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COMMUTATIVE PRIMARY SEMIGROUPS

M. SATYANARAYANA, Bowling Green

(Received March 18, 1970)

A commutative semigroup is said to be primary if every ideal in the semigroup is
primary. In this paper we shall study the structure of primary semigroups. We
observe that the structure of primary semigroups differs from the structure of com-
mutative primary rings, which are studied by the author in [2]. In the ring of integers,
non-zero prime ideals are maximal and the cancellative property in the semigroup —
theoretic sense is satisfied. But every ideal is not primary. In contrast to this, it is
proved in 2.11 that every cancellative semigroup containing identity is primary iff
every non-zero prime ideal is maximal. We also characterize cancellative primary
semigroups without identity. It is shown that in every primary semigroup idempotents
form a chain under the usual natural ordering and also prime ideals form a chain
under set-inclusion. It is natural to ask whether a commutative semigroup is primary
if the idempotents form a chain. This need not be true [ Example 2.3]. In the case of
commutative regular semigroup, it is shown in 2.4, that the primary condition is
equivalent to the property that idempotents are linearly ordered. Most of the results of
this paper are obtained by using the concept of the radical. This theory of radical in
semigroup is nothing but the new version of the existing theory of radical in com-
mutative ring theory. This theory has been sketched in section 1 without proofs.

1. IDEAL THEORY

Throughout this paper all semigroups under consideration are commutative. An
ideal A is a semigroup S is primary whenever xy € 4, x, y € S and x ¢ A, then there
exists a positive integer n such that y"€ A. An ideal A in S is called a prime ideal
whenever xy € A and x ¢ A, then y € A. The semigroup S is itself a prime ideal in S.
An ideal A is said to be maximal iff it is not contained in a proper ideal other than S
itself. Radical of an ideal 4 in a semigroup S, denoted by /4, is the set of all xe S
such that some power of x is in A4. \/A is an ideal and contains A. The propositions
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and proofs here under broadly follow the same lines as for commutative rings. For
this reason we do not mention any proposition with a formal label such as Theorem
etc., but however merely number them for the sake of cross-reference. In order to
avoid any possible confusion, we shall mention here the proofs in case there is a varia-
tion, even by little, from the proofs of the analogue theorems in commutative rings
found in [1] and [3]. ““<” denotes containment and “<”" proper containment.

1.1. If A and B are any two ideals in a commutative semigroup S, then
i) A< B= /A< B,
ii) \/(4B) = /(A n B) = /A n /B,
i) /(4/4) = V.
1.2. If A is a primary ideal, then \/A is a prime ideal. Moreover if abe A and

a¢ A, then be JA. If P is a prime ideal, \/P = P. More generally an ideal A and
its radical are contained in precisely the same prime ideals.

1.3. Let A be an ideal in a semigroup with identity. If \/A = M, where M is
a maximal ideal, then A is a primary ideal.

Proof. S has a unique maximal ideal, which is the union of all proper ideals.
Hence M is the unique maximal ideal and every element of S not belonging to M is
an unit. Let xy € A and x ¢ A. If no power of y is in A4 i.e., y ¢ M, then y has an
inverse y~1. Hence x = xy y~! € 4, a contradiction.

1.4. In a commutative semigroup with identity, the unique maximal ideal M
is prime; \/M" = M for every positive integer n and M" is a primary ideal for every
positive integer n.

1.5. In a commutative semigroup without identity, maximal ideals need not be
prime. Consider a semigroup S = {a, b, z} with the following multiplication table.

b

NN NN
Q Q8 N 8

z
a
b a

{z, a} is a maximal ideal but not prime since b . be {z, a} but b ¢ {z, a}.
1.6. Definition. Let A be an ideal in a commutative semigroup S. Then a prime
ideal P is said to be a minimal prime ideal belonging to A if A = P and there is no

prime ideal Q in Ssuchthat A < Q < P.
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1.7. Definition. A subset T in a semigroup S is called ¢ multiplicative system if,
for x, ye T, xy € T. Tis nothing but a subsemigroup.

1.8. If two subsets of a semigroup have no elements in common, we say that either
of these sets does not meet other.

1.9. [1;104]. Let A be an ideal in commutative semigroup S and M is a sub-
semigroup of S which does not meet A. Then M is contained in a maximal sub-
semigroup M* which does not meet A, that is, if N is a subsemigroup such that
M* < N, then N contains an element of A.

1.10. [ 1; 105]. Let M be a subsemigroup in a commutative semigroup S and A an
ideal which does not meet M. Then A is contained in a maximal ideal P which does
not meet M, that is, if N is an ideal such that P = N, then N contains an element
of M. Such an ideal P is necessarily prime.

Proof. Let J be the collection of ideals B such that B = A and B does not meet M
J is non-empty and inductive. Then by Zorn’s lemma there exists a maximal element P
of J. We claim that P is prime. Let xy € P and x and y ¢ P. Since P U (x U xS) and
P U (y U yS) contain P properly there exist @ and b such that ae [P U (x U xS)] n
N M and be[P U yu ys] n M. Since P does not meet M by the choice of P, we
have ae(x uxS)nM and be(yu yS)n M. Then abexyu xyS < P. But
ab e M, since M is a subsemigroup. So abe P n M =+ 0, a contradiction.

1.11. Notation. If A4 is a subset of a semigroup S, then S — A4 denotes the comple-
ment of 4 in S.

1.12 [1; 106]. A4 set P of elements of the commutative semigroup S is a minimal
prime ideal belonging to the ideal A iff S — P is a maximal subsemigroup which
does not meet A.

1.13 [1; 104]. The radical of an ideal A in the commutative semigroup is the
intersection of all minimal prime ideals belonging to A or equivalently is the
intersection of all prime ideals containing A.

114 [1; 107]. Any prime ideal containing an ideal A in a semigroup contains
a minimal prime ideal belonging to A.
2. PRIMARY SEMIGROUPS

2.1. Proposition. In a commutative primary semigroup S, i) prime ideals form
a chain under set-inclusion ii) idempotents form a chain under natural ordering.
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Proof. If A and B are any two prime ideals, then /(4 N B) is prime since the
radical of a primary ideal is prime by 1.2. Then 4 N B = /4 n /B = \/(4 n B)
is prime. If A ¢ B or B ¢ A, then there exist ae A and ¢ Band b ¢ 4, b e B. Then
abe AnBbuta,b¢ An B. Hence A = Bor B = A. To prove (ii): Let e and f be
any two idempotents in S. Since \/eS and /fS are prime ideals by 1.2, we have by (i),
JeS = /fSor/fS = ./eS. Thus ee fS or fe eSi.e., e = feor f = ef. This implies
under the usual natural ordering, the idempotents form a chain.

2.2. Note. If a semigroup has 0 and if we assume that every non-zero ideal is prima-
ry, condition (1) in 2.1 need not be true. This can be observed in the semigroup S =
= {0, a, b, 1} where ba = ab = 0, a*> = a, b*> = b with 0 and 1 as zero and identity
of S respectively. The prime ideals {O, a} and {0, b} are not contained in one another.

2.3. Note. If the idempotents are linearly ordered, then the semigroup need not be
primary. Consider the semigroup S = {0, 1, a, b} where a> = ab = ba = 0, b*> = b
with 0 and 1 as the zero and identity of S respectively. Since (0) is not primary, S is
not a primary semigroup. Trivially the idempotents form a chain. Now we shall show
that for certain class of semigroups, the condition that the semigroup is primary is
equivalent to the statement that idempotents are linearly ordered. The example in 2.2
asserts that even in bands idempotents need not form a chain. In the following theo-
rem, my colleague, Dr. McMoRris showed me (iv) = (ii). However we shall mention
a different proof, originally developed by me for idempotent semigroups.

2.4. Theorem. Let S be a regular commutative semigroup. Then the following
Statements are equivalent.
i) Every ideal in S is prime.
ii) S is a primary semigroup.
iii) The idempotents form a chain.

iv) The ideals are linearly ordered.
Proof: Trivially (i) = (ii). By 2.1, (ii) = (iii).

(iif) = (iv): It suffices to show that principal ideals are linearly ordered. For, if 4
and B are any two ideals and if 4 & B, then there exists a € A and ¢ B. If principal
ideals are linearly ordered, then for any b e B, we have b U bS = a U aS. Hence
B < A. Consider now any two principal ideals in S. They should be of the form eS
and fS where e and f are idempotents. Since e = ef or f = ef by hypothesis, we have
either eS < fS < eS.

(iv) = (i): Let A be an arbitrary ideal in S. Suppose xy € A. Since S is regular,
x U xS = eS and y U yS = fS where e and f are idempotents. Clearly xy U xyS =
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= efS. Then ef € A. Since ideals are linearly ordered, assume eS < fS, which implies
e =efeAie, xe A Hence x or y e A. Thus A4 is a prime ideal.

Now in the following theorem we cite a wide class of primary semigroups.

2.5. Theorem. Let S be a commutative semigroup with identity. If (non-zero:
assume this if S has 0) prime ideals are maximal, then S is a primary semigroup.

Proof. Recall 1.13 that radical of an ideal is the intersection of all prime ideals
that contain the ideal. If S is not a group, S has ideals and so S has a unique maximal
ideal M, which is the union of all proper ideals in S. By hypothesis M is the only
(non-zero) prime ideal. If 4 is a (non-zero) ideal, then \/4 = M and hence 4 is
primary by 1.3. If S has zero and if (0) is a prime ideal, (0) is primary and hence S is
primary. If (0) is not a prime ideal, \/(0) is the set of all nilpotents and hence is M
itself by 1.13. Thus S is a primary semigroup.

2.6. Remark. The converse of 2.5 need not be true.-Consider S = {1, a, b} where
a?=ab=ba=a,b*=band 1.s=s5.1=s for every s€S.S is a primary
semigroup in which the prime ideal (a) is not maximal. The theorem 2.5 is not true in
the case of commutative rings. In the ring of integers non-zero prime ideals are ma-
ximal but every ideal is not primary. For example the ideal (12) is not primary since
3.4 € (12) but 3 ¢ (12) and no power of 4 is in (12). However in the case of cancellative
semigroups, the converse of 2.5 can be proved to be true. For this we require the
following results.

2.7. Theorem. Let S be a cancellative commutative semigroup. If S is either
a primary semigroup or a semigroop in which an ideal is primary iff its radical is
prime, then a primary ideal Q in S is prime and Q = \/Q in case \/Q is a non-
maximal prime ideal.

Proof. Since \/Q is a non-maximal ideal, we have \/Q < A < S, where 4 is an
ideal in S. Let ae 4 — ,/Q and be,/Q. Now Q = QU ab U abS < ,/Q. This
implies /Q = \/(Q U ab U abS) = \/Q by 1.1. Hence /(Q U ab L abS) = ,/Q.
Let se S — A. Then sabe Q U ab L abS, since a ¢ /Q = /(Q U ab U abS) and
Q v ab v abS is primary by virtue of the hypothesis, bse Q U ab U abS by 1.2.
If bse ab U abSs, then bS = abt or ab and hence by cancellative property we have
s =aors =at,i.e., s€ A, a contradiction. Thus bs € Q, which implies b € Q since
s¢./Q by 1.2. Hence \/Q = Q and so Q = ,/Q. Thus Q is prime.

2.8. Proposition. Let S be cancellative commutative semigroup. Suppose S is
a primary semigroup or a semigroup in which an ideal is primary iff its radical is
prime. If P is a minimal prime ideal containing d L dS, d € S, then P is a maximal
ideal.
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Proof. Let P be not a maximal ideal. Assume M =S — Pand 4 = {xe S | xme
e d v dS for some meM}. Clearly A is an ideal. Now xe A = xme P =xcP
since m¢P. Thus 4 = P we claim P = A. Let be P and suppose N = {b*m,
k =0, me M}. N is a subsemigroup and N contains the subsemigroup M properly
since bm € N and bm ¢ M. Since P is a minimal prime ideal of d U dS, M is maximal
subsemigroup not meeting d U dS by 1.12. Since N contains M properly N n d u dS
is not empty. So there exists k > 0 such that b*m € d U dS. This implies b* € 4 and
thus b e \/A. Therefore P < \/4 = \/P = P. So P = ,/A. But by hypothesis 4 is
primary. Since P is not maximal, we have by 2.7, P = A. P is also a minimal prime
ideal of d> U d®S. Let B = {y e S| yme d* U d*S for some m e M}. As before we
have B = P. Since de P = A = B, we have dm = sd? for some se S or dm = d>.
Then, by cancellative property, m = sd or ded u dS < P, a contradiction.

2.9. Theorem. If S is a cancellative commutative semigroup such that either S
is primary or in S an ideal A is primary iff \/A is a prime ideal, then the prime
ideals are maximal.

Proof. Let P be a prime ideal in S. Suppose d € P. Then by 1.14, d U dS is con-
tained in a minimal prime ideal, which is maximal by 2.8. Hence P is maximal ideal.

2.10. Remark. If cancellation condition is dropped, 2.9 need not be true. In the
example 1.5 every ideal is primary. But {z} is prime but not maximal.

2.11. Theorem. Let S be a cancellative commutative semigroup with identity.
Then the following statements are equivalent.

i) Prime ideals are maximal.
ii) S is a primary semigroup.
iii) If A is an ideal, A is primary iff \/A is prime.
iv) If x and y are non-units, then there exist positive integers n and m such that
x" = ky, ke Sand y"elx, leS.
Proof. Combining 2.9 and 2.5 we have (i) <> (ii) <> (iii).

(ii) = (iv): Since S has identity, S has a unique maximal ideal M, which is the only
prime ideal in S. By 1.13 radical of an ideal is the intersection of all prime ideals that
contain the ideal. Hence if x and y are any two non-units in S, then \/xS = JyS =
= M, since x and y € M. Hence (iv) follows. It is trivially true that (iv) = (ii).

2.12. Remark. If the semigroup in 2.11 has zero, then 2.11 is true by assuming
non-zero prime ideals are maximal.
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2.13. Theorem. Let S be a cancellative commutative semigroup not containing
the identity. Then the following are equivalent.

i) S is a primary semigroup.
ii) S has no proper prime ideals.

iii) If x, y € S, then there exist positive integers n and m such that x" = ky and
y" = Ix, where k,l € S.

Proof. (ii) = (iii): For any x,yeS, we have /(x uxS)=./(yuyS)=S5
Hence (iii) is evident. Trivially (iii) = (i). To prove (i) = (ii): Since prime ideals are
maximal by 2.9 and since prime ideals form a chain under set inclusion by 2.1, S has
either no proper prime ideals or a unique proper prime ideal, which is maximal.
We claim that the latter case is not possible. Assume that M is the unique prime ideal,
which is also maximal. If a ¢ M, then a? ¢ M since M is prime.SoS = M ua U aS=
= M U a? U a?S. Then for any ae S — M, a = a®> or a = a’x for some x€S.
Clearly a and ax are in S — M. In either case S — M has idempotents. Since S is
cancellative S has at most one idempotent, say e. Then S — M is a group. Also,
since e is not in any proper prime ideal, /(e U eS) = S. This implies for x € M, we
have x" = e or x" = ex". The first is not possible since e ¢ M. The second implies
Xx = ex by cancellative property. Thus e is the identity of S, a contradiction.

2.14. Theorem. Let S be a cancellative commutative semigroup. Then S is primary
iff prime ideals in S are maximal. Furthermore S has no idempotents except
identity, if it exists.

Proof. Clearly by 2.9 prime ideals are maximal in primary semigroups. Assume
now that prime ideals are maximal. If S has identity, by 2.5 S is a primary semigroup.
Let S have no identity. If S has no proper prime ideals, an easy verification yields
that S is primary. We claim that the case that S has proper prime ideals does not
arise. Suppose S has proper prime ideals. Then S has a unique prime ideal. For,
let S have prime ideals P and Q. Asin the proof 0of2.13, S — Pand S — Q are groups.
Then the identity e of S — P and S — Q should be the same since a cancellative
semigroup can have at most one idempotent. Now x € S — P = 3y such that xy =
=eeS— Q. If x¢S — Q, xy = ee Q, a contradiction. Thus xe S — Q. Hence
by symmetry S — P = S — Q and thus P = Q. If eis the identity of S — P, then eS
is a prime ideal and hence eS = S. This implies that e is the identity of S, acont ra-
diction.

To prove the last part observe that S has at most one idempotent since S is cancel-
lative. Suppose that S has no identity. If e is an idempotent, then eS is a prime ideal.
But we have proved above that S has no proper prime ideals. So eS = S and thus e
is the identity.
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2.15. Remark. The above theorem need not be true for non-cancellative semi-
groups. Let S = {a, b, ab : a> = a; b = b; ab = ba}. The only prime ideals in S
are {a, ab} and {b, ab} which are maximal. But the ideal {ab} is not primary.
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