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Introduction

In this paper oscillatory and asymptotic properties of solutions of the differential
equation

1) [P(x)yT + 0(x)y =0

are studied, where P(x) and Q(x) are complex-valued functions defined on an inter-
val J with endpoints a, b, a = —o0, b < co0. In the whole paper we always suppose
that the functions P, Q can be written in a “polar form” P = p(x)e™™, Q =
= g(x) ™ where

(2) p(x), g(x), ¢(x), Y(x) are real functions,
o) > 03 pe) a(x) ¥x) € )5 olx) e C'(I).

Let x, € J and give two complex numbers y,, y4; under the above assumptions the
equation (1) has a unique solution y(x) which is defined on J and satisfies y(x,) = o,
¥'(x%0) = yo. In the sequel by a solution of (1) is always meant a nontrivial solution.

The paper is devided into three parts. The first part is devoted to the study of the
logarithmic derivative y'(x)[y(x) of a solution y(x) of (1), in particular, to the study
of its behaviour in a neighbourhood of a zero of y(x). In the second part it is shown
that every solution of (1) can be written in the form y = r(x) "™ where r(x), ©(x)
are real functions satisfying the system

®) [p(x) '] + {3p(x) 0"*(x) + a(x) cos [Y(x) — o(x)] —
~p(x) [0 + 3¢ (x)]*}r =0,

4 [p(x) r0] + p(x) [0’ + ¢'(x)] ¥ + q(x)sin [Y(x) — @(x)] 7 = 0.
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Since the functions y(x) and r(x) have exactly the same zeros and |y(x)| = |r(x)|, the
equations (3), (4) reflect both the distribution of the zeros and growth properties of
the solutions of (1). The device, to derive a pair of simultanecous differential equations
which are satisfied by the modulus and argument of any solution y(x) was first used
in the case P(x) = 1 by CHoy TAKk TaAM [1] and, in the case Q~' = P where P is
the complex conjugate of P, by J. H. BARRET [2].

It is important to note that the equation

(%) [p(x) '] + {Ep(x) ¢"*(x) + a(x) cos [Y(x) — o(x)]} s = 0

is a Sturm majorant for the equation (3) and that its left-hand side is independent
upon the function @. This circumstance enables us, in the final section, to derive
some oscillatory and asymptotic properties of solutions of(l) using Sturm comparis
theorems.

1. Logarithmic derivative of solutions

Lemma 1. Let y(x) be a solution of (1) defined on J. The function o(x) = Re y'(x) :
: y(x) is continuous on J as long as y(x) # 0.If y(c) = 0, we have

limo(x) =00 if ¢<b, limo(x)= -0 if ¢c>a.

x—=c+ x—=c—

Proof. Let y,(x) = Re y(x), y2(x) = Im y(x); it is

o(x) = Re Yi(x) + iys(x) _ yi(x) yi(x) + ya(x) ya(x)
Pi(x) + iya(x) yi(x) + y3(x)
so that o(x) is continuous on J as long as y(x) & 0. Let ¢ be a zero of y(x), ¢ < b
and let x be fixed, ¢ < x < b. By the law of the mean there exist numbers &, , ¢ < &,
n < x such that y,(x) = y{(&) (x — ¢), ya(x) = y3(n) (x — ¢). Now it is
es) — tim DHELSE) + 50) ] s =
seet [%(E) + 92 m)] (x = o)

and &, — ¢+ if x - ¢+. Since yi(c), y3(c) cannot vanish simultaneously, we have

im Y8 2i() + ya(n) ya(x) _
smer o ¥iH(E) + v2¥(n)

so that o(c+) = + .

In the same manner it can be proved o(c—) = —o0 if ¢ > a.

591



Lemma 2. Suppose that (2) holds. Let y(x) be a solution of (1) defined on J. The
function

y() for y(x) 0

¥(x)

7(x) =
- ?é_c) for y(c)=0

is continuous on J.

Proof. The continuity of the function 7(x) at the points different from zeros of y(x)
is evident. Let y(x) vanish at a point c. Putting u(x) = y(x), v(x) = P(x) y'(x)
equation (1), written as a system, is P(x) u’ = v, v’ = — Q(x) u. Note that v(c) # 0;
otherwise, it would be u(c) = 0 and this is impossible because of y(x) % 0. Now,
let us compute

im0 — i IYEVTE) _ L o) () o)
x-e e y(x) §(x) x=c 2i p(x) u(x) i1(x)

Using I’Hospital’s rule we obtain (for the sake of brevity the variable x is dropped)

. eT®gp —eup e (—ig'iuv + @iv' + @'v) — e“(ip'uv + ud’ + u'p)
lim —— = lim — ~ =
x=c uu x—c u'tt + uit’
— lim e (—ig'uv — Quiu + P~'vv) — e(i@'uv — Quii + P~ 'vv)
x-c P 'av + P lup
—ig'ple™ *uv + e"”uu) (Qe™ — Qe ) uiu
= lim ¢'p P _
x-c ey + ePup xve € hy + eup

) o=0) _ g=ite=1)) 4
= —i¢@'(c) p(c) + lim (e - i . .
(p( )P( ) x-c P4 e v + e*uv

Using I’Hospital’s rule once more it is easy to prove that

. uu
lim e —— 0.
x~c € Uy + eub

Therefore, we have lim 1(x) = —1¢'(c) as asserted.

X=c

Theorem 1. Suppose that (2) holds. Let y(x) be a solution of (1) defined on J. The
trajectory z(x) = y'(x)[y(x) is continuous on J as long as y(x) + 0; at every zero
of y(x) there exists an asymptote parallel to the real axis and passing through the

point z = —%ig'(c).
Proof. The assertion follows immediatelly from Lemmas 1 and 2. )
The proofs of the following two lemmas are straightforward and we omit them.
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Lemma 3. Suppose that (2) holds. Let y = y(x) be a function defined on J. Put
y1(x) = Re y(x), y,(x) = Im y(x) and suppose y,, y,€C'; pyi, pys€ C'. Then
y(x) is a solution of (1) if and only if
(6) [p(x) yi]' — p(x) @'(x) y2 +

+ q(x) {yy cos [Y(x) — ¢(x)] — v sin [¥(x) — o(x)]} = 0,
™ [p(x) 2] + p(x) @'(x) y1 +
+ (%) {y2 cos [Y(x) = @(x)] + yi sin [Y(x) — @(x)]} = 0.
Lemma 4. Suppose that (2) holds. Let r = r(x), © = ©O(x) be real functions defined

onJ,r, @eC'; pr', pr@ e C'. Then the function y = r(x) e"®®™ is a solution of (1)
if and only if the functions r(x), O(x) satisfy (3) and (4).

2. Existence and uniqueness for the system (3), (4)

Theorem 2. Suppose that the functions p = p(x), ¢ = q(x), ¢ = ¢(x), ¥ = Y(x)
defined on J satisfy (2). Let X, ro, 15, @, Of be real numbers, ro + 0 or ry =0,
0y = —1¢'(xo). Then the system (3), (4) has a unique solution (r(x), ©(x)) satisfying
the initial conditions

(8) r(xo) =710, T'(x0) =715, Ox0) = O, 0O'(x0) = O

and existing on J.

Proof. Let 1ge™® = yo, (rh + ire@;) €'®® = y;. Thus
© Irol = vl [ye] = V(&> + rioF
and for ro = 0
(10) : rOReXézr(’,, Imy—£’=6{,.

Yo Yo

Let y(x) be a solution of (1) defined on J and satisfying the initial conditions y(x,) =
= Yo, ¥'(x0) = yo. If y(x) possesses zeros, let us denote a, the zero of y(x) situated
nearest to the left of the point x,. Ify(xo) = 0, put a, = X,. Further,leta; <a, < ...
be the zeros of y(x) situated to the right of ag and a_; > a_, > ... the zeros situated
to the left of a,. Denote Jy = (@, a44), k =0, 1, ... If y(x) has no zeros, let
Jo = J. If y(x) has a finite number I of zeros in the interval (a, Xo) {(xo, b)}, let
J_ -y =(a,a_)){J, = (a, b)}. Define

(11) r(x) = {Ekl}’(x)i for xeJ,,

0 for x = a,
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where ¢, denotes (—1)*sgn r, if ry # 0 and, (—1)* sgn rg if ry = 0; next, define

mﬂﬂ or X =% a,,
(12) o'(x) = : ¥(x) or X ¥

~3¢'(a) for x =a,.

By Lemma 2, the function @’(x) is continuous on J; for that reason there exists
a primitive function [§, ©'() dt. Let

(13) O(x) = 0 + J “ o dr.

In every interval J, the pair of functions (r(x), ©(x)) is a solution of (3), (4). It is
sufficient to prove this assertion for the functions r = |y(x)|, @ = Im y'(x)/y(x)
since the system (3), (4) is homogeneous in r. Setting y; = Re y, y, = Im y we have

o= (yyy + yays)

(pr')y = r~'[py? + Py + yi(pyi) + y2(py5) ] = pr2r'(yyi + y2y3) -

Using the relations (6), (7) we get after an easy calculation

(pr)y = —qreos(y — @) + pr'[@'(yuys — yiv2) + ¥ + 2 — 7],
Finally,
(14) ViVs = Yiva = 120", Y+ yP =r?+ 202,
so that
(pr') = —qrcos (¥ — @) + pp'®'r + pro?,

and (3) holds. From
(rp@’) = (Mz—:—my—l) =r"[yi(pys) — v2(pyi)] — r~2r'p(y1ys — ¥1¥2)

and in virtue of (6), (7) and (14) we get
(rp@®’)Y = —p'r’ — grsin(y — @) — pr'e’,

and (4) holds too. We see that the pair of functions (r(x), ©(x)) defined above satisfy
the equations (3), (4) on every interval J,. It remains to verify the statement of the
theorem at any a,. This will be proved in several steps.

First of all note that the function r(x) is continuous at a, because of r(a,) = 0,
lim r(x) = 0. Since '

x—ap

r = ey + yays) (0 + ¥3) 12
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on every J,, there exist, by the law of the mean, numbers &, 1, a, < &, # < x so that
yi(x) = ¥1(&) (x — a), ya(x) = ya(n) (x — a). Thus

) = SDAE) V) + 350 ) = ) _
A o) = R + v2 ) — a b(a)] +0

In the same manner it can be shown hm r(x) = &ly '(a,)|- Hence at every point a

there exists the limit 11m r(x) = ak| y (ak)l Consequently /() = lim [r(x) —
xX=rayp

—ra)](x—a)'= hmr(f) so that the function r/(x) is continuous at a.

Since the function pr’ 1s contmuously differentiable on every J, we see from the law

of the mean that
[7() ' (i-ox = Jim [2(8) 7(E)] -

Hence, in virtue of (2), [p(x) r'(x)]’ exists and is continuous at a,. Finally from the
law of the mean and the equation (4), we have

[p(e) 1) 06 Je-a, = im [56) (E) €)Y = = ple) () ©2).

Thus the pair of functions (r(x), ©(x)) satisfies the equations (3), (4) on the whole
interval J.

Now let us show that the functions r(x), ©(x) satisfy initial conditions. If ry % 0, in

view of (11), (9), (13), (12) and the fact that xo € Jo, (%) = &o|¥(%o)| = |vo| sgn 7o =
= |ro| sgn ry = 1,

r'(xo) = sgn ro[y1(x0) ¥1(X0) + y2(x0) ¥2(x0)] [Y1(xo) + y3(x0)]” R

Yo e
=roRe=2 =ry-2 =rg,

Yo o
O(x0) = Oy, O'(x0) = Im (yg[ye) = @f. If ro =0, it is r(xg) = 1o, ¥'(xo) =
= lim r'(x) = sgn rg|y'(ao)| = sgn ro|ro| = o, O(x0) = Op, O'(x0) = —1¢'(ao) =
XxX—aop
~o,
To prove uniqueness suppose that the system (3), (4) has two different solutions
(r{(x), ©(x)), where j = 1, 2, satisfying (8). Then the functions y;(x) = r;(x) ¢’

being solutions of (1) satisfy at x, the same initial conditions and y,(x) % y,(x) in
contradiction to the uniqueness of solutions of the equation (L). The proof is complete.

Theorem 3. Suppose that (2) holds. Let y(x) be a solution of (1) defined on J and
satisfying at xo € J initial conditions y(x,) = yo, ¥'(Xo) = yo- Then there exists

a solution (r(x), ©(x)) of the system (3), (4) defined on J such that y(x) = r(x) e’ ™.
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Proof. If y, + 0, let ro = |yo|, o = o Re (y5/¥o), @5 = Im (¥0/¥o) and ©, be
determined by means of conditions
Im y,

cos60=—13'—;—)i—°, sin @, = IJ’ I
0 0

If yo = 0, let 7o = 0, 74 = |y5|, @5 = —3¢'(xo) and, @, be such that

Im y,

Re y,
|6

lvo|

cos Oy = sin @y =

Then there exists a unique solution (r(x), ©(x)) of the system (3), (4) satisfying the
initial conditions r(x,) = 7o, ro(Xo) = o, O(x) = Oy, O’(Xe) = Oy. In view of
Lemma 4 the function r(x) ¢**™ is a solution of (1) and since r(xo) e — y(x),
[F(xo) + ir(xo) ©'(x0)] e = y'(x,), we have y(x) = r(x) ¢®™. This completes
the proof.

3. Oscillatory and asymptotic properties of solutions
Theorem 4. Let the functions P(x) = p(x)e®®™, Q(x) = q(x) e¥™ satisfy the
conditions (2) and, in addition, let pp’ € C'(J),
(1) [p(x) ¢'(x)]" — 2q(x) sin [¥(x) — @(x)] + 0.
Then the differential equation (1) is disconjugate on J.

Proof. Suppose that there exists a solution y(x) of (1) having at least two zeros
@ < Bin J and y(x) # 0 for &« < x < B. By Theorem 3 y(x) can be written in the
form y = r(x)e®®™, r(a) = r(f) = 0 and r(x) + 0 for & < x < . Multiplying the
equation (4) by r(x) it can be reduced to

[p(x) r*(x) ©'()] + p(x) r(x) r'(x) '(x) + 4(x) r*(x) sin [Y(x) — p(x)] = 0.

Integrating this equation from o to x we get
p(x) r(x) ©'(x) = — J (o) 1) () @) + 4(2) (0 sin [Y() — (0)]}

and the integration by parts in the first integral on the right-hand side leads to the
relation

) P [0'6) + 9] = 3 [ 70 (o) 9 (OF — 240 sin [y() ~ o) a1

Since the right-hand side is different from zero for « < x < f we have a contradiction
with () = 0. Theorem is proved.
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Let the assumptions of the preceding theorem be satisfied and, instead of (15),
let be [p(x) ¢'(x)]" — 2g(x) sin [¥(x) — ¢(x)] = 0. Then the system (3), (4) can be
simplified as follows

p(x) (x) [0'(x) + 3¢'(x)] = C,
C2

[p() ()] + {Ep(x) 9"*(x) + a(x) cos [¥(x) — @()]} r(x) = ———— .
p(x) r*(x)
The solutions of (1) form two groups corresponding to the values C # 0 and C = 0;
denote them A4 and B.
The group A contains the solutions of (1) satisfying at a point x, € J the initial
conditions y(xo) = Yo, ¥'(xo) = yo and it is y, # 0, Im (yo/yo) + —3¢'(x,).
Such a solution is of the form

y = r(x) exp {— %(p(x) +

T dt

% P(1) '”Z(f)}
and the function r(x) is a solution of the equation

16)  [p(x) ] + [2p(x) ¢"*(x) + a(x) cos [¥(x) — ¢(x)]} r =

where

C2
p(x)r

3

C = p(xo) ]yo|2 [Im Yo + %q)’(xo)] +0.

Yo

All other solutions of (1) belong to the group B and each of them is of the form
y = r(x) e /2 The function r(x) is a solution of the equation

(17 [p(x) ] + {4p(x) 0%(x) + a(x) cos [U(x) — o(x)]} r = 0.

We see that the solutions of the latter group are determined by the solutions of the
linear equation (17) with real coefficients. Every solution of the equation (16) is of
the form r = [r}(x) + r3(x)]"/* where r,, r, are suitable independent solutions of
(17) whose wronskian W(ry, r,) has the value C # 0. Especially every solution of the
group B has no zeros.

The advantage in considering these special cases is that they provide a set of much
needed examples to give insight into the behaviour of solutions of (1). In both cases
A, B the behaviour of solutions (1) is determined by means of the linear differential
equation (17) with real valued coefficients, theory of which is developed in depth
because it was very much in the center of attention during the past decades.

Theorem 5. Assume the conditions (2) and that a solution s(x) of (5) has exactly
n1lzerosa <x; <..<x,=< b.Let y(x) be a solution of (1) satisfying

(18) Re M > §’(_al

Wa) ~ s(a)
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(The expression on the right (or left) of (18) is considered to be + oo if s(a) = 0
(or y(a) = 0).) Thea y(x) has at most n zeros on (a, x,]-

Proof. Suppose that there exists a solution y(x) of (1) having n + 1 zeros a <
< x} <...<x,4; £x, In view of Theorem 3 the solution y(x) can be written in
the form y = r(x)e®®. If y(a) + 0, we have Re (y'(a)/y(a)) = r'(a)/r(a); further
r(a) = 0 if y(a) = 0. Since the equation (5) is a Sturm majorant of (1), Sturm’s
first comparison theorem {[3], pp. 334} guarantees the existence of a solution s(x)
of (5) having at least n + 1 zeros on (a, x, ;) Which contradicts to the assumption.
This completes the proof.

Consequence. If the differential equation (5) is nonoscillatory on J then the same
is true for the equation (1).

Theorem 6. Let the assumptions (2) be satisfied. Let m(x) = 0 be a continuous
function on [a, b] and

(19) . m(x)

= inf ——)
' £urg_hg
o P(0) )< p(1)

f "m(o) 0(0) 0% + a() cos [4()) — o(O]]* et = 7, J b%

If

where[ ]* = max ([ ], 0) then the differential equation (1) is disconjugate on [a, b].

Proof. The assertion of this theorem follows immediatelly from a simple modifica-
tion of a theorem due to Hartman {[3], pp. 345} to the equation (5) which will be
introduced like a

Lemma 5. Let the assumptions (2) be satisfied and let y,, be defined by (19). If
there exists a solution s(x) of (5) having at least two zeros on [a, b] then it holds

jmwhmw%0+mwmww—amrm>mj()

Theorem 7. Assume the conditions (2) on [0, I]. Let y(x) be a solution of (1) and N
the number of its zeros on 0 < x < 1. Then

(200 N<1+1 { j ' ()J' [o(t) 072(t) + a(t) cos [W() — o()]]* dt} ”

Proof. In order to prove this, let N = 2 and let N zeros of s on (0, l] be x; <

.. < xy. Since
* 4 (P b 2
J. ) =517
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the choice m(x) = 1 in Lemma 5 gives
J [ip(t) 0'2(t) + a(e) cos [W(t) — p()]]* a1 > 4 [ J (t)]_l ,

Also, since the harmonic mean of N — 1 positive numbers is majorized by their
arithmetic mean, we have

ey S s N 2, R Bt

fork=1,....N — 1.
Thus adding (21) for k = 1, ..., N — 1 gives

J[T dt>j [ d;g{g U:“;d(i—)]-l

con - [E 4] 2o [[ 2]

Theorem 8. Let p, g. ¢, Y satisfy the conditions (2) on [xo, + ) and
1p(x) () + q(x) cos [Y(x) — @(x)] £0 on J.

Then there exist solutions so(x), s;(x) of the equation (5) satisfying the conditions
so(x) > 0, so(x) <0, 54(x) > 0, s1(x) > 0 for x = x. The differential equation (1)
has a pair of solutions y,, y, with the properties

(%) & pe Vi) s5) S, ¥6(x)
s,(x) yi(x) SO(") yo(x)

Proof. The existence of sy, s; is guaranteed by a well known theorem introduced
for example in the monograph by P. HARTMAN {[3], pp 357}. Since the equation (5)
is a Sturm majorant of (1) and in view to the relation r’[r = Re y’[y the rest of the
assertion follows from the comparison theorem {[3], pp. 358 —359}.

hence (20).
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