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Introduction. This paper deals with further properties of the operator  introduced
in [7] and studied in [7] and [8]. Let G be an open set in the Euclidean m-space R™,
m > 2, and suppose that the boundary B of G is compact and B # (. For every
i€ B (= the Banach space of all finite signed Borel measures with support in B),
the corresponding Newtonian potential Uy is defined by

Up(x) = JBp(x — y)du(y), xeR™,

where p(z) = |z]*7™/(m — 2). In what follows, 4 will be a fixed non-negative element
of B and we shall assume that

(1) sup [v(¥) + UA(y)] < ©

where the quantity v,,(y) which is closely connected with the geometrical shape of G
was introduced by J. KRAL in [4] (for the definition see also [7] or [8]).

Under the condition (1), for each p € B, the distribution 7 u defined in [7] by
) T u(e) = ‘[ grad ¢(x) . grad Up(x) dx + J o(x) Up(x) dA(x)
G B

over the class 2 of all infinitely differentiable functions with compact support in R™
can be identified with a uniquely determined element I u of B and the operator
T :p - T pacting on B is a bounded linear operator (see [7], theorem 5).

In this paper we are going to apply the Riesz-Schauder theory to the third boundary
value problem in the following formulation: Given ve B, find pe B with T u = v.
In connection with the applicability of the mentioned theory it is useful to consider
the decomposition

T =aAS + T,
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(where o is a real number, A4 is the area of the unit m-sphere and # stands for the
identity operator on B) and to investigate the quantity

7, =inf |7, - 0|,
o)
Q ranging over the class of all operators acting on B of the form
Q...=YLfj..om;
ji=1

where n is a positive integer, m; € B and f;’s are bounded Baire functions on B.

Indeed, the condition

' g
3) o = inf £

<1
a¥0 AIOC[

‘

guarantees the applicability of the Fredholm theorem to the operator equation
4) Tu=v over B.

It should be noted here that general conditions securing the validity of (3) have
been given in [8] in terms of quantities connected with the shape of G and the distribu-
tion A over B. In [8] a detailed discussion of questions related to the quantities a’
and 0’ g, may be found.

Using some ideas of J. RADON [10] we are able to give a proof of the following
theorem which is a basic tool for investigations of the null-space of the operator 7

Theorem I. Let o,  be real numbers, A[ﬂ| > w'T,, and denote by d(y) the m-
-density of G at y. Suppose that

d(y) = a-8
for every y € B. If u € B satisfies
[4B5 + 7,]u =0,
then the corresponding potential Uy is quasi-everywhere bounded.
This proposition enables us to prove the following
Theorem II. Assume G to be a domain (= connected and open set) with d(y) =+ 0
for every y € B and suppose that (3) holds good. Then
7(B) = B

with the only exception which occurs if G is bounded and A = 0. In this case the
range of I consists precisely of those v e B with v(B) = 0.
The theorems stated above were announced without proofs in [6].
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1. Preliminaries. The purpose of this section is to recall the basic notation adopted
in [7] and [8]. Throughout this paper we keep the notation from the introduction.
The set B will be supposed to be infinite, because the case of finite B is included in
the investigations of [4] (see section 1 of [8]).

For M = R™ we shall denote by cl M and fr M the closure and the boundary of M,
respectively; dist (z, M) will denote the distance of {z} and M. H, will stand for the
k-dimensional Hausdorff measure in R™ (for definition see [7]) and ©Q,(x) will denote
the open ball centered at x € R™ with radius r > 0.

Recall that results of [4] imply, for each y € R™, the existence of a uniquely deter-
mined v, € B such that

5) Ad(y) 9() + <9, v,> = f grad o(x) . grad Us,(x) dx ,

provided ¢ € 9 where J, denotes the Dirac measure concentrated at y (compare [7],
section 2).

Let # denote the Banach space of all bounded Baire functions defined on B with
the usual supremum norm and € will be the subspace of all continuous functions in 4.
The symbol %#* stands for the dual space of % and for y e B we shall denote by |u|
the indefinite variation of y; of course, ||| = |u| (B) is the norm of a y in B.

Let us also recall the definitions of the operators W, Vacting on 4 defined as follows:

V() = UfA() [= j JOECED) cu(x>],

Wi(y) = Ad(y) f(y) + <f.v,>, yeB, feB.

There is a close connection between the operator T = ¥V + W and the operator 7,
namely, the restriction to B of the dual operator T* of T coincides with the operator
T (see [7], proposition 8).
Denoting by W*, V* the dual operator of W, V, respectively, we observe that
W*B B, V¥BcB.

Indeed, as mentioned above, T*B = B < B. Observing that T= W for 1 = 0
we conclude that W*®B < B and the inclusion V8 < B follows immediately from
the relation V* = T* — W#*. In particular, given u e B, it has a good sense to speak
of the potential UW*u, U|W*u| and, similarly, UV*p, U|V*p.

We shall start with the following lemma.

2. Lemma. There are numbers cy, ¢, € R! such that the inequalities
© Ul < e,
() U|W*u| = Uy
hold for any pe 8.
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Proof. We first show (6). By the definition of the operator ¥ we have

V> = CUfA, uy = f ( L”(Z - )1() d»(z)) du(y)

for any fe 4B, ue B.
Fix an x € R" with U|u| (x) < oo and put

) 5 =[ o= ple =)0 all ).
BxB
One easily verifies that

©) Ur*u| (x) < 7 .

Fix a y + x and denote
Z,={zlz—y|2Hx -y}, Z,={z|z-y <ix-},

¢y =2""1sup UA(x).

xeR™

Since sup UA(x) < co we conclude by the maximum principle for potentials that ¢,
xeB

s finite. If z € Z,, then
piz —y) 22" %p(x — y),

which yields

(10) p(z — y) p(z — x) dA(z) < 2" ?p(x — y) UA(x) < $eip(x — y),

Bozs
while for z € Z,
2=yl <dlx =yl |z =x[ 2=y =]y -2 >4 -,
pz —x) 22" ?p(x — y),

so that

(11) p(z — y) p(z — x) dA(z) < 2" ?p(x — y) UA(y) £ degp(x — ).

BnZ»

Making the sum of (10) and (11) we get
j p(z = ) plz = %) d4(2) < e1plx — ).
B
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Consequently,
(12) F = Uyl (x).

The inequality in (6) follows now by (12) and (9).
We are going to prove (7). By the definition of W,

S Wy = Wy = f [Ad(x)f(x) + f 1) dvx(z)} du(x),
B B
provided f e # and p e B. If, moreover, f = 0, then

wp+ | fR)d]v (2) dly| (x).

BXxB

S |WHul> < AL,

Referring to the formula (5) in [8] we may write for y € R™

(13) Ul (3) = AUJ| () + j p - ) "‘lzj-_(qj) dH,p-1(2) dJu] (x)

BxB

where n(z) stands for the exterior normal of G at z in the sense of Federer (for
definition see [7]). Fix an x + y and put

(14) K = f oy = - E =Dy oy

|z = "

Then, with the same notation as above,

<27 2p(x — ). J (|) ;(zx;—m Nan, () -

= 272 p(x = y) 0afx) < 277 2p(x = ) sup v (2)

(in the last equatity we have used the expression for v,,(x) established in [4], lemma
2.12). Recalling that n(z) = 0 outside of the reduced boundary B we have

K2 - J‘B Z. p(y - Z) . n(Tz ’—(‘zx‘i; x) de_l(Z) é

<2 Yx — yll'“f p(y — z) dH(z2)

BnZ,
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where H denotes the restriction of H,_, to B. Letting in lemma 21 in [8] I, = 1
on B, f=1,r=1|x - y|, yo = y, we have Z, = Qo) and by the formula (58)
in [8] we arrive at

j p(y - 2)dH(z) < 29 . 4fx — ],
BnZ>

so that
K, 2" Yy(m — 2) p(x — »)

where the constant y was defined in the above mentioned lemma. Since sup v,(z) <
z.B

< oo, itis sup v,(z) < oo by theorem 2.13 in [4].
zeR™
Putting
¢y = 2""*(sup v,(z) + 2y(m — 2))

zeR™
and observing that K = K; + K, we get
(15) K £ chp(x — )
and, by (14) and (13),

Uw*u| (v) = (4 + ¢3) Ul (3) -
Thus (7) is established.

3. Notation. Let C, stand for the class of all Borel subsets of R™ having the
Newtonian capacity zero. It should be noted here that H,,_;(M) = 0 for any M € C,
([5], theorem 3.13) and A(M) = 0 as well, because 1 has a bounded potential ([5],
theorem 2.1). We shall say that a property holds quasi-everywhere in Q < R™ if it
holds for all points in Q except possibly those in a set M € C,,.

Let us denote by B, the set of all ue B with the following property: There are
M e C, and c € R, such that the difference Up(x) = Up*(x) — Up™(x) is meaningful
for each x e R™ — M and |Up(x)| < ¢ holds provided x e R" — M (as usual, u =
= p* — u~ is the Jordan decomposition of p). Clearly, B, is a linear subspace of B.

The function g is said to belong to the class %,, if it is defined quasi-everywhere in B
and there is a function § € # such that g = § quasi-everywhere in B. For g € %,
denote by g the class of all h e .970 that coincide with g quasi-everywhere in B. Let us
denote by %, the Banach space of such classes g with the norm defined by

> gE€Z,

lello = quasisup |g
where quasisup |g| equals the infimum of all ¢’s for which
B
{xeB; |g(x)| > c}eC

provided B ¢ C,; in the case that B € C, we set quasisup |g| = 0.
B
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An operator P acting on & is said to operate in %, if Pf = 0 quasi-everywhere
whenever f = 0 quasi-everywhere. Such an operator defines in an obvious manner
an operator acting on %, which will be denoted by P.

Let Lbe a linear space over the field of real numbers. We shall denote by "L the
set of all elements of the form x + iy where x, y € L. If the sum of two elements of "L
and the multiplication of an element of “L by a complex number are defined in an
obvious way, then "L becomes a linear space over the field of complex numbers.
Let Q be a linear operator acting on L. The same symbol will denote the extension
of Q to " L defined by

O(x + iy) = O(x) +iQ(y) -

If an operator Q on Lpossesses an inverse operator Q !, then the extension of Q1!
to “Lis dn inverse operator (on " L) of the extension of @ to " L. If, moreover, "L is
a normed linear space with the norm [| || and Q is a bounded linear operator on "L,
then HQH denotes its norm. Similarly, |1 I] denotes the norm of a linear functional [
on " L. We shall write ~L* in place of (" L)* (the dual space of "L).

Forfe "%, ge "%, put

lello = quasisupg]. geg-.

= sup /)]

Note that “4, "%, with the above defined norms are Banach spaces and for any

HEA%
B

where the supremum is taken over all f € * % with | f||' £ 1.1fpe "B, u = p' + ip?,
then

[l = sup

(16) max ([u]), ua]) < Te)”

Similarly as above, an operator Q acting on * 4 is said to operate in *%,, if Qf = 0
quasi-everywhere whenever f = 0 quasi-everywhere. Such an operator defines an
operator on "4, that will be denoted by Q. The inequality “QH(, < “Qn’ holds
good. Note that if an operator P on # operates in %,, then its extension to "%
operates in *%,,.

For any pe "B, n= ut + ip?, Uy’ determines the only element of %, which
will be denoted by U/ (j = 1, 2). Defining

Up = Up! +iUp?
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we have Up e "%, and the mapping
U:p- Upn

is a linear mapping of "B, into *%,.

In what follows, fix a y € R! and put T, = T — yAI where I stands for the identity
operator on 4.

According to our definitions, T, T, will also denote the above defined extension
of T, T, to "4, respectively.

The following lemma is in fact a variant of Plemelj’s ““Symmetriegesetz” ([9], § 13;
compare also [10], IV, section 4).

4. Lemma. The operators T, T, acting on "2 operate in "%y, T*" B, = "B,,
T8, < "B, and

(17) TUp = UT*u, T,Up=UT}u
whenever p e *B,.

Proof. It is easily seen that it suffices to verify the following assertion: The opera-
tors V, W (on %) operate in B, V*B, < B,, W*B, < B, and

(18) Ur*u = VU,
(19) U = WU

for any u e B,.

Let h € & be a function vanishing quasi-everywhere on B. Consequently, fB hdi =
= 0 and we see at once that V': f 1> UfA operates in %,. Since v, is absolutely con-
tinuous with respect to H,,_, (see the formula (5) in [8]) we get <k, v,> = 0 and

Wh(y) = Ad(y) h(y)

for each y € B, so that W operates in %, as well.

Suppose now that u € B, and let M e C, and ¢ € R! be chosen such that Ulu‘ (2) <
< oo and |Up(z)| £ cforany ze R" — M.

Fix an x € R™ — M. Using (8), (9) and (12) we can assert that

U] (x) < j o =) pls = 2) ) | ) < o
whence

UV*u(x) = f p(z = y) p(x — 2) di(z) du(y) =

BxB

- f ) < J BP(Z - ) du(y)) p(x — 2) di(z) = Ug(x)
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where g = Upu quasi-everywhere. Since the inequalities

,UV*,u(x)’ Sc.UMx)=c zs;;')n U(z)

are true for any x € R™ — M, we conclude that V*u € B, and (18) holds.
Going back to (13), (14) and (15) we have for each ye R™ — M

UlW*u| (y) < AU|g| (y) +f p(y = 2)d[v] (2) dlu] (x) < oo

BXxB

so that Fubini’s theorem may be applied to assert
UW*u(y) = A f d(x) p(y — ) du(x) +
B
+f p(y — z) dv(z) du(x) = fK(y, x) du(x)
BxB v B

where we have put

K x) = Ad(x) p(y — %) + f Py — 2)du(z).

B
We are now going to prove the‘following implication

(20) (x,yeR™ x + y)= K(y,x) = K(x, y) .

Fix x, ye R™, x *+ y, and for every non-negative integer n put
£3(z) = min (n, p(y - 2)).

Since f is Lipschitzian, it follows from (5)

Ad(x) f3() + f £(2) dnfz) = f . f3(2) 812 UB(2) 2

Since by (14) and (15)

f oz = )] (2) < o
B
we conclude that

n—ao

lim j 3(E) dre) = f bz =) dnle).

For H,-almost all points z € R™ and for each n we have

|grad. £7(z) . grad U(Sx(z)] < |grad, p(y — z) . grad Us(z)|
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and the function on the right-hand side of the last inequality is H,-integrable with
respect to z over R™. The last fact can be verified by a simple direct calculation (com-
pare [4], remark 1.3). Now we can write

lim J grad, f;(z) . grad U (z) dz = J- grad, p(y — z).grad Ud (z) dz .
G

n—*oo G

We see that
K(y,x) = J' grad, p(y — z).grad Ud,(z) dz =
G
= J grad Ud,(z) . grad Ud(z) dz = K(x, y),
G
which proves (20).

Fix now a y € R" — M. By (14) and (15) (with the role of x, y interchanged),

J p(x = 2)dly| (2) = ezp(y — %)
so that ’

f plx — 2) ) (2) du] () < <o .
Using (20) we get v

UW*u(y) = J K(y, x) du(x) = J‘ K(x, y) du(x) =

B B

= Ad(y) . JBp(y — x)dp(x) + J. p(x — z)dv(z) dp(x) =

BxB

= Ad(y) Un(y) + <g, vy
where g = Up quasi-everywhere. According to the inequality
|[UW*u(y)| < e(4 + sup v,,(y)) < o
yeR™
we conclude that W*p e B, and (19) holds.

The proof of the lemma is complete.

5. Lemma. Suppose that U, € "By, Z ”u,,
= Zune B, and Uy = ZUy,,

n=

0 < . Then p =

Proof It is sufficient to prove the following assertion only: If v, € B, Z Hv ]] <
< o0, Z ]] Uy,

0, then v = Z v, € By and Uy = Z Uv,. Indeed, both the real and

n=1
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imaginary part of p, satisfy the assumptions formulated above for v, (compare (16)).

Lo}

Since the space B is complete, there is a v e B with ) v, = v. Denoting by v, =

n=1
= v, — v, the Jordan decomposition of v,, we have

©
+ -
Vn —Zv”
n=1 n=1

and the equality
Uv=U(Xv)-U(Ew)
n= 1 n= 1
holds quasi-everywhere in R™.

One easily verifies (compare [5], p. 86) that

U(nilvn
U( ilv

D6 = LU,
D) =X 0% ()

for any x € R™ and we conclude that

Uv =3 Uy

n=1

n

quasi-everywhere. Observing that

uslo 3 U < o

we see that the potential Uv is bounded quasi-everywhere. Since Uv = Uv* — Uv~
is meaningful quasi-everywhere in R™ we conclude that v e B, and

Uy =Y Uy,.

n=1

6. Notation. Let Q be a bounded operator acting on 4. The quantity @Q is defined
by

®Q = inf |Q — Y|

where Y runs over the class of all compact operators acting on 4.

Let Q be the set of all complex numbers 3 with |/3] > @T,. It is well-known (see
e.g. [11]) that there is a countable set N = Q consisting of isolated points such that
for any pe Q — N the operators BI + T, (on ") and BI* + T, (on " %*) possess
inverse operators I, = (B + T,)”" and (BI* + T;¥)~' = Ij,, respectively.
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An operator Q acting on "4 is said to have the property (&), if it satisfies the fol-
lowing conditions:

Q operatesin "%, ,
Q*"B, < "By,
UQ*u = QUp whenever pe "B, .

In this terminology, lemma 4 states that T, T, have the property ().
We shall denote by Q, the set of all Be @ — N for which I, has the property ().

7. Lemma. Suppose that € Q, and HI:;yH' < K. Then Q, contains the open disc
with center B and radius I/K If a satisfies Iozl > HT)i ', then o € Q,.

Proof. Using the equality
al* + T, = (BI* + T,)) (I* + (« — B)I},)

we get for o satisfying |« — B| < 1/K
1= S8 =y ()" Ly =X (8= o (1,0
Since f € Q,, the operator I, operates in *4%, and the equality
UG,y =15 U

holds for each pe *B, and each n. Consequently,

[UL( — ey (1 o = (U118 = o [Ukllo < |8 — of K"+ U]
We conclude that
ni““[w — o) (" uflo < oo

Applying lemma 5 we get
I:yp € "B,,

0

Urky = 3 UL(8 = o (5" ] = 3 (6 — o U = 1,,Up

n=0

for any pu e "8B,. Since I, operates in "%, we have o € Q.
Suppose now that || > | T|’. Then

@+ T = T (- ()

(d + T)"" (—oy*t Ty,

M8 itMs

=
1]
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The last equality together with lemma 4 implies that I,, operates in "%,. Fix
a pe "B, By lemma 4 we have (T;)" ue "B, for each n and UT,u = T,Up. In
a similar way as above we establish

U=y s < oo
and lemma 5 may be used to assert that

Ijue B,
a}'ﬂ - Z U[( “)n+1 (T*) ,u] Z('—“)n+l (T) Up = ’avu“
Consequently, a € Q, and the proof is complete.

8. Lemma. The set Q, is relatively closed in Q — N.

Proof. Let fyeclQ, n (2 — N). Since I, is a continuous function of the
variable & on @ — N, there is K > 0 and a neighborhood M of the point f, such
that |I},|" < K holds for any ae M. Choosing S € 2, n M in such a way that
lﬁ Bol < 1/K we conclude by lemma 7 that B, € Q,.

9. Lemma. The sets Q, and Q — N coincide.

Proof. It follows from lemma 7 that Q, is open in Q@ — N and Q, = 0. Since Q,
is relatively closed by lemma 8 we conclude Q, = Q — N, because Q — N is con-
nected.

10. Notation. Fix oy € N and r > 0 such that the closed disc K centered at o
with radius r is contained in Q and K n Q = {cxo}. Let C be the boundary of K.
(Itis C = Q, by lemma 9.) The operator A_ acting on 4 is defined by

(1) A = (2ni)! f I, da

where the integral is taken over positively oriented circumference C (compare [15],
chap. VIII).

11. Lemma. The operator A_, has the property (®).

Proof. Since I,, is a continuous function of the variable a, the integral occurring
in (21) is the limit of the Riemann sums S, and each S, is a-finite linear combination
of operators I, , with complex coefficients and «; € C. Consequently, each S, has the
property (&).
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' < oo by passing, if necessary, to a suitably

We may suppose f IS. — S
chosen subsequence.nf_’lllt Ty =Sy Tye1 = Sps1 — Sa(n = 1,2,...). Then each T,
has the property (@), A_; = iT,,, A, = ilT,. and A_, operates in *%,.

Fix a pe "B, and put g, = T,'u. Since u, € "By and Uy, = T,Uu we get easily

|77 [Uulo

U0 <
whence

Y |Uns < o
n=1

Observing that

Tl = (Z )70 Jul < oo
we may conclude by lemma 5 that A* ,u e "B, and
.UA’fly = iUT,,*u = iT,,U/u =A_,Upu.
The proof is complete.

12. Notation. Let X be a Banach space and Q be a linear mapping on X. The
null-space and the range of Q will be denoted by #°(Q) and %(Q), respectively. The
dimension of X will be denoted by dim X (0 < dim X < o).

13. Lemma. Let p be a positive integer and Q be an operator on "# such that
dim #(Q) < co. Then dim #7(Q”) < .

Proof. The proof is by induction on p. The p = 1 case is obvious. Assume that
p > landdim #(Q?') < c0.PutQ = Q" ', B, = #(0) n #(Q)andlety,, ..., y,
and zj, ..., z; be a basis of #(Q) and 4,, respectively. Fix an x;€ "% such that
Ox;=z; (i=1,2,...,5) and denote by %, the linear space generated by X, ...

o ks, Viseoes Vpe If Xg € %’(Q") then x, € #,. Indeed, since Q0x, = 0, we have

s

Ox, = Z o;z; and ¥ = xo — Za x; satisfies 0% = 0. Consequently, % = Z By

We see that dim #°(Q°) < r + sand the proof is complete.

14. Lemma. Let us denote
N(xo) = {yeB; d(y) =7y — 0gA™"}
and let p be any positive integer. Then the set N(a) is finite and each fe "#
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satisfying

(22) (oI + T)Pf =0,

(23) {foud) =0 foreach pe”B,
has its support contained in N(xo).

Proof. Denoting by f. the characteristic function of the set {z} = B we get for any
yeB

(o] + T)P1.(y) = [0 — 74 + Ad(y)]" f.(¥) -

We see that f, is a solution of (22) if and only if z € N(x,). Since ]aol > @T, it is
dim A (2o + T,) < oo and also dim #([ao] + T,]?) < oo by lemma 13. Con-
sequently, the set N(x) is finite.

Recall that we have denoted by H the restriction of H,,_; to the reduced bounda-
ry B. Let (22) and (23) hold for an f € " 4. Given a Borel set M < B we denote by 1,
and H,, the restriction of A and H to M, respectively. For such an M we have 4, €
€ "B, Hy € "B,. Indeed, 1 has bounded potential by hypothesis and the potential
of H is continuous by [8], corollary 22. Since the relations

Sz =0, {fiHy) =0

hold for each Borel set M < B, we conclude that f = 0 A-almost everywhere and
f = 0 H-almost everywhere as well. Now it is easily seen by the definition of T that

0 = (aol + T,)"f(y) = [to — A + Ad(»)]"£(») -

If y ¢ N(x), then f(y) = 0. Consequently, the support of f is contained in N(a).
The proof of the lemma is complete.

15. Lemma. Suppose that N(ap) = @ and let fy, ..., f, be linearly independent
solutions of (22). Then there exist piy, ..., u, € * By such that {f;, ;> = 6;;(6;; = 0
fori#j, 6;=1)for1 <i,j=<q.

Proof. The proof is by induction on g. If g = 1, then there is u; € *B, with
{f1» ;> = 1. Indeed, if there were no such p;, then the hypothesis N(xo) = 0
together with lemma 14 would imply f; = 0, a contradiction.

Suppose that ¢ > 1 and let the assertion be true for ¢ — 1. We shall first prove
that there is p, € *B, such that {f;, ;> = 8;; for j = 1, ..., g. Denote by {u5, ...
...» iy} a biorthonormal system to {f2....f,}- Then, for each p e "B,, the element

q
=2 L fio 1 M
k=2
q
is orthogonal to f5, ..., f,. If the same is true for f, then f; = Y {f1> iy fi by lemma
K=2
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14, which is a contradiction with the linear independence of fy, ..., f,. Consequently,
there exists a p e *B,, such that

q
Bi=p— Zz<fk, 1Y
k=

satisfies {fy, 41> = 1 and, of course, {fj, u;» = 0for j = 2, ..., q. In a similar way
we can construct u;’s with {fy, u;> = 6; (L S k < g)forj =2,...,4.

16. Lemma. Let us put N(«) = 0 for a« ¢ N. Suppose that oy € Q and N(xo) = 0.
If p is a positive integer and € " B* satisfies

" (24) (aoI* + TFYPp =0,
then pe "B,.

Proof. The assertion is trivial for ag € @ — N by the definition of Q,. Suppose
that ¢ € N. It is well-known that the resolvents of the operators aI* + T, af + T,
have a pole at «, (compare [11]) and these poles have the same order (compare [15],
chap. VIII, 6, 8), say po. Clearly, we may assume that p = p,.

Similarly as in 10, define the operator &/ _; on *%* by
oy = (2ni)"! J I}, do
C

where C has the same meaning as in 10. Then the set Y of all solutions of the equation
(24) coincides with 2(s_,) ([15], chap. VIIL, 8). Since «7_, = 4*, ([15], chap.
VIIL, 7), we have Y = %#(A* ). Similarly, denoting by X the set of all solutions of the
equation (22), we get X = 2(4_,).

Let f, ..., f, be a basis of X. Then the operator A_; possesses the form

A_q... =kg ovos i i

1
where p, € * %*. Consequently,

M

(25) ALy = 3 oo

k

Il

By virtue of lemma 15 we construct uj, - g€ "B, such that {(f;, u;> = d;;,
1 =i,j £ q. It follows from (25) that A% ,u; = p, for k' = 1, ..., g and we conclude
by lemma 11 that g, € "B,. Since Y = 2(4*,), we have Y = *B, and the proof is
complete.

Let us summarize our results in the following theorem stated in the introduction.
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17. Theorem. Let B € R satisfy the inequality A[ﬂ| > @T,. Suppose that

dy)+vy -8
for each y € B. If ue B* satisfies

(ABI* + T )u =0,
then u e B,.

In particular, any solution of

[AB - 7)F + T]u=0
belongs to B,.

Proof. Putting &y = BA, p = 1, the assertion of the theorem follows by lemma 16
and by the definition of N(ay).

18. Example. We are going to show that the hypothesis d(y) & y — B is essential
for the validity of theorem 17. Put G = {xe R™; 0 < |x[ <1},y=1%4B= —%tand
let 1 stand for the restriction of H,_; to fr G and A = (m — 2) 4. Using (56) in [8]
one easily verifies that wT, = 0. Consequently, @T, = 0 and A|ﬁ| > @T,. Note that
U is continuous on R™ by corollary 22 in [8].

An easy calculation shows that

J grad ¢(x) . grad Udy(x) dx = Agp(0) — f odH, _,,
frG

G

T do(9) = Ap(0) - f

o frG

0 dH,_, + (m - 2)* Jr ¢ di = Ao(0).
frG
We conclude that
(—4F + 7)6, =0
but &, ¢ B
For our further purposes the following special case of theorem 17 will be useful.
Recall that the quantity a’ has been defined in the introduction.

19. Theorem. Suppose that d(y) %+ 0 for each y € B and

(26) a=inf 2% 1.
a*0 A|(X|

Then
T*y =1

implies v e B,. In particular, if @’ < 1 and v € B satisfies

ITv=0,
then v e By,.
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Proof. As for the first part, choose a f € R! with A!ﬂ‘ > @Ty and apply theorem 17
with f = y.

Noting that a’ > d (see the definition of @T, and lemma 33 in [8]), the second part
is a consequence of the first assertion.

20. Remark. The method of proofs of last theorems is in part a variant of Radon’s
ideas developed in [10]. J. Radon has considered in place of B, a class of charges
(distributed on the plane curves of bounded rotation) inducing a potential having the
same interior and exterior limits. In the case that UA is continuous, the Radon
results may be modified without an essential change for spaces of higher dimension
(see [3] and [13] for R?, [2] for R"). In our case it was not possible to use the same
way, because, in general, the inclusion T% < & fails (see proposition 9 in [8]).

We are now going to show that under a suitable condition the potential Uy posses-
ses finite Dirichlet integral provided u e 9B,.

21. Notation. Let us define the function 6 on R™ as follows:

0(x) = exp (Ix!2 - 1)~ for Ix[ <1,

0(x) =0 for |x| >1.
For 6 > 0 put

05(x) = haG(xlé)
with hy so chosen that
I 0,(x) dH(x) = 1.
R"l

Clearly, 0; € 2 for each 9.

If D is a distribution over 2, then the convolution D#0; will be denoted by R;D
(see [14], chap. VI). In particular, if f is locally integrable over R™, then

Ry f(x) = f S0~ a0, xe R

Let us suppose that for such an f there is § € R" such that |f(f)| £ B holds for H,-
-almost all £ € R™. Then the inequality

(27) [Rs f(x)| < B
is true for any x € R™.

Finally, for each ¢ > 0 let
B* = {xe R™; dist(x, B) > ¢} .
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22. Lemma. Suppose that ue B and ¢ > 0. Then

(28) lim R;Uu = Up

-0+
holds quasi-everywhere in R™ and for each & € (0, €) we have
(29) RsUu =Up on B°.

Proof. Let u = u* — pu~ be the Jordan decomposition of u. Then the equality
Up = Up* — Up~ holds quasi-everywhere (see [5]). Consequently, it is sufficient
to prove (28), (29) under the additional assumption that  is a non-negative element
of B.

If this is the case, then Uy is a superharmonic function in R™, harmonic in R™ — B
and locally integrable in R™ (see [5]).

Since Uy is superharmonic, it is easy to verify the inequalities

RsUu(x) < Up(x),
(30) lim sup RyUp(x) < Up(x), xeR™.
50+

Suppose that § € (0, &) and x e B®. Since the ball centered at x with radius & is con-
tained in R™ — B, the mean-value property of harmonic functions implies immediately

R;Uu(x) = Up(x) .
Thus (29) is established.

Since Uy is lower semicontinuous on R™ we get
Up(x) < liminf R,Up(x), xeR™.
50+
This together with (30) yields (28).
23. Proposition. Suppose that pe B, and H,(B) = 0. Then

J |grad Up(x)|* dH,,(x) < o .

Proof. Fix R > Lsuchthat B = Qg(0)and let f € R! be chosen such that [Up| < B
quasi-everywhere in R™. Suppose that r > 2R, 5 (0, 1), and write Q, instead of
Q,(0). By the Gauss-Green theorem we get

(31) L RsUu(z) . ng (2) . grad RUp(z) dH,—4(2) =

0,

- ‘Lrlgrad RyUn(x)|* dH,,(x) + J

2

R;Un(x) - ARsUp(x) dH ,(x)
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where ng (z) denotes the exterior normal of Q, at z. Let ¢ € 2 satisfy I(pl <lonR™
and ¢ = 1 on Q,£(0). By lemma 22 the function R;Upu is harmonic on R™ — @,
and we conclude that

(32) J. RsUu(x) . ARsUu(x) dH,(x) =

= J ¢(x) Ry Up(x) AR; Up(x) dH,,(x) .
Rm
Let us now consider the distributions U*, M* over & defined as follows:

WUy = j 0(x) Un(x) dH,(x),

by M*y = f V() du(x), Ve .

It is well-known that AU* = — AM* and we get for any § > 0 the equality AR;U* =
= — AR;M"* (compare [14]). Since ¢ . R;Up € 2, we have

(33) f 0(x) RoU(x) - ARU(x) dH,(x) =

= —Ap . RUp, R,M¥y = —AJ Ry(@R,Up) (x) du()..
Rm

Applying (27) (with f = Up) we get from (31), (32) and (33) for r > 2R and § € (0, 1)

the estimate

) ([ lerad R atts) = sl + 59)

where we have put
£, 0) = R; Up(x) . ng(x) . grad R; Up(x) dH,,(x) .
fr,

By lemma 22, for z e fr Q,, the equalities R,Up(z) = Up(z) and grad R,,U#(z) =
= grad Up(z) hold and one easily verifies that #(r, §) admits the estimate

<L i 2] ———
el =56 -2)m—2 (r —;;)m_l A

Now from (34) it follows for & € (0, 1)

(39) [ Jesad R ane) <
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and lemma 22 yields
lim grad R;Up(x) = grad Up(x)

-0+

whenever x € R" — B. Since H,(B) = 0, Fatou’s lemma may be applied to assert

J‘ Igrad U,u[2 < Aﬁ”,u” < .
Rm
The proof is complete.

24. Lemma. Suppose that pe B, and H,(B) = 0. Then there exist functions
©n €D such that

lim J grad ¢,(x) . grad Up(x) dH,,(x) =

n—o0 G

= f |grad Un(x)|> dH(x) ,
tim [ 0,6) Un(s) 415) = f (UM 1)

Proof. Let B, R, 6 have the same meaning as in the last proof. Denote by y a func-
tion defined in R! having the following properties: y is symmetric infinitely differen-
tiable function in R', |y| 1, y(t) = 1 for t€(0, 1) and y(t) = 0 for te(2, o).
Defining the function 5 in R™ by

Us(x) = (0fx]), xR,

we see that ;€ 2 and
(36) |grad ¥4(x)| < 05, xeR™,

where o = sup {y'(¢); t € R'}. Finally, let ¢, = ¥s - RsUp. Then ¢;€ 2 and
1/2
( f lgrad g, (x)|? dH,,,(x)) < #,(6) + £20)
R"!

where we have put

s6)=(] ) - a0 dH,,.(x))‘” ,
F(0) = (J m[R,,Uu(x) . grad ¥s(*)|? dH,,,(x))UZ .
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Itis #,(8) < (4B||u[)"’* by (35). Fix 6€(0,(2R)™"). Then |x| > &~ implies
R;Uu(x) = Up(x) and

O < L [4]
k(] = m—2 ("' —R)"2

As it follows easily by the definition of y; and by (36),

2,00 < [Hm[gz,,_l(o) — ©,,(0)] - o?|u? &* v
- (m _ 2)2 (5—1 _ R)Zm—4
Since lim #,(8) = 0, there is a 4q € (0, (2R)™!) such that
60+

5 (0, 40) = 72(8) = (AB]uf)* .
Consequently,

67 [l o amo] = 2casfup,

provided 6 € (0, 4,).

If M « R"and ¢ = [51, e é,,,] is a mapping of M into R™, then ¢ is said to be
a vector function defined on M. In the case that the set M is measurable (H,,) and
each ¢; is measurable (H,,), then & will be called H,-measurable vector function. Let
us denote by &, the linear space of all equivalence classes (with respect to H,,) of
H,-measurable vector functions ¢ defined almost everywhere (H,,) in R™ such that

m 1/2
(| Gaename)” <.
Rm i=
For &, fj e %, the scalar product (&, 7) of & and  is defined by
(Ea ﬁ) = _zléi(x) . ni(x) de(x) > ée E > ’7 € ﬁ .
Rm i=

Then %, is a Hilbert space and it follows from (37) that the set of vector functions

(38) {grad ¢5; 6€(0, 40)}

is weakly compact in &, (compare the similar proof in [2]). Consequently, there is
an f = [fy,.... fu] €L, and there exist numbers 6" € (0, 4,) such that 6" \, 0 and
the equality

(39) lim J erad 03(x) . () A (x) = [ () o) dm ()

n— o J Rm
holds for each g € &,. Write ¢, in place of 4. Now we are going to prove that

(40) f=gradUp in %,.
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For ¢ € (0, 1) denote by
G, = {yeR™ ¢ <dist(y, B) <¢ '}.

Fix such an ¢ and an H,-measurable set Q = G,.

Choosing in (39) g = [xg, 0, ..., 0] where y, is the characteristic function of Q,
we arrive at

n—» oo 1

lim J 004%) 4, (x) — _[ £i(x) dH(x) .
o Ox Q
On the other hand, it follows from the definition of ¥4, ¢; and from lemma 22 that

lim J 0u(x) dH,(x) = j\ Un(x) dH,(x) .
n=o Jo 6x1 0 0 1
Consequently,

ou,
(41) fi==£

0x,

holds for H,-almost all points x € G,. Since H,,(B) = 0 and ¢ € (0, 1) was arbitrary,
we conclude that (41) holds for H,-almost all points of R™. Corresponding equalities
for other components may be verified in a similar way and (40) is established.

Using proposition 23 and denoting by xs the characteristic function of G we con-
clude that g = y; . grad Uu € Z,. The first equality stated in the lemma follows now
from (39) and (40).

As for the second equality, let us observe that for each n and each x € B we have

@.(x) = RsuUp(x)
and ](p,,| =< B on B. By lemma 22,

lim @,(x) = Un(x)

n— o

holds for A-almost all x € B. Now the Lebesgue dominated convergence theoremmay
be used to complete the proof.

25. Lemma. If d(y) = O for each y € B, then H,(B) = 0.

Proof. This assertion is an easy consequence of the well-known density theorem.
Indeed, suppose that H,(B) > 0. Now the density theorem ([12]; chap. IV.) implies
the existence of a y,e B at which G’ = R™ — G has m-density equal to 1. Con-
sequently, d(yo) = 0, which is a contradiction. :

Throughout the rest of the paper we shall assume that G is connected.
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26. Theorem. Suppose that d < L (see (26)), d(y) + O for each ye B and let
v € B* satisfy
T*vy = 0.
Then v e B and there exists ¢ € R' such that Uy = c on G and ¢*||A| = 0.1f ¢ = 0,
then v = 0.

Proof. It is H,(B) = 0 by lemma 25. Using theorem 19 we conclude ve B, = B
and Jv = 0. By the definition of 7,

0= 7o) = J~ o(x) Uv(x) dA(x) + j grad ¢(x) . grad Uv(x) dH,,(x)

for each ¢ € 2.
In view of lemma 24,

(42) J‘ Jerad UN(R) dr s) + j [0 4i) = 0.

Since G is connected, there is ¢ € R! such that Uv = con G. Let v = v* — v~ be the
Jordan decomposition of v. We have Uv*(x) = ¢ + Uv~(x) for each x € G. Since G
has a positive m-dimensional density at any z € B, every fine neighborhood of z
(in the Cartan topology) meets G (see [1], chap. VII, §§ 2, 6) and we conclude from
the Cartan Theorem ([1], chap. VII, §6) that Uv*(z) = ¢ + Uv™(z) (compare
with the same reasonings in [4], 4.8). Consequently, Uv = ¢ holds quasi-everywhere
in B. Noting that the same is true for A-almost all points x € B we arrive at the
equality ¢*|4]| = 0 by (42).

Suppose that ¢ = 0, so that Uv* = Uy~ on B. Since d(y) =+ 0 for each ye B,
the set G is not thin at any y € B ([1], chap. VII, § 2) and we have v* = v~ (see [5],
theorem 5.10 and chap. V, § 1, section 2, 14). In this case v = 0.

The proof is complete.

27. Lemma. Suppose that G is bounded. If f(x) = 1 for any x € B, then
Wf=0.

Proof. Let us construct ¢ € 2 such that ¢ = 1 on cl G. Using (5) we have for
any ye B

Wi(y) = 4d(y) f(y) + <S> = Ad(y) o(y) + <@, v, =

= J. grad ¢(x) . grad Us(x) dH,,(x) = 0.

G

28. Theorem. Suppose that d(y) + 0 for each y € B and

a<1.
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Then

(43) 7(B) =B

with the only exception which occurs if G is bounded and A = 0. In this case
7(B) = {veB; v(B) =0} .

Proof. Suppose that 7 v = 0 holds for a v e B. Noting that 4 < a’ we may apply
theorem 26 to assert that there is a ¢ € R' such that Uv = ¢ on G and ¢*|4| = 0. If
either G is not bounded or 4 & 0 we conclude that ¢ = 0 and theorem 26 implies
v = 0. In this case (43) follows by the Riesz-Schauder theory.

It remains only to consider the case that G is bounded and A = 0. In this case we
have T = Wand we know that W& < & (see (16) in [7]). Denote " W the restriction
of Wto %. Then 7 is a dual operator to " W (see remark 32 in [8]). Referring to the
remark 32 in [8] (the equality (92)), and to the lemma 33 in [8] we see that the as-
sumption a’ < 1 guarantees the applicability of the Riesz-Schauder theory to the
pair of operators “W, 7.

Using theorem 26 we conclude that the space A4* of all solutions of the equation

Tu=0 on B

has dimension at most one. By the Riesz-Schauder theory, 4#* has same dimension
as the space A" of all solutions of the equation

"Wg=0 on .

Consequently, lemma 27 implies that 4" consists precisely of functions constant on B.
Finally, the Riesz-Schauder theory implies that v e 7(B) if and only if {f,v) =0
for any f e A", or, which is the same, if and only if v(B) = 0.

The proof is complete.

29. Remark. Using the notation introduced in [8] we can state a corollary of the
preceding theorem here:

Suppose that the potential U(A — 1) is continuous at each point of ¢l [B —
— (B, U By)]. If

(44) ki <A, k, <134,

then the assertion of theorem 28 is true.

Indeed, the inequalities in (44) secure a’ < 1 by theorem 31 and lemma 33 in [8]
and the last inequality implies d(y) #+ 0 for any y € B by theorem 20 and lemma 33

in [8]
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In particular, if 2 = 0 and (44) holds, theorem 28 contains an assertion connected
with the Neumann problem for the case of a domain. The last result slightly general-
izes the result of 4.11 in [4] for the case of connected G. The above mentioned
corollary generalizes essentially the corresponding result of [13].

Let us recall here the definition of the space By introduced in [7]. By is the space
of all elements of B which are absolutely continuous with respect to H. Roughly
speaking, By consists of all elements having a density with respect to an area measure.

An easy consequence of theorem 28 and of proposition 12 in [7] is the following
assertion.

30. Theorem. Suppose that d(y) # O for any ye B, a’ < 1 and € By. Then
(49) T(By) = By
with the only exception which occurs if G is bounded and 2 = 0. In this case
(46) T (By) = {veBy; v(B) =0}.

Proof. It is known from proposition 12 in [7] that 7(By) = By and Tve By
for a ve B implies v e By.

If the exceptional case does not occur, then 7 (By,) = By follows from theorem 28
and (45) is verified.

If G is bounded and A = 0, then clearly
T (By) = {veBy; v(B) =0}.

On the other hand, if ve By and v(B) = 0, then there is a p e B such that Tpu = v
by theorem 28. Consequently, ue By. Thus (46) is established and the proof
is complete.
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