same. Instead of the parameter n, we will use
a function n = n(h) that corresponds to n~! and tends to 0 as h — 0.

If supp w is compact another effect of this function n(h) is apparent: it makes the
support of o™ “wider” as h — 0 (cf. Remark 2.10). On the other hand, when
supp w is not compact Theorem 4.3 shows a numerically practicable way for the
approximation by this function.

C, D, and L mean general constants (independent, in particular, of the parameter h)
taking different finite positive values at different places throughout this section.

Definition 4.1. Let A € S be given. A bounded continuous increasing real-valued
function n(h) defined on the interval <0, 1) is said to be A-admissible if it satisfies
the following assumptions:

1.
(4.1) n(0) =0.

2. There exists a finite positive constant C(n) such that
42) () = )

for0 < h < 1and any e > 0.

3. For any « = 0 there exists a function z(k) = z(k, «) such that
@3) A — 20k) ™2 (8)] S ) W (k. )

holds for all integers k, k + 0,anyy = 0,0 < h < 1, and —n < X < = with some
positive constant C(ac, y) < 0. Moreover, the series

(4.9 Y Z3(k, o) Iklz“ < ©
k=1=0‘JO
converges for any o = 0.
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Theorem 4.1. Let ¢ > 0, ¢ > 0 be given. Let w € S and let us denote the Fourier
transform of w by

(4.5) F(w) =

Further let us suppose that

(4.6) A(0) # 0.
Let there exist a A-admissible function n(h).

Let
(4.7) 0saxsf<w

be real numbers and let f € W5(R).

Then there exists an operator B, ,, 0 < h < 1,

@9) Buuld) = 1(h) 3 clko o f) of(xh™" = K)n(h)
such that i

(4.9) IS = BiyNlws=cwr = Clers B, &) B 77| f ooy
for0 < h < 1.

If both the support T of f and the support Q of w are compact then there exists
a constant L(a, B, ¢) such that B,,(f) has a compact support T' where T' is an
Lh*~*"-neighborhood of T.

Proof. The course of the proof is based on that of Theorem 2.2 given in [1]. It is
divided into four parts. In the first part we approximate the function f € W5(R) by
a function f, € C*(R) and find the bound (4.14) for the error of this approximation.
We construct a function g € W5(R) approximating f}, in the second part and we find
the bound (4.27) for the norm of their difference in the third part. The fourth part is
concerned with the statement on compactness of the support of B, ,(f). The proof of
three auxiliary statements is removed into Lemmas 4.1, 4.2, and 4.3.

1. Let us write

#(x) = exp (1/(x* = 1)), |x| <

=0, |x| > 1.
'Apparently x e S and ve S where

v = F(x),

1
¥(0) ='[ exp —2—]_ dx £+ 0.
-1 x“ -1
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According to Lemma 4.1 there exists a trigonometric polynomial P such that
(4.10) |t — o(xh)| £ C|x|*~*h*~*, |xh| <1

where
@ =VP.

Then ¢ € S since P is a multiplier. Let us put
(4.11) 2 =F (o).
Then g € S. Since e** y(x) € S we may write
FH(e™ v(x)) (1) = F™1(e™ F(x) (x)) (1) = (t - k)

for any integer k. The support of » is compact and the degree of P is finite. Thus
the support of x is compact, too.

Defining
(4.12) Su=h7N ()
for f € W4(R), we find that f, € C* (cf. Remark 2.3). Further F(f,) € S” where
(@13 F(7) = b FGE) F(T) = 6 F()

according to (2.1), (4.11). From (4.7), (4.13) we obtain F(f) € L,(R), F(f,) € L,(R).
Let us now show that

(4.14) 176 = fllw.xry < CH* =% flwapry -

Having proven (4.14) we find that f, € Wj(R) since then f, — fe W5(R) and fe
€ W5(R) = W;(R). Writing

1 0
U= = 52 [ POV 1 = o (1 + [
we split the integral into two parts. Using (4.10) we obtain

j T G 11 = oG (1 + x]) dx

|xh| <1

< CJ' IF(f) (x)|2 |x‘2(ll-a) (1 + |x|2a) hz(ﬂ-a) dx < ChZ(II—a)HfH%VZﬁ(R)
|xh] <1

since according to (4.7) the function
(4.15) (1 + %) [x]24=2 (1 + |x]29)~
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is bounded in R. Because ¢(x) — 1 and (4.15) are bounded functions we further have
[ 1)@ 1= o) (1 e o
1 <|xh]
= CI O GO (U [x[2) %[0 [x[ 7207 dx < Ch2P™2 | f[frapry -
1 <|xh|

Thus (4.14) is valid.

2. According to Lemma 4.2 there exists a trigonometric polynomial P, such that

(4.16) iA(xh n~'(h)) Py(xh) — 1| < Ch”_“|xl”'“ s ‘xl < fh,
and
(4.17) |Pi(x)] < Ch™®, xeR

for arbitrary ¢ > 0. Let us now put

(4.18) & = F(fy) = oM F(f),
(4.19) G(x) = P,,(xh)k;_: &(x — 2nkh™1).
Then &, € L,(R) (cf. (4.13)) and the series in (4.19) converges in Ly(—n/h, n/h) since
(4.20) szz_ Eux — 20kh™Y)|| Ly ngmam
ék;_ & = 2mkh™ )| o= npmnmy
0 n/h 1/2
=3 (J‘ |én(x — 2nkh™1)|? dx)
k=-o —n/h
o0 (2k+1)n/h 1/2
= 2 ([ teten ) 0 o)
k=-wo (2k=1)n/h
£ C|f |y

where we use the fact that ¢ € S (cf. the analogous proof of Lemma 4.3 in the fol-
lowing). Therefore {; € L,(—n/h, n/h) and ¢, € L,(—n/h, n[h). Moreover the func-
tion {, is apparently periodic with the period 2rh™!. Let us write

(4.21) = PG + &)
where

&(x) = ¥ &(x — 2nkh™Y).
k#*0
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Let us construct a Fourier series for the periodic function {x € Ly(—n/h, n[h),

(4.22) &i(x) =k_z ci(h) e
where
h n/h X
(4.23) alh) = ——j G(x) e” ek dx
21 J — s
The series converges in L,(—n/h, n/h) and
(4.29) lim ¢ (h) = 0.
[k] >0

Let us define
(82 o) = 1) h™ T ) ol(xh™ = ()

with ¢,(h) given in (4.23). The assumptions of Theorem 2.1 are fulfilled for the func-
tion hy~=*(h) g™"™1 according to (4.24) and Remark 2.7, and we have

F(hn—l(h) g[hn“(h)]) (x) - F(w) (x)kaw ck(h) eikn(mx

= 409 3 aln) et
using (4.5). From (2.1) we obtain
F(g) (<) = F(™(0) g™ ™) (k™ () ) = A ™) %) 5 a(h) .
Using (4.21) and (4.22), we have finally o
(4.26) F(g) = {, A" = P AU Mg, o P qrin- 1k
3. Let us now show
(4.27) 176 = glwaery < CHP=* " f 0w, -

Having proven (4.27) we find that g € W;(R) since then f, — 4 ¢ W3(R), £, € Wi(R).
From (4.18), (4.21), (4.26) we have
1fs = gy =
1 [ -
= | &) = Pyxh) A(hn™"(k) x) &i(x)

2n ) _
— Pych) A(h 1= (8) %) GG (1 + 1) d
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= C(JW "1t = Pt A~ R B (1 + o) ax

—=zn/h

" J- ™ 1PuCe) AG = 206) 9 [ECIP (1 + [+])

—=n/h

Ih
+Y 6|7 |A((xh — 27K) n~ (R)]> (1 4 |x + 27kh™|**) dx
k%0

e

=C(Iy + 1, + I +1,)

since ¢, is periodic with period 2nh~1.
From (4.7), (4.16), and (4.18) we obtain

(428) I, £ CRO0 f F(F) (92 o(e)? |26 (1 + [x[) dx

—n/h
< CH 70| f [Frapay

since the functions ¢ and (4.15) are bounded in R.

Putting y = « in Lemma 4.3 and using (4.17), we have
(4.29) I, £ CH*~* 70 [0

for arbitrary ¢ > 0, because the function A is bounded in R.

Further let us write
n/h
LY J' IPe)? [ ()P |A(Gxh — 27k) ™ ()2 (1 + [x + 2nkh~ 1) dx
k0 J o

% f " PR R A — 20 ) (L + [+ 2k~

—x/h
=13 + 1I,.
Putting y = f in (4.3) of Definition 4.1 and using (4.17), we may write
(4.30) [Pi(xh)|? |A((xh — 27k) n~*(B)|* (1 + |x + 2mkh™!|*%)
< Ch*@7579 23(k) |k|* |
for x € {—n[h, n[h), 0 < h < 1, and any integer k, k % O since
1+ |x + 2nkh™!]>* < Ch™2%k|
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holds for these values of x, h, and k. Then from (4.18), (4.30), and (4.4) of Definition
4.1 we have

n/h
Loy 5 0197 5 ([ [ [F7) ) oG ax
* —n/h
= om0 (" 7 W 1+ )05 5 €897 i
—n/h

because the function ¢ is bounded in R. Putting y = f in Lemma 4.3 and using
(4.30) and (4.4) of Definition 4.1, we obtain

/h
far 5 000 3 20 e [ [P 1+ ) e = O [
k*0

—=n/h

Therefore _
(4.31) Iy £ CH**~* 9| f[[5omy -

Finally we use (4.7), (4.18), and the boundedness of the function ¢ to show

(4.32) Lsc j SO )
=[P e o
n/h<|x|

oo [ R @R+ ) o

n/h<|x|

< O [

since the function (4.15) is bounded in R.
From (4.28), (4.29), (4.31), and (4.32) we obtain (4.27), which together with (4.14)
completes the proof of (4.9). From (4.8), (4.9), (4.25) we have

Bh,q(f) =4,

ie.,
(4.33) ok by f) = cy(B) hE.
Thus B, ,(f) € W3(R).
4. Supposing that the support T of f is compact, we find that F(f) is a multiplier

(cf. Remark 2.5) and &, = F(f,) €S, f, € S follows from (4.12), (4.13). There exists
a constant L such that :

supp x = E[x, |x| £ L],
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i.e.,

(4.34) supp 1" = E[x, |x| £ Lh].
From (4.12), (4.34) we have

supp f, = supp (f* y* ™) = E[w,w = x + y, xe T, |y| < Lh]

(cf. Remark 2.6). Thus the function f, has a compact support lying in an Lh-neigh-
borhood of T.

Since P, is a multiplier we obtain F~*(&,P) € S. In particular, e™** £,(x) € S and
we may write

F~1(e™ &,(x)) (1) = F~} (™™ F(f) (x)) (1) = fu(t — kh)

for any integer k. Since the compact support of f; lies in an Lh-neighborhood of T
and the degree of P, is finite there exists a constant L(the value of which may be dif-
ferent from that of L above) such that

(4.35) Ty, = E[w,w=x+y, xe T, |y| £ Lh]

is a support of the function F~*(&,P{"). Therefore

(4.36) F1(&,P1) (w) = _21_ J' e~ £,(x) Py(xh) dx = 0
TJ-w

for all w ¢ Ty, From (4.19), (4.23) we have

t/h <]
(4.37) o(h) = i J Py(xh) e 3 &y(x — 2mh™T) dx

~n/h j=-

_k f " Py(xh) &(x) e~ dx
2n

-

because &, € S and P, e~ are periodic functions with the period 2nh~!. Com-
paring (4.36) with (4.37) we see that ¢ (h) = 0 in (4.22) for all k such that kh ¢ Ty,

Therefore the sum in (4.8) is finite, i.e., the summation goes over all integers k € K
where

(4.38) K = E[k,khe Ty,] = E[k, kh = v + y, ve T, |y| £ Lh]
according to (4.33), (4.35).

Let the support Q of w be also compact, i.e.,

Q = supp o = E[x, |x| £ D]
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with some constant D. Then
@, = supp o(n(h) (xh™* — k)) = E[x, |n(h) h~*(x — kh)| £ D]
= E[x, kh — Dhn~'(h) < x £ kh + Dhn~'(h)].
Finally with respect to (4.38) we find
(439) ' =supp By, (f) = U &
=Ew,w=v+x+y veT |y| £ Lh |x| £ Dhyn~'(h)]
=E[w, w=0v+2z veT |z| £ Lh'™"]

since the function h*(L + D n~*(h)) is bounded for 0 < k < 1 and arbitrary & > 0
according to (4.2) of Definition 4.1. Apparently (4.39) is an Lh'~*-neighborhood
of T. Thus the statement of the theorem in the case of compact supports of both f
and o holds, which completes the proof of the theorem.

The following three lemmas are used in the proof of Theorem 4.1.

Lemma 4.1. Let ve S, ¥(0) + 0, and 0 < o < B. Then there exists a trigonometric
polynomial P(x) such that

(4.40) [v(x) P(x) — 1] < C|x|f~*
for |x| < 1.

Proof. If B = « then we may put P(x) = 1.Thus let « < B and let us denote the
minimal integer not less than f — a by B. Let us choose two integers N = M in
such a way that
(4.41) N-M=B-12=20.

Assuming that P(x) is of the form
N
(4.42) P(x) = Y b
k=M

we will find its coefficients b; k = M, ..., N. We may write a Taylor series for the
function vP,

(4.43) (%) P(2) =I;2:’(VP)U) © () ¥

(PP (Ox)(B)TXE, ¥ <1, 0<9<1,
where

. dJ
(P () = £ 069 P()|

630



Putting
(440 0RO = 1.,
(WP)D(0)=0; j=1,.,B-1,
we obtain from (4.43)
D) P) — 1] 5 Claf? < Clep=, b <1

and thus (4.40) is satisfied. Let us further examine the conditions (4.44). Differen-
tiating (4.42) and substituting the derivatives into (4.44), we have

J N .
GPPO) =3 ¥ (’) U0 By j= 0,1, B — 1,
1=0 k=M \/

ie.,
N
(4'45) Z ajkbk = 501’; J = 09 1, ~~'9B -1
k=M
with

j o
(4.46) ap =Y (;) kv =5(0)
1=0

where 8, ; is the Kronecker symbol. (4.45) is a system of B linear algebraic equations
for B unknown coefficients b,; k = M, ..., N. Making use of the form (4.46) of the
elements of the matrix of this system and expressing the determinant det (aj) of this
matrix in terms of the sums in (4.46), we finally obtain

det (az) = BE~ D2 B0)Vy(M, M + 1,...,N) + 0

where Vy(M, M + 1,..,N) is the Vandermonde determinant formed of the B
integers M, M + 1, ..., N. It is non-zero since these integers differ from each other.
Thus the system (4.45) has a unique solution b,; k = M, ..., N for any right-hand
part and the trigonometric polynomial (4.42) satisfying (4.40) has been constructed.

Lemma 4.2. Let the assumptions of Theorem 4.1 be fulfilled. Then there exists
a trigonometric polynomial Py(x) such that

(447) |A(en () P(x) — 1] < Clxfs=>

for |x| £ = and
|Pi(x)| < Ch*
for x € R and arbitrary ¢ > 0.
Proof. The existence of P, follows from a modification of the proof of Lemma 4.1.

The case @ = f§ being again trivial, let us suppose that « < . Using (4.6) and the
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fact that A4 € S, let us find B > 0 and choose N = M according to (4.41), and assume

(4.48) P,(x) =,,§Mb"(h) ik

instead of (4.42). Writing A(xn~'(h)) instead of v(x) and P,(x) instead of P(x) in
(4.43), we obtain finally the system

(4.49) kiMajk(h) bh) = 80,3 j=0,1,...B—1
for the coefficients by(h); k = M, ..., N of (4.48) with
au(h) =,-i, (;) ikt g~ i(h) A9=5(0) .
The determinant of the system (4.49) is
det (ay(h)) = PED2 AK0) Vy(M, M + 1,..,N) % 0

and is independent of h. Thus the system (4.49) has a unique solution by(h); k =
= M, ..., N for any right-hand pait and 0 < h < 1. The trigonometric polynomial
(4.48) satisfying (4.47) has been constructed.

Let us solve the system (4.49) using Cramer’s rule. Denoting the matrix, obtained
by replacing the mth column in the matrix (a;(h)) by the column of the right-hand
parts, by ("a(h)) and treating this matrix in the same way as above, we find that
its determinant is of the form

det (”ajk(h)) = Cn""B(h) + o(n*~5(h)), h-0.
Since the determinant det (a;(h)) of the system (4.49) is independent of h we have
b)) < € 7(h)
and according to (4.2) of Definition 4.1 we obtain finally
|by(h)| < Ch™®, 0<h<1

for any & > 0. This completes the proof, because then
N
|Pi(x)] £ ¥ |bu(h)| < Ch™¢, xeR.
k=M
Lemma 4.3. Let the assumptions of Theorem 4.1 be fulfilled, let B = y = 0.
Then N

nt/h
(4.50) 1(y) =_[ SR (1 + [x[*) dx < CH72| f [ apcay -

—x/h
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Proof. Since 1 + |x[>? < Ch~27 for |x| < n/h we obtain

Vi) £ Ch”llkzoéh(x = 20kh ™) Ly amoniny

k*0 ~n/h

<cnry qm JEa(x — 2mkh~ 1)) dx)’”

in the same way as in (4.20). Using (4.18) we may further write

JIG) s v S (rh lo(xh = 22k)* [F(f) (x — 2nkh=1)[2 dx)”z

—n/h

< Ch-yk;Jki"’ qn/h |F(f) (x = 2nkh™1)|? dx)m

—-n/h

< o (nglxlwm 9 ax)

because ¢ € S and

|p(xh — 21k)| < C(p) |K|™”, k+0

holds for every p > 0 and |x| < n/h. We may find such p that the series . [k|~?
converges. Finally we obtain k0

VIk) £ Ch"v(j - ‘\F(f) @2+ )@+ |x|28)- dx)llz
-y ¥)|2 x|28) dx 12
v ([ IFOER @+ )

s Chp-}'“fnwz”(ll) >

from which (4.50) follows since (1 + |x|**)™* < Ch** for n/h < |x].

IA

Remark 4.1. The statement of Theorem 4.1 shows that the spaces W3(R) are not

convenient for a closer analysis of the universal approximation considered. A Hilbert
space H, of functions fe S’ with the norm

1 (*
Il = 52 [ bt ax
T -0
may be introduced for this purpose where 7 is an entire function,
(%) = 3 mx*,
k=0
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% 20,7 >0,y >0foran I > 0, and

limpl/* = 0.

k=

A A-admissible function # fulfilling the conditions of Definition 4.1 may be readily
found for a class of functions from S the Fourier transform of which decreases (at oo)
as rapidly as e~ %I,

Theorem 4.2. Let A € S satisfy the condition
(4.51) [A(x)] < Le™®*, xeR
with some constants L, D which are positive and finite. Then the function
(4.52) n(h) = no(ny + log'** h=1)7

where 1o, Wy, & are arbitrary positive numbers is A-admissible independently
of L, D.

Proof. It is necessary to verify the conditions (4.1) to (4.4) of Definition™4.1.
The function n(h) is apparently bounded, continuous, and increasing in €0, 1) and

n(0) =0, n(1) = nofn .
Thus (4.1) is fulfilled. The function
ha ”—l(h) = hs’l&"h + hsrl(-)-l 10g1+co h—l

is bounded in <0, 1) for any ¢ > 0, which proves (4.2).
Let us consider the conditions (4.3), (4.4). From (4.51) we obtain

|[A((x — 2nk) n~*(h))| £ Lexp (—D|2nk — x| n~*(h))
< L(exp (= [k] 17 ()"
because [2nk — x| = C|k| for all integers k, k # 0 and x € {—mn, =). Since
(1~ k) n™5(s) + slog [ = C(5)
forallk 0,0 <h <1 and arbitrary non-negative s we further have

JA(Gx — 22k) 1™ ()] S C(s) exp (=D~ (k) K]~
Showing

(4.53) exp (—Dn~(h)) = Ch° < C(y) h?, o = Dng'log®h~!
for any y = 0 and 0 < h < 1, we obtain finally
(4.54) JA(Gx — 20 ™ ()] 5 (s, ) W[k

634



for0O<h =<1, —n<x < all k+0 and arbitrary non-negative numbers 7, s.
Putting s = « + 1 in (4.54) we may define

z(k) = z(k, o) = |k|"°“1 , k£0.

Y 22k, @) | = T || 2 < o0,
K¥0 kF0
which completes the proof of the conditions (4.3), (4.4) of Definition 4.1.

Approximating a function f the support of which is compact we expect the support
of A4,(f) and B, ,(f) to be also compact. This is possible only in the case when the
approximating function w has also a compact support (cf. Theorems 2.2 and 4.1).

In practice, this »(x) need not have a compact support but may decrease (at co)
so rapidly that (from a numerical point of view) its values are negligible for |x|
greater than some Y > 0 (this is e.g. the case of the “limit” function exp (—x?)).
The approximation by a class of such functions is considered in Theorem 4.3.

Then

Theorem 4.3. Let the assumptions of Theorem 4.1 be fulfilled. Further let J be
a non-negative integer such that

4.55 oV(x) £ Le ™ xeR; j=0,1,...,J
(4.55) ] J

with some finite positive constants D;, L;;j = 0,1, ..., J.
Let us introduce a function wy and its derivatives up to the order J by the formula

(4.56) of(x) = 0V(x), |x| <7,
=0, |x[ 2Y

where

(4.57) Y=Y(h) =Y, + Y, log"*® h™!

for 0 < h < 1 with arbitrary positive constants Yy, Y1, and ¢,. Writing

0

(4.58) BEXf) (x) = n'**(h) h‘fk Z_wc(k, h, f) @P((xh™* = k) n(h)),

459 BRANE) =0 R T cll b f) o (k™ = 1) ()

for 0 < h < 1 with c(k, h, f) given in (4.8), and

(4.60) oy =B —BDy; j=01..,7J,

we have

(4.61) sup [o$h +(f) (¥)| £ €0, s) B/ || Lacay
xeR

foranys = 0.
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Proof. Fixing an x € R and an integer j, 0 < j < J, and substituting (4.58) and
(4.59) into (4.60), we obtain

(46) ) () =Y 5 el hf) (b~ = K)n(h)

— oP((xh™" = k) n(h))).
According to (4.56) we have
o ((xh™" — k) n(h)) = @P((xh™" — k) n(h)) ,
kh — Yhn=(h) < x < kh + Yhn~'(h),
=0, x<kh—Yhn '(h), kh+Yhn~'(h) < x

for any integer k.
Let 0 < 0, < 1 be such a real number that

Kl =xh! — Yn'l(h) — 01
is the maximal integer not greater than xh™! — Y#~1(h). Similarly let
K, =xh™ + Yn~!(h) + o,

be the minimal integer not less than xh™' + Y#~'(h) where 0 < ¢, < 1. Using
the notation
K1

Terrk

k k=—o

we may rewrite (4.62) and use the Schwarz inequality:

(463)  leifa() ()] = " () Y e(k, B ) 0P((eh™" — k) n(B))

SIS o h ) (SO = D))

We will study the two sums separately. Using the notation of the proof of Theorem

4.1 we obtain
-]

k; wc,f(h) = %l Zac-pmomm
= ch ¥ 3l = 280 S CH o

according to (4.17) to (4.20), and (4.22). Finally from (4.33) we have

@6)) (3 kb= h T )5 -
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Now let us show that

(4.65) Y/(@D((xh™* = k) n()* < C(js y) b** ™2~ *(h)

k

is valid for any y = 0. Substituting (4.55) for »”?, we obtain

;' (w(i)((xh—l _ k) n(h)))2 <
< Lg.(k:"z_’wexp(-zo,. o) ™ = k) + 3 exp (=20, 101 " — k)

= L'Zi(k=il( exp (—=2D; n(h) (xh™* + k)) +kizexp (=2D;n(h) (k - xh™1)))
= IZexp (—2D; Y(h)) (1 — exp (—2D; n(h)))~* (exp (—2D; n(h) o)

+ exp (=20, 1(h) )) < C(j) exp (~2D, Y() (1 = exp (~2D, n())~"

Showing
(1 = exp (=2D;n(h) ™" = C()n™*7%(h)

we finally have

(4.66)  (@P((xh™" — K)n(h)))* < C(j) n™*/~*(h) exp (—~2D; Y(h))

k
independently of x. Analogously to (4.53) we may prove that
exp (—2D; Y(h)) £ C(j, y) b’
for any y = 0 and 0 < h < 1. From this and (4.66) we obtain (4.65). Eventually
(4.63), (4.64), and (4.65) imply (4.61), which completes the proof of the theorem.
Remark 4.2. Let us put
dy(x) = ofx), |x| =Y,
=0, |x| > Y.

If we substitute @y for wy in Theorem 4.3 the theorem remains true. In the proof,

only the definition of integers K, K, has to be changed in an apparent way.

Remark 4.3. Returning to the hill functions w,(x) given by (2.10), (2.11), we may
readily find that for large n their values are negligible for such x € supp w, that lie
out of some vicinity of the origin, i.e., that their “substantial support” (in the numer-
ical sense mentioned above) is significantly narrower than their support. Then
a question of employing this “substantial support” for practical computation arises
here, too.
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5. A NUMERICAL EXAMPLE

The following simple numerical example illustrates the statements of Sec. 4.
In [4], the problem

(5.1) —u"(x) + cu(x) = f(x), xe(0,n), ¢>0
with the boundary conditions

(5.2) uw'(0) =u'(n)=0

and the right-hand part

(5.3) F(x) = — sin (d(x — 3n)), d >0

is solved by the finite element method using the hill functions w, given by (2.10),
(2.11). The exact solution of this problem is

u(x) = —

U in (dlx — 1n d cos (3nd)
d2 +c (d( 2 )) + (dz + C)\/C Ch(%TC\/C)

Let us solve the problem (5.1), (5.2), (5.3) by the finite element method using
a universal hill function . Let us denote the approximate solution of the problem
sought in the form (4.8) by u,,,. Since fe W5(0, n) for any f = 0 we obtain from
Theorem 4.1

sh ((x — 4n) \Jc) .

[t = ] 20,m = C(Bs &) BP*27%| flwasco.m

for arbitrary ¢ > 0 in the way analogous to [2], [3]. Employing Theorem 4.3 and
denoting the approximate solution of the problem in the form (4.59) by u, , y, we
have finally

sup [y, v(x) — u(x)] < C(B, &) ¥ fl w500, -
xe{0,n)

The universal hill function

x2

o(x) = e
was used for approximation. Because
A(x) = &(x) = e /* Jn,

the A-admissible function #(h) of the form (4.52) may be chosen according to
Theorem 4.2. The function wy(x) of the form (4.56) with Y(h) given in (4.57) was used
for actual computation according to Theorem 4.3.

The computation has been carried out in single precision on a Minsk 22 computer
for various values of the parameters 7o, #, €0, Yo, Y1, &; of the functions (), Y(h),
and the parameters c, d of the problem. The system of linear algebraic equations
was solved by Gauss elimination.
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A typical result is shown in Fig. 5.1 where the scale of the variable M = n/h is
linear while the scale of the error is logarithmic. The actual values of the parameters
used in computation of the solution in Fig. 5.1 are: o, = 3-8, #; = 05, &, = 0-0001,
Y, = %, Y, = % g; = 00001, ¢ = 0-25, and d = 1 and 3. The error of the solution is
measured by the two quantities,

10 °
1077+
S
g 1072 -
W
107+
70—4 1 1 1 1 1 1 1 1
24 28 32 36 40 44 48 52
M
D C NORM L, NORM
1.0 o v
3.0 X [¢]
Fig. 5.1.

0, =U max |u,,,(jh) — u(jh)|
0sjsM

(denoted by “C norm” in the figure) and

2 = U+ 1) 3 o)) = w(B))

(denoted by “L, norm™) where U™" = max |u(x)|.
xe{0,n)
The graph shows that the error decreases (as M — oo) rapider than any polynomial
of a finite degree. For M > 48, the error increases due to the round-off.

In general, the dependence of the error on the choice of Y(h) has shown rather

weak. On the other hand, an appropriate choice of n(h) can influence the results
very strongly.
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