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NOTES ON PURITIES

LADISLAV BICAN, Praha

(Received February 25, 1971)

Throughout this paper, the word “module” always means a unitary A-module
where A is an associative ring with unity. The basic definitions are given in [5] or [1]

1. PROJECTIVELY CLOSED PURITIES

The definitions and notations are given in [5] or [ 1] and therefore we do not repeat
them. The composition of the homomorphisms ¢ : 4 - B, ¥ : B — C is denoted

by Y.
We start with the following

Lemma 1. Let U be a submodule of a free module F,0 > U % FX P —0 an
exact sequence where y is the canonical embedding and i : A — B a monomorphism.
Then P is co-projective with respect to i if and only if i € Hpy.

Proof. This proof is essentially the same as that of Lemma 1 in [5] and therefore
we omit it.

From Theorem 1 and Lemma 3 from [5] it follows that the three following pro-
perties of a purity w are equivalent:
a) o is projectively closed,
b) w is a I-purity for some class T,
¢) o is of the form ™ for some class of modules M.

Definition 1. Let o be a projectively closed purity. An arbitrary class I of couples
(F, U) where U is a submodule of a free module F satisfying $,, = $ will be called
a basis of . Similarly, an arbitrary class 9 of modules satisfying » = o™ will be
called a PB-basis of w.

The following simple lemma will be useful in the sequel.
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Lemma 2. If I = {(F, U)} is a basis of a projectively closed purity w then the
class M = {P, P = F|U, (F,U) eI} is a P-basis of w. Conversely, if the class M
is a P-basis of a projectively closed purity w then taking to any P € I an exact
sequence 0 > U 2> F X5 P — 0 where U is a submodule of a free module F and y
is the canonical embedding we obtain that the class I' of all such couples (F, U) is
a basis of w.

Proof follows easily from Lemma 1.

Recall that a family 4,, « € Q of submodules of A4 is called a covering of A4 if 4,,
o € Q generate A. Further, a module 4 is called compact if its any countable covering
has a finite subcovering.

Theorem 1. If a projectively closed purity w has a B-basis M such that any module
from M is compact then the class 9., is closed under taking direct sums.

Proof. Let 0 —» A4, = B, it C,— 0, e Q be any set of short exact sequences
with i, € §,,. Let us put 4 = ZA‘,, B = ZB(,, C= ZC, i —le, n =Y m, and

ae e «zeQ ac
let Pe M be an arbitrary module. Then the sequence 0 — A HBLCo0is
exact and the compactness of P guarantees that the image of any homomorphism
f:P — Cis contained in the direct sum of a finite number of C.s (see [1], p. 47).
The class $,, is closed under taking finite direct sums (see (1,1) in [1]) which guaran-
tees the existence of the homomorphism ¢ : P — B with np = f. Therefore ie §,,
and the proof is complete.

Theorem 2. If a projectively closed purity w has a B-basis M such that any module

from M is compact then the direct sum A = Z A, is w-flat if and only if any A,,
o€ Q is w-flat. ach?

Proof. Recall that a module 4 is w-flat if i € §,, for any exact sequence 0 — K >
i B— A — 0. If 4 is o-flat then any 4,, « € Q is w-flat by (1,15) from [1]. Con-
versely, let us suppose that any 4,, o € Q is w-flat. Taking for any 4,, « € Q an exact
sequence 0 » U, > F, - A, — 0 with a free module F, we have i, € ,. Then the

L in
sequence 0 — Z U, 2253 Y F,—» A—-0 is exact and 21 €9, by Theorem 1.
a2 ac ae

Hence A4 is w-flat by (1,12) from [1].

Theorem 3. If a projectively closed purity w has a basis I where I is a set then
there exists a free module F and its submodule U such that §, = Hry.

Proof. By Lemma 2, w has a -basis M where 9 is a set. By (1,5) from [1] the

module P = Z P’ is w-projective, P e B,, so that H, = $¥’. Conversely, again
P'eM
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by (1,5) from [1] we have M = P,,(p) hence H” = §,, and Lemma 1 completes the
proof.

Theorem 4. If a projectively closed purity  has a P-basis M (or a basis I') which
is a set, then the purity w is projective.

Proof. In view of Lemma 2 and Theorem 3 we can assume that the module P’
is a B-basis of w. Let 4 be an arbitrary module and n’ : F — A4 an epimorphism of

some free module F onto 4. By (1,5) from [1] the module P=F + ) P;
feHom(P’,A4)
where P; = P’ for any f € Hom (P’, A) is w-projective. For an element (g, (p})) € P,

qeF, pyeP}, let us put n((q, (p}))) =7'(q) + Y. f(p)) (this can be made
SfeHom(P’,A)

since only a finite number of p}’s is non-zero). Here 7 : P — A is an epimorphism
since n’ is. If we denote K = Ker = and i the corresponding canonical embedding
we get an exact sequence 0 - K 5 P 5 4 — 0. It remains to show that ie $,,.
However, taking fe Hom (P’, A) arbitrarily and denoting by L, the canonical
embedding of P’ = P} into P we obviously have n.; = f and the proof is complete.

Remark. We have just proved something more, namely: If a projectively closed
purity o has a set as a ‘B-basis then there exists a module P' € B, such that to any
module A there is an exact sequence 0 > K-> P — A — 0 with i€ H, and P =

=F 4 Y P’ whereF is free and P; = P’ for any f € Hom (P’, A).
SfeHom(P’,A4)

Theorem 5. The following two conditions are logically equivalent:

a) Any projectively closed purity has a set as a P-basis,

b) there exists a cardinal number m such that any module of power at least m is
a direct sum of modules of powers less than m.

Proof. First, let us show that a) = b). For this purpose, let us assume the purity
to have the class of all modules as a P-basis. By hypothesis, Theorem 3 and Lemma 2,
there exists a module P’ which is a §3-basis of w. Let m be the first uncountable cardi-
nal greater than max (|P’], IAD !). By the remark preceding this theorem, to' any
module A of power at least m there exists an exact sequence 0 > K —- P - 4 - 0
with ie$, and P=F } Z P where F is free and P, = P’ for any fe

eHom(P’,A
e Hom (P’, A). Hence A ig isor;or;;hic to a direct summand of P since Ae B,

by hypothesis. Therefore A4 is a direct sum of modules of powers less than m owing
to Theorem 4.3 from [4].

Conversely, let us suppose b) and let @ be any projectively closed purity. Let I be
the set of all pair-wise non-isomorphic modules from B, the powers of which are

1) |M]| denotes the power of the set M.
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less than m. Clearly, H, S $™. On the other hand, any module P € B,, of power at

least m is, by hypothesis, a direct sum P = Z P, of modules of powers less than m.
ae

By (1.5) from [1] any P, lies in B, and hence it is isomorphic to an element from 9R.
Using (1.5) from [1] again, we get P € P,m, hence P, = B,m and $™ < §,,.

Definition 2. Let 9 and N be two sets of modules containing 4. We say that 3t
depends on M if any module from 9 is isomorphic to a direct summand of a direct
sum of modules from M. Further, we say that 9 and N are equivalent if M depends
on N and conversely, N depends on M.

Theorem 6. Let M and N be two sets of modules containing A. Then $™ < o
if and only if i depends on M.

Particularly, $™ = §® if and only if M and N are equivalent.

Proof. The special assertion is a trivial consequence of the general one. First, let
us suppose that $™ < $” and let N e %t be an arbitrary module. By hypothesis, the
proof of Theorem 3 and the remark after Theorem 4 there exists an exact sequence
05K P> N-O0 where ie §™ and P is a direct sum of modules from 9R.
Since ™ = $®, N is co-projective with respect to i and therefore it is isomorphic
to a direct summand of P. Hence 9t depends on IN.

Conversely, if 9t depends on M then (1,5) from [1] yields t = P,m and therefore
5" < o

Theorem 7. The intersection of any set of projective purities is a projective purity.

Proof. Let w,, ® € M be a set of projective purities and let us put o = () w,. It is
acM

clear that i € §,, if and only if any module from U B,,, is co-projective with respect
aeM

to i so that U B, is a P-basis of w. Let 4 be an arbitrary module. The projectivity
aeM

of w,, « e M implies the existence of exact sequences 0 — K, .t P, A — 0 with
i,€9,,and P e P, .For P =Y P,letusdefinea mappingn : P — A by the formula

aeM
T({Pu}acr) = X, 7(P,) (this can be done since only a finite number of p,’s is non-zero).
aeM

It is not too hard to show that « is a homomorphism and, moreover, it is an epimor-
phism since r,, « € M are. Let us introduce the following notation: ¢, is the canonical
embedding of P, into P, K = Ker w and i is the natural embedding of K into P.

Since | P,,, is a PB-basis of @ we have P e B,, by (1,5) from [1] so that it suffices to
aeM
show that i€ §,. Let P'e€ U %, be an arbitrary module and ¢ € Hom (P’, 4) an
aeM

arbitrary element. Then P’ € B, for some o € M so that there exists a homomorphism

528



Y’ :P' - P, with n) = ¢ (since i€ 9, ). Putting = ¢;)' : P' - P we have
my = m ' = )’ = ¢, which completes the proof.

Now we shall present two theorems concerning &-purity.

Definition 3. We shall say that a projectively closed purity w is &-purity if it has
a B-basis I containing only cyclical modules.

Recall that a purity  is called cyclically projective if to any module A there eXists
an exact sequence 0 > K-> P —» 4 — 0 where i € §,, and P is a direct sum of cyclic
w-projective modules.

Theorem 8. A projectively closed purity w is &-purity if and only if it is cyclically
projective.

Proof. Firstly, let o be an &-purity and let M be its P-basis containing only
cyclical modules. Without loss of generality we can assume that 9t is a set (in the
opposite case take pair-wise non-isomorphic modules from 9)?) Now the proof runs
on the same lines as that of Theorem 3,4 and therefore we omit it.

Conversely, let us suppose that w is cyclically projective and let us denote by I
the class of all cyclic modules from %B;,. The inclusion M < P, gives H,, = $™ On
the other hand, to any module 4 € B, there exists an exact sequence 0 — K > P —
— A — 0 where ie 9, and P is a direct sum of cyclic modules from B, i.e. the
modules from M. From i € §,, it follows that A is isomorphic to a direct summand
of P so that 4 € P,m by (1,5) from [1]. Hence P, = B,m from which $™ < §,,
and the proof is complete.

Theorem 9. For any &-purity, the direct sum A = Z A, is &-flat if and only if any
module A,, x € Q is &-flat. as?

Proof. It suffices to use Theorem 2 since any cyclic module is compact.

2. INJECTIVELY CLOSED PURITIES

First of all we shall repeat some definitions. A module Q is called injective with
respect to a monomorphism i : 4 — B if for any diagram

0 — A —L_.B

fa)
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there exists a homomorphism ¥ : B — Q making the diagram

0 — A 1 —

| A4

Q

commutative. For a purity w let us call a module Q w-injective if it is injective with
respect to any i € §,,. The class of all w-injective modules is denoted by Q. If It is
an arbitrary class of modules then the class $gy, of all monomorphisms i such that
any M e M is injective with respect to i, defines a purity (see (1,16) in [1]), which we
denote by wgy. The purity @ = wg,, is called the injective closure of w. Finally,
a purity w is called injectively closed, if ® = w, and a purity w is called injective if
to any module A there exists an exact sequence 0 - A > Q with i e §, and Q € Q,.

Theorem 10. A purity w is injectively closed if and only if it is of the from wgy
for some M of modules.

Proof. For an injectively closed purity @ we have w = wg . On the other hand
we clearly have $Hy = S’Dwm while the converse inclusion follows at once from

M < me.

Theorem 11. Any injectively closed purity w is bi-triangular.

Proof. In view of Theorem 10 and (1,16) from [1] it suffices to show that w is
co-triangular. Let us consider the commutative diagram

h a[
0 A= C—=D—0

with cxact rows where T and ¢ are given homomorphisms and i € §,. The existence
of h is guaranteed by A = Ker 7 and t(oi) = 0. We are going to show that j € $,,.
Let Ve Q, be an arbitrary module, Q an arbitrary injective module containing V,
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A:V - Q the canonical embedding, n: Q — Q[V the canonical projection and
¢ : A - Van arbitrary homomorphism. Let us consider the following diagram:

0 K ——p"~p—0
h -
v
0 A —f—.C ——D 0
y ///I’/"/ Q /Il ,’,ii ’7
(74 '/,’/
0 V —— Q@ —QWv 0

The existence of g satisfying ¢j = A¢ follows from the injectivity of Q while the
existence of # satisfying 5t = mo follows from 7gj = ndep = 0. Therefore the
diagram (4) (with full lines only) is a commutative diagram with exact rows. From
i€ $H, the existence of a homomorphism ¥’ : B — V with ph = i follows. Further,
(o6 — A")i = goi — Aph = 0 implies the existence of a homomorphism y” : D — Q
with Y"16 = go — AY’'. We have m)"to = ngo — Ay’ = nro, so that ny” =19
since 7o is an epimorphism. Further, from n(¢ — ¥"t) = n¢ — 5t = 0 we obtain
AW =g — yY"t for a homomorphism Y :C —V. Finally Wj=gj — 17 = A¢
yields ¥j = ¢ since A is a monomorphism and the proof is therefore complete.

Theorem 12. For an injectively closed purity o the class $, is closed under
taking direct sums.

Proof. Let i, : A, > B,, o € Q be an arbitrary set of elements of §,. For any
o € Q we have a commutative diagram

A, " B.

where ¢, 4, are canonical embeddings. For any Ve Q, and any ¢ : Z A, — Vthere
ac

exist homomorphisms V, : B, » V with ¥, = ¢t, (since i, € H,). The universality
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of direct sums yields the homomorphism ¥ : Y, B, - V with Y4, = y,. Finally,

aef
from ¢, = i, = Yi,i, = 1!/(2 i,) t, and from the universality of direct sums

(for Z A,) we get Y( Z D) =0 and the proof is complete.

Theorem 13. Let w be an injectively closed purity. Then the direct sum A = Z A,
is w-flat if and only if any A,, a € Q is w-flat. aeq

Proof. Theorem 13 follows from Theorem 12 in a similar way as Theorem 2
follows from Theorem 1.

Theorem 14. Let w be an injectively closed purity. Then the following three
properties of a module Q are equivalent:

1) Q is w-flat,

2) Ext(Q,V) = 02) for any Ve Q,,

3) for any VeQ,, Q is co-projective with respect to the canonical embedding
V- 173).

Proof. 1) = 2): If Q is w-flat then w Ext (Q, X) =*) Ext (Q, X) for any module X.
For any Ve Q,, we have w Ext (Q, V) = 0 so that 2) is true.

2) = 3): From the exact sequence 0 >V — V' — V> 0 we obtain the exact
sequence Hom (Q, V) - Hom (Q, V[V) - Ext (Q, V) which yields 3).

3) = 1): To the module Q let us choose an exact sequence 0 » U 2> F 2 0 - 0
where F is free and let us consider the diagram

0 V) ; F 7 Q 0
bl

where ¢ : U — Vis a given homomorphism. Since Vis injective, there exists h : F — ¥
with hj = ip. From nhj = nip = 0 it follows that 9y = nh for some 9: Q — V|V
so that the diagram (6) is a commutative diagram with exact rows. By hypothesis 3)
there exists a homomorphism ' : Q —» ¥ with ny’ = 9. From n(h — Y'n) = nh —
— 9 =0 we get h — Y'n = iy for some Y : F - V. Finally, yj = ¢ since i is
a monomorphism and iyj = hj — Y'nj =

2) In this paper we shall write simply Ext (B, 4) instead of Ext ,11(B, A).

3) ¥ denotes the injective closure of V.

*) wExt (B, A) is the subset of Ext (B, A) formed by all the sequences 0 - 4 5> X -~ B - 0
with i € §,,.
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Definition 4. We shall say that a class It of modules is a basis of an injectively closed
purity o, if ® = wg.

Now we shall formulate three theorems without proofs since they are dual to those
of Theorems 3,4 and 7 respectively.

Theorem 15. If an injectively closed purity w has a set as a basis then it also has
a basis containing exactly one element.

Theorem 16. If an injectively closed purity w has a set as a basis then it is injective.

Theorem 17. The intersection of any set of injective purities is an injective purity.

3. &-DIVISIBLE MODULES

It is a well-known fact in the Abelian groups theory that a group D is divisible if
and only if it contains no maximal proper subgroups. This section is devoted to
a generalization of this fact.

Recall that a module D is w-divisible (w is any purity) if it is w-pure in any its
extension (A4 is w-pure in B if the canonical embedding i : 4 — B lies in §,,).

Throughout this section let & = {Au, e M} with M = A be any set of maximal
principal left ideals of A satisfying Ap = pA.

Definition 5. We shall say that a submodule B of a module 4 is an &-submodule if
the order of any non-zero element of A/B belongs to &. Further, we shall say that B
is an &-maximal submodule of A4 if B is an &-submodule of A4 and it is maximal in A.

Theorem 18. If a module D contains no proper &-maximal submodule then D is
&-divisible.

Proof. Let us suppose to the contrary that D is not &-divisible. By (1.53) from [1]
there exist ue€ M and d e D such that d ¢ uD. From this and from Au < uAa it
follows d ¢ AuD and hence D[AuD =+ 0. Further, from the inclusion Ap < pA it
easily follows that uA is a left ideal of A and therefore Ay = pAd, Ap being maximal.
It is easy to see that A/Ay is a division ring (= non-commutative field). The factor-
module D[ApD can be considered as a A/Ap-module by defining (4 + Ap)(d +
+ AuD) = Ad + ApD. By the well-known theorem on modules over a division ring
(see e.g. [7]) the A/Ap-module D[AuD is completely decomposable. Therefore it
contains a A/Ap-submodule D'[AuD with D[ApD[D’'[{AuD = A[Ap. 1t is not too
hard to show that D’ is A-submodule of D. Considering D, D', AuD as A-modules,
we have D[AuD|D'[ApD = D|D’ = A[Ap. This implies that D’ is an &-maximal
submodule of D — a contradiction proving our theorem.

The following example shows that the converse of the preceding theorem does not
hold in general.
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Example. As the ring A we take the direct sum A = C, + C, + C; where C,
and Cj; are prime fields of the characteristic 2 and 3 respectively. The ideal C, + C5
generated by p = (0, 1, 1) satisfies all the conditions for the system &. Direct cal-
culation gives that d = (0, 1, 0) is the only element from D = C, + C, satisfying
(0: ) = (0:d)?). By (1.53) from [1] D is &-divisible since d = pud. On the other
hand, the second direct summand C, is the maximal submodule of D and it is easy
to see that the order of the only non-zero element of D/C2 is just Ap.

Let us denote by N = V (0 : p) the left ideal of A generated by all the ideals (0 : p),
uwe M. ueM

Theorem 19. Let D be an &-divisible module satisfying N < (0:d) for any
d e D. Then D contains no proper &-maximal submodules.

Proof. Let us suppose to the contrary that there exists a proper &-maximal sub-
module H of D. If de D = H is an arbitrary element then by Definition 5 there
exists u € M with (H : d) = Ap. The &-divisibility of D, the hypothesis of our theorem
and (1.53) from [1] imply the existence of d’ € D with d = pd’. Here d’ ¢ H since
d¢ H. On the other hand, d’ = h + Ad, Ae A, he H, H being maximal in D.
Therefore, d = pd' = ph + plq = ph + X'pde H, (since Ap = pA) which is
a contradiction proving our theorem.

Theorem 20. Let D be an &-divisible module satisfying N < (0 : d) for any d € D.
Then any epimorphic image of D is &-divisible.

Proof. Let ¢ : D — D’ be an arbitrary epimorphism, d’ € D’ an arbitrary element
and d any inverse image of d’ under ¢. Then (0:d’) = (Ker¢ :d) 2 (0:d) 2 N.
By (1.53) from [1] we have d € uD for any p € M, hence d’ € uD’ for any p € M and D’
is &-divisible by (1.53) from [1] again.
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Ax € B for any x € M}.
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