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A CHARACTERIZATION OF SEMILATTICES OF LEFT
OR RIGHT GROUPS
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In this note we give a characterization of right regular or periodic semigroups,
which are semilattices of left groups.

Let S be a semigroup. The mapping U :exp S — exp S is said to be a €-closure
operation if the mapping U satisfies the following conditions:

i) U@ =0;

ii) Ac Bc S=U(4) = UB);
iii) A< U(4) foreach AcS;
iv) U(U(4)) = U(4) foreach A< S.

For x € S we write simply U(x) instead of U({x}). The set of all ¥-closure operations
for a semigroup S will be denoted by %(S).

Let Ue (S). A subset A of S will be called U-closed if U(4) = A. Let F(U)
denote the set of all U-closed subsets of S.

We recall the following notion introduced in [1]. If U e %(S), V € ¢(S) we define
U o Vif and only if the following holds: For any U-closed (non-empty) subset 4 = S
and any V-closed (non-empty) subset B = S, we have

1) ANnB=AB.

Let U, Ve 4(S), then we define U < V if and only if U(4) = V(4) for any subset
A < S. The ordered set %(S) is a lattice (A, v). If U, ¥V e %(S), then there holds:

(2) USVeZ(V)c #F(U);

(3) FUAY)={4nBlAe#(U), BeF(V)};
4) FUvVYV)=FU)nF(V).

(See [1])
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From (1) and (2) there follows:

Lemma 1. Let U, U,, V,,V, e %(S) and let U, < U,, V, < V,. If U, oV, then
U,oV,.

Let AcS, A+ 0. Put L(4) = SAU A and R(4) = AS U A. Finally L(0) =
= 0 = R(0). It is clear that L, Re %(S) and (L) is the set of all left ideals of S
(including 0), #(R) is the set of all right ideals of S (including §). Put M = L v R,
H = L A R. Evidently M, H € 4(S). It follows from (3) and (4) that #(M) is the set
of all two-sided ideals of S (including @) and & (H) is the set of all quasi-ideals of S
(including 0).

Lemma 2. Let U, Ve %(S) Then UV if and only if RS U, L<V and xe
€ U(x) V(x) for every x € S.
Proof. See Theorem 9 [1].

A semigroup S is called left (right) regular if x € L(x*) (x € R(x?)) for every x of S
(see Lemma 3 [1]). A semigroup S is said to be left (right) cancellative if in S the
left (right) cancellation law holds, that is ax = ay (xa = ya) implies x = y for all
a,x,yeS. A semigroup S is called left (right) simple if S does not contain a left
(right) ideal different from S. A semigroup S is called a left (right) group if it is left
(right) simple and right (left) cancellative.

Lemma 3. The following conditions on a semigroup S are equivalent:

1. S is a semilattice of left groups;
2. S is a union of groups and R < L;
3. Sis a right regular and R < L.

Proof. 1 <> 2. This follows from Theorem 11 [2].
2 = 3. Evident.

3 =2. Let S be right regular and R < L. We show that S is left regular, which
implies (see Theorem 8 [2]) that S is a union of groups. Let x be an arbitrary element
of S. Then x € R(x?) = L(x?). Hence, S is left regular.

From Remark 1 [2] we obtain the following:
Lemma 4. The following conditions on a periodic semigroup S are equivalent:

1. S is a union of groups;
2. S is right regular;
3. S is left regular.
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Theorem 1. The following conditions on a right regular or periodic semigroup S
are equivalent:
1. Ho M;
2. Hol;
3. Lol
4. Lo M;
5

. S is a semilattice of left groups.

Proof. 2 = 3 = 4. This follows from Lemma 1.

4=35. Let Lo M and let S be a right regular semigroup. By Lemma 2, we have
R < L. Hence, by Lemma 3, S is a semilattice of left groups.

Let Lo M and let S be a periodic semigroup. It follows from Theorem 11 [1]
that S is left regular and R < L. According to Lemma 4 and Lemma 3, S is a semi-
lattice of left groups.

5=1. Let S be a semilattice of left groups. By Lemma 3, S is a union of groups
and R < L. Since S is regular, by Theorem 10 [1], we have R g L. This implies
that H g M.

1=-2. Let Ho M. By Lemma 2 we have R < H < L and so M = L. This implies
Hol.

Dually we have the following:

Theorem 2. The following conditions on a left regular or periodic semigroup S
are equivalent:

1. Mo H;
2. RoH;
3. RoR;
4. MoR;
5

. S is a semilattice of right groups.
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