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1. INTRODUCTION

In recent years, a number of authors have considered various questions concerning
Darboux functions and functions with connected graphs. A survey of these studies
can be found in [1]. Every function having a connected graph possesses the Darboux
(intermediate value) property, but the converse is not true in general, although it is
true for functions in the first class of Baire. In the present article we incorporate
the class 2 of Darboux functions and the class o of functions with connected graphs
into a hierarchy of four classes of functions, including also the continuous functions
and the “weakly continuous functions”. Each of these classes can be characterized in
a natural, unifying way by separation or ‘“jumping” properties. As a class of functions
is replaced with a smaller class, the class of connected sets which are used for separa-
tion or jumping is enlarged. Thus, for example, a Darboux function can be looked
upon as one whose graph cannot be separated over any interval by a horizontal
segment, while a function in # can be looked upon [4] as one whose graph cannot
be separated over any interval by a continuum.

The main purpose of this article is to study the four classes of functions in terms
of separation and jumping properties. We do the same for the uniform closures of
these classes [Section 3]. We also consider the inclusion relationships which exist
among these four classes (and their closures) [Section 4], and certain approximation
and representation theorems for arbitrary functions in terms of functions in the
classes [Section 5]. In this connection, we extend certain results known for functions
in 9.

2. PRELIMINARIES

Throughout the sequel we deal exclusively with real-valued functions of a real
variable. Moreover we will regard a function as identical with its graph.

l) This author was supported in part by NSF Grant GP 18968.

435



A function f defined over an interval I is said to be bilaterally dense in itself
(resp. bilaterally c-dense in itself) provided for each z € f, each open square, which
has a vertical side bisected by z and whose x-projection is contained in I, contains
infinitely many points (resp. ¢ points) of f.

If f is defined over an interval I and ¢ > 0, then the e-strip of f over I is defined
to be the set

S(f)={(x,y):xel and |y — f(x)] < &} .
A segment of a strip S,(f) is the non-empty intersection of S,(f) with a vertical line.

For (c, d) € R? define vertical open rays as follows:

Ri(e,d) ={(x,y):x =c and y > d}
R_(c,d)={(x,y):x=cand y <d}.

We say that a connected set C jumps the e-strip Sy(f) over J = [a, b] provided:

(1) the x-projection of C contains J

and
(2) R.(a, f(a) + &) and R_(b, f(b) — &) both hit C

or
R_(a, f(a) — ¢) and R.(b, f(b) + &) both hit C.

We say a connected set C jumps a function f over J = [a, b] provided:

(1) the x-projection of C contains J
and
(2) R,(a, f(a)) and R_(b, f(b)) both hit C

or
R_(a, f(a)) and R (b, f(b)) both hit C.

We say that a function f cannot be separated over an interval I by a certain
class o/ of connected sets provided for each closed subinterval J of I, no 4 e o/
separates f in the space J x R (that is, f N A = @ implies f does not intersect more
than one component of (J x R) — 4 in the space J x R). A set B is said to be
weakly connected over an interval I if it cannot be separated over I by an arc (i.e.,
a homeomorph of [0, 1]). The class of weakly connected functions over a given
interval is denoted by %. The class of continuous functions is denoted by . The class
of connected functions (i.e., functions whose graphs are connected in R?) is denoted
by #. A Darboux function is one which has the intermediate value property. The
class of Darboux functions is denoted by 2. Cleatly ¥ =« # < % < 9. (Also’ see
Theorem 5.)
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3. CHARACTERIZATIONS OF THE CLASSES AND THEIR CLOSURES

First we establish the basic unifying relationship between these four families in
terms of separations by connected sets and jumpings. Part (C) is a restatement of
Theorem 2 of GARRETT, NELMs and KELLUM [4].

Theorem 1. Let f be defined on an interval I.

(A) fis Darboux < f cannot be separated over I by a horizontal line
segment
<> over each closed subinterval any horizontal line
segment which jumps f must hit f.
(B) fis weakly connected <> f cannot be separated over I by an arc
<> over each closed subinterval any arc which jumps f
must hit f.
(C) f is connected < f cannot be separated over I by a continuum
<> over each closed subinterval any continuum which
jumps f must hit f.
(D) f is continuous <> over each closed subinterval any connected set which
Jjumps f must hit f.

Proof. (A) is obvious from the definition of a Darboux function. The prcof of
part (B) is similar to the proof of part (C) (see [4]).

Hence, it suffices to prove the non-trivial implication of (D) Suppose each con-
nected set which jumps f hits f. Then f must be bilaterally c-dense in itself. To see
this, suppose S is a square having (x, f(x)) as the center of one of its vertical sides.
If S n f has cardinality less than c, there clearly exists a line segment M missing f
and having end points in the vertical sides of S. This M jumps f but does not hit it.
Hence, f is bilaterally c-dense in itself. Moreover, R? — f is disconnected because if
not, it is a connected set which jumps f but does not hit it.

So assume that R* — fis disconnected by disjoint open sets A4 and B, both of which
hit R*> — f and whose union contains R? — f. Without loss of generality we may
assume bndry A = bndry B, which set we denote by 0. Clearly d < f.

Suppose x € 4 and y € B with x; = y; and J is the open interval determined by x,
and y,. Since 0 separates x and y we know that there exists a component M of &
which separates x and y. But M is closed and M < f so that each point (except
possibly two) of M is a cut point. This implies that M is an arc whose x-projection
contains J. Therefore, f | J is continuous and is contained in 0.

Let 2 = inf {x, : x € A} and p = sup {x, : x € B}. From the above, f will be con-
tinuous on (—oo, +o0) if A = —oo and u = +00. So suppose 4 is finite. Then
/| (%, p) is continuous and is contained in 0.

Next we need the following easily proved results: (1) for each z € f, R,(z) and R_(z)
belong entirely to A or B and (2) if z, » z with z,€f and zef and R,(z,) < 4,
then R,(z) < 4.
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Now let zo = (4, f(4)). Since {x :x, < A} < B by assumption, we have by (2)
R.(z0) U R_(z¢) < B. Because f | (4, ) = @ and f is bilaterally dense in itself, we
have z,ed = bndry A. Hence, there exists z,ef | (4, #) such that z, — z, and
R,(z,) < A for all n (or R_(z,) < A for all n). Then by (1) we have R,(z,) < 4,
which is a contradiction.

Therefore, A = —oo and analogously 4 = + oo which finishes the proof. Note
that the above proof can be shortened and simplified considerably in case f is bounded.

In Theorem 1, part (D), we cannot assert that f is continuous if and only if f cannot
be separated over I by a connected set. For example, the function f given by f(x) = 0
when x <0 and f(x) = sin (1/x) when x > 0 is discontinuous yet possesses the
property that it cannot be separated by a connected set.

Therefore, the separation property is appropriate when dealing with closed, con-
nected sets, but not with connected sets in general. The jumping property, on the other
hand, is appropriate to all connected sets and yields characterizations of the given
families (Theorem 1) and of the uniform limits of some of the given families (Theorems
2, 3, and 4).

We now attempt to obtain similar characterizations for the uniform limits of
sequences in 9, %, A", and €, or equivalently to characterize the closure &, %, &,
and € (in the metric space of uniform convergence) of these families. It turns out
that Z = % (Theorem 5) and, of course, ¥ = %. The characterizations we obtain
for &, %, and € are similar and parallel in the sense of the jumping relationship
expressed in Theorem 1.

We begin by stating the characterization of & which was established, although
expressed in different terms, in BRUCKNER, CEDER and WEISS [3].

Theorem 2. Let f be defined on an interval I.

feZ < (n,): over any closed subinterval J any horizontal line segment which
jumps any S/f) hits it in ¢ points
<> (a,): f is bilaterally c-dense in itself and over each closed subinterval
any horizontal line segment which jumps S,(f) hits it.

The analogue of Theorem 2 for weakly connected functions is the following
theorem. In view of the fact that & = % (Theorem 5) («;) is equivalent to (B,).
i=1,2.

Theorem 3. Let f be defined on an interval I.

fe < (B,): over each closed subinterval each arc which jumps any S{(f) hits
it in c distinct segments of S,(f) or contains an entire segment
of S{f)
<> (B,): f is bilaterally c-dense in itself and over each closed subinterval
any arc which jumps any S(f) hits it (i.e., any S(f) is weakly
connected). '
Before proving Theorem 3 we need the following lemma.
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Lemma 1. Let .# be the family of all arcs which intersect ¢ distinct segments
of S/(f). Then there exists a g such that ||f — g| < ¢ and for each M € .#, g n
NnM=#0.

Proof. Well-order .# as {M,},.. and well-order the domain interval I by a rela-
tion T. Let n be the x-projection mapping.

Choose x, to be the T-first point in n(M, N S,(f)) and define g(x,) so that
(x0» g(x0)) € Mg N S,(f). Now assume we have defined x, for all « < B such that
X, * x, when « # y and such that (x,, g(x,)) € M, n S(f).

Consider f and let x; be the first T-point in (M, 0 S,(f)) — {x; : & < B}, which is
non-empty by assumption. Then define g(x,) such that (x;, g(x,)) € My 0 S,(f). For
x ¢ {x,:0 < c} we put g(x) = f(x). Then it is easily checked that g is the desired
function.

Proof of Theorem 3. We will prove the following chain of inequalities: f € % =
= (ﬁz) = (Bl) =fed.

(1) To prove fe U= (B2), assume f e % . First we show that f is bilaterally c-dense
in itself. Suppose f is not bilaterally c-dense at x. Then there exist two open squares S,
and S, of side length 3¢ and e respectively each having (x, f(x)) as the midpoint of
its (say) right side, such that card (S; nf) < ¢. Now choose ge % such that
[/ — g|| <& Then card(g N S,) < ¢ so g is not bilaterally c-dense at x. But each
weakly connected function is bilaterally c-dense in itself. Hence, f is bilaterally c-dense
in itself.

Now suppose M is an arc which jumps S,(f) over J = [a, b]. Select g € % with
g < S/(f)- Then M must jump g so that M n S,(f) + 0.

(1) To prove (B,) = (B,) suppose M is an arc which jumps S,(f) over the interval
[a, b] and which hits less than ¢ segments of S(f). We may assume that (a, f(a)) and
(b, /(b)) are the end points of M. Hence, there is a non-end point z of M which belongs
to some segment ¥ of S,(f). We will show that V = M.

Let ze M n V. Since M is an arc and z is not an end point of M, in each neigh-
borhoood of z there is an open subarc of M containing z. However, since f is bilat-
erally c-dense in itself there exist two sequences of segments which miss M, one ap-
proaching V from the left and the other from the right (in case z projects to a or b,
then there is only one sequence). Hence, any such open subarc must be contained
entirely in V. Therefore, M NV is open in V and since M is closed it follows that
Ve M.

(111) To prove (B,) = fe %, we first prove that f is bilaterally c-dense in itself.
Suppose S is an open square having (a, f (a)) as the center of say the left vertical side
and having the other vertical side with x-coordinate b. Suppose card (S N f) < c.
Then clearly one can find a line segment M in S having ends in the vertical sides which

jumps f over [a, b]. For a small enough ¢ it follows that M hits less than ¢ segments
of S,(f) over [a, b] which contradicts (B,). Therefore f is bilaterally c-dense in itself.

To show f e % it suffices to show that each S,(f) contains a member of #. Given
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¢ > 0 construct g = S,(f) by Lemma 1. Next we show that g € #. Let J be a sub-
interval and M be an arc in J x R such that M ng = 0 in J x R. It clearly suf-
fices to show that g intersects only one component of (J x R) — M in J x R.
Suppose (a, g(a)) and (b, g(b)) belong to different components. We may assume that
there is a point of M above (a, g(a)) and a point of M below (b, g(b)). Since M n g =
= 0, M does not hit ¢ segments of S,(f) by construction of g. So M hits less than ¢
segments of S,(f), which by (B,) implies that M does not jump S,(f) over any sub-
interval of (a, b). Therefore there exists a set A with card A < ¢ such that either for
all xe(a, b) — A, Ry(x.f(x) — &y n M = @ or for all x € (a, b) — 4, R_(x, f(x) +
+ &) " M = 0. Suppose the former case holds. Then there exists a sequence {x,},%
of points in (a, b) — A such that x, > a and R,(x,, f(x,) — &) " M = 0 and, by
virtue of the bilateral ¢-denseness of f, f(x,) — f(a). Since M is a continuum and
there exists a point (a, m) above (a, g(a)), it is easily seen that the vertical segment
from (a, m) to (a, f(a) — &) lies entirely in M and contains a point of g. This is a con-
tradiction, so that g hits only one component of (J x R) — M and hence g € %.

The analogue of Theorems 2 and 3 for continuous functions will, because € = %,
yield another characterization of continuity which is formally stronger than the one
obtained in Theorem 1. First we need the following lemma.

Lemma 2. Suppose f is bilaterally dense in itself and each S,f) contains a closed
connected set M, whose x-projection is I, then f is continuous over I.

Proof. Suppose f is discontinuous at x, € I. Then there exists a cluster value 1
at x, which is different from f(x,). Suppose 2 is finite. Take & = 4|2 — f(x,)|. Then
clearly both g-vertical open intervals about (xo, 4) and (xo, f(x,)) contain a point of
the closed set M, which contradicts the fact that M, = S,(f). So there are no finite
cluster values at x, other than f(x,).

. Now suppose A is an infinite cluster value, say 4 = + o0, and there exists a sequence
{x,} such that x, > x, and f(x,) — co. Since f is bilaterally dense in itself there exist
yn > X, such that y, — x, and f(y,) = f(x,). Since there are no finite cluster values
there exists a closed square S of length r less than 1 having left vertical side centered
at (xo, f(xo) + 4) such that S n f = 0. Pick k such that x, and y, are both in (xo,
xo + r) and f(x;) > f(xo) + 8 and f(y) < f(x) + 2. Then S U R, (y;, f(30)) v
U R_(x;, f(x,)) is a connected, closed set separating M,. Hence, M is not connected,
which is a contradiction. Hence, there is no infinite cluster value. Therefore f is
continuous in I.

Theorem 4. Let f be defined on an interval 1.

fe € < (&,): fis bilaterally dense in itself and over each closed subinterval any
connected set which jumps any S,(f) hits it.

Proof. Obviously f € € = (&,). To prove that (¢,) implies f € € it will suffice to
show that f is continuous whenever f is bilaterally dense in itself and R* — S,(f) is
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disconnected for each ¢ > 0. The proof follows the pattern of part (D) of Theorem 1.
Assume R? — S,(f) is disconnected by open sets 4 and B with 04 = 0B = 8 < S,(f).
Letting x € A and y € B with x; # y, and J be the open interval determined by x,
and y; we see that S,(f) contains a closed, connected set M, whose x-projection
contains J. Now defining 1 and u as before and proceeding as before we conclude
that S,(f) contains a closed, connected set M,. Now apply Lemma 2 to get f con-
tinuous.

The analogue of conditions () and (B,) of Theorems 2 and 3 respectively for con-
tinuous functions does not hold. For example, consider the 0 function, ¢ = 1 and
define M to be the union of the lines given by y = 1, y = —1 and the line segments
[(0, —1),(0,0)] and [(1/n, 0), (1/n, 1)] for positive n. Then M is a connected set
which jumps Se(f) but M neither intersects S,(f) in ¢ segments nor does it contain
a whole segment.

We have been unable to prove completely the analogue of Theorems 2 and 3 for
the class of connected functions . We state it as a conjecture.

Conjecture. Let f be defined on an interval 1. Then

feH <= (y,): for sufficiently small ¢ > 0, for each closed subinteral each
continuum which jumps Sf) hits it in c-segments or contains an
entire segment of it
<>(y,): [ is bilaterally c-dense in itself and over each closed subinterval
each continuum which jumps any S/f) hits it

<> (y3): fis bilaterally c-dense in itself and each S f) is connected.

Using the methods of proof in Theorem 3 it is possible to prove that (y,)= fe
e A = (y3) = (y,). Moreover it is easily seen that (y,) <> (y;) when f is bounded.
The status of the missing link (y,) = (y,) remains unsolved.

If (y,) does imply that fe A it is necessary to have f bilaterally c-dense in itself
(in contrast to the situation in Theorem 4). For example, let f = 0 on the irrationals
and define f on the rationals so f is dense in the plane. Then f is bilaterally dense in
itself but not bilaterally c-dense in itself. It is not difficult to verify that each S,(f)
is connected when f is dense in the plane. Moreover, f ¢ A, because, as the proof
of fe U = (B,) shows, f €  implies that f is bilaterally c-dense in itself.

It seems to be necessary to stipulate that the jumping condition of (y;) holds only
for sufficiently small ¢ > 0. The Darboux function f constructed below does not satisfy
the jumping condition of (y,) for all ¢ > 0, but it seems to satisfy (y,). (The analogous
situation does not prevail in Theorem 2.) ‘

To construct such a function f, let C be the Cantor set in [O, 1]4 Decompose the
family of intervals contiguous to C into two disjoint classes &/ and # such that
C < U« and C < (J4. Define a continuum K by putting

K = (C x [1,8]) U {[(a. 8). (b, 8)] : (a, b) e #} L {[(a, 1), (b, 1)] : (a, b) € B} .
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Define the function f as follows: for (a, b) e o put f(a) = 0 = f(b) and define f so
that it takes on all numbers in (0, 7) on each subinterval of (a, b); for (a, b) € & put
f(a) = 9 = f(b) and define f so that it takes in all numbers in (2, 9) on each subinterval
of (a, b). On D = [0, 1] — U{[a, b] : (a, b) e o U B} define f so it takes in each
rational value in (1, 2) U (7, 8) in each relative subinterval of D N, times, otherwise
f=0on D.

Clearly fe 2 and also f ¢ A because the continuum K “when squeezed down”
to 7 and up to 2 separates f. For ¢ = 1, K jumps S;(f) yet intersects only countably
many segments of it and never contains an entire segment so that the jumping
statement of (y,) is not satisfied for ¢ = 1. We conjecture that condition (y,) is
satisfied for f whenever ¢ < 1.

The implication (yz) = fe A istrue for bounded functions if the following question
has an affirmative answer.

Question 1. Suppose f, f, and f5 are functions defined on the interval I such that
f1 U f, U fs is connected. Does there exist a connected function h < f; U f, U f3
with domain I?

To show that (y,) = fe & is true when I is bounded and the above question has
an affirmative answer, let ¢ > 0 and construct g as in Lemma 1 for . the class of
continua and for the strip S,,(f). Consider the set A = g U (f + 4&) U (f — 3e).
If A is connected, then there exists a connected function h = S,(f).

If A is not connected there exists, since A4 is bounded, a continuum M separating 4.
Since M n g = 0 we have by Lemma 1 that M intersects less than ¢ segments of
Sy2(f)- If M 1 S,5(f) = 0, we have by (y,) that M does not jump S,,(f) so every
point of M is either below or above S,;5(f), so that M cannot separate 4. Therefore,
some segment V of S, ,(f) intersects M at (x, y). Then the segment joining (x, y) to
(x, f(x) + 1¢) lies in M or the segment joining (x, y) to (x, f(x) — %¢) lies in M. If
this is not true then there exist disks D, and D, centred at points above (x, y) with the
same radius such that D, n M = @ = D, n M. Since f is bilaterally c-dense in itself
and M hits less than ¢ segments of S, ,(f), it follows that there are two segments V,
and V, both missing M and hitting D, and D, one on each side of V. Then D, u D, U
u V; UV, separates the continuum M, a contradiction. Since M is closed this means
that either (x, f(x) + %) or (x, f(x) — 4¢) belongs to M which contradicts the fact
that M n A = (. Hence, 4 must be connected, in which case S,(f) contains a member
of % so that fe %.

The implication (y;) = f € A& is true if the following question can be answered
affirmatively.

Question 2. Suppose f is bilaterally c-dense in itself and S/f) is connected for
all & and suppose N is a set which intersects less than ¢ segments of a given Sf)
yet contains no entire segment of S(f). Is S(f) — N connected?
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To show how an affirmative answer to Question 2 yields (y;) = f € &, construct
g € S(f) according to Lemma 1 so that g hits each continuum which hits S,(f) in
c-segments or which contains an entire segment of S,(f). To show g is connected it
suffices to show by Theorem 1 (C) that each continuum M which jumps g hits g.
If M hits ¢ segments of S,(f) then M n g =+ 0 by the construction of g. Also if M
contains a segment of S,(f), then M n g =+ 0. So assume that M hits less than ¢
segments and contains no segment. Then by hypothesis S,(f) — M is connected.

Therefore, S,(f) — M is contained in a component G of the complement of M.
Since G is polygonally connected there exists a polygonal arc P joining (a, g(a)) and
(b, g(b)) such that P n M = 0. Hence, M is above P or below P which contradicts
the assumption that M jumps g. Hence, the last case is impossible and g " M = 0.

4. RELATIONSHIPS AMONG THE CLASSES AND THEIR CLOSURES

The next result gives inclusion relationships between the four families €, A", %,
and 2 and their uniform closures. We use < to mean “< but not =".

Theorem S. The following relationships hold.
C=bcH cH<U=7,
A ceUcDcU=9,

and
A ED.

Proof. That % = @ will be shown below; € = % is obvious as well as all the < re-
lationships. We may construct functions fy, f5, ..., fs such that: f;(x) = sin (1/x),
x > 0and f;(0) = 0; f,(x) =% 0 yet f, takes on all non-zero numbers in each interval;
f> misses the line y = x and takes on all numbers in each subinterval; f, misses the
pseudo arc but hits each nonvertical arc; f is bilaterally c-dense in the plane and f
misses the continuum K of the example following the conjecture about . Finally,
let f be the function of the same example. Then, we have f, e X" — 4, f,e X — 2,
f3€D — U, foeU — A, fscWU — H,and fe X — A .

In order to show % = & we need only show that f e & implies that any arc M
which jumps any S,(f) over an interval I hits S,(f).

Suppose that M n S(f) = 0. InI x R let O, and Oy be two separated open sets
whose union is (I x R) — M. Let V(x) denote the open vertical segment of S,(f).
{(x, ) : |y = f(x)| < ¢}. Then each V(x) belongs entirely to O, or Op. Let 4 =
={x:V(x) = 0,4 and B = {x:V(x) = Op}. Then AUB =Iand An B = 0 and
A % 0 # B so that there exists a point x € 94 n 0B N I°.

Since f € 9 the bilateral cluster set C(f, x) of f at x considered as a subset of the
plane is a closed vertical segment, possibly infinite in length (see [1], [3]). Next we
show that C(f, x) n M # 0. If C(f, x) n M = 0, then since a limit of a sequence
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{V(x,)}:=in O, (or Op) belongs to 0O, U M (resp. 05 U M), it follows that C(f, x)
< 0, or Og. Assume C(f, x) < 0,. Since x € 8B there exists {x,}~; in B such that
x, = x and f(x,) > + oo (or —o0). Assume that f(x,) > + oo and f(x,) > n. Then
the line segment joining (x, n) € 0, with (x,, f(x,)) € Op intersects M for sufficiently
large n. Therefore, M is unbounded, a contradiction. Hence, C(f, x) NM %0

Now consider the non-empty compact set M n C(f, x) in the interval C(f, x).
By assumption we have (x, f(x)) € C(f, x) — M. Hence we can find an open interval U
in C(f, x) — M one of whose end points, say z, belongs to M. Since z € C(f, x) n M
there exist sequences {x,},2, and {y,},~, converging to x for which x, < x < y, and
{V(x,)}1 and {V(y,)};%, converge to the line segment L = {(x, y) : [y — 25| < ¢}
Since M is an arc and z can be assumed to not be an end point of M, there exists
a closed disk D of radius < ¢ centered at z such that M ~ D is a subarc of M. However,
V(x,) and V(y,) miss M and for large n they separate M n D (in the space D), if
M n D ¢ L. Hence, M n D < L. Since M has no end point on L (we can assume that
the end points of M project to give the end points of I) it follows that z is interior
to M n L, a contradiction. This finishes the proof that % = .

We turn now to a consideration of how ¢ is distributed as a subspace of the metric
space & furnished with the metric of uniform convergence. (Specifically, we define
the metric g as follows: for given functions f and g let o(f, g) = sup {|f(x) — g(x)| :
:x € R}. If o(f, g) = o0, put o(f, g) = 1 otherwise o(f, g) = o(f, 9)/(1 + o(f. g)).
We note the diameter of & is 1.)

We shall see, on the one hand, if f € 2 has even one point of continuity, then there
are spheres in ¥ — A arbitrarily close to f, while at the other extreme, if f is dense
in the plane then # is dense in every open sphere of f of radius not exceeding 1.

We begin with an example which is a simplified version of the second example
directly following the conjecture in Section 3.

Let C be the Cantor set in [0, 1] and decompose the family of intervals contiguous
to C into two disjoint classes ./ and & such that C < U</ and C = UZ%. We define
a continuum M as follows

M = (C x [1,9]) u (U x {9)) U (UZ x {1}).

Then we may easily construct a function f having the following properties: f is con-
tinuous on the complement of C, f(4) = [0, 8] for 4 € o, f(B) = [2, 10] for Be 4%,
f(x) = 0 (resp. 10) when x is an end point of a A € &/ (resp. B € %), and finally,
f(x) = 0 whenever x is a non-end point of C.

It is easy to verify that f is a Darboux function which is separated by M (or jumped
by M and M A f = 0). In fact, any function g = S,(f) is separated by M. We note
also that f is in the second class of Baire (equivalently Borel) and, in fact, differs
from a function in the first class of Baire on only a denumerable set. This is in contrast
with the fact that any Darboux function in the first class of Baire is connected and
thus in 4.
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Employing this example we may prove

Theorem 6. Let g € Z have a point of continuity. Then there are spheres in &
arbitrarily close to g and containing no members of A".

Proof. Let g be continuous at x, and let ¢ > 0 where ¢ < 1. Choose 5 > 0 such
that |g(x) — g(xo)| < & whenever |x — xo| < 8. Let M, be a scaled-down version of
the continuum M above, that is, having “domain” and “‘range” as the intervals
[xo — 8, xo + 8] and [g(x) — & g(x) + €] instead of R and [1, 9]. Let f, be defined
relative to M, as f was defined relative to M and extend the domain of f, to [0, 1]
in such a way that f, € 2 and |fo(x) — g(x)| < &for all x. Then, it is clear that there
is an entire sphere in 9 centered at f, which misses %", which proves the theorem.

Theorem 7. If f € D is dense in the plane, then A is dense in each open sphere of
radius <1.

Proof. First we show that any function g € & dense in the plane belongs to £ . Ac-
cording to the proven parts of the conjecture of Section 3 it suffices to verify condition
(71)- Suppose M is a continuum which jumps S,(g) over an interval I. Let M, be the
set obtained by replacing each point in M by an open vertical segment of height 2¢
centred at the point. It follows readily from the Baire Category Theorem that M,
contains a rectangle B (with sides parallel to the axes) of height . Since g is dense in
the plane and g € Z, it follows that card (g N B) = ¢ and thus card (g n M,) = ¢,
which is obviously equivalent to card (S,(¢9) N M) = ¢, so that g satisfies (y,).

Now if f, € Z such that f, — f is bounded (i.e., ¢(fo, f) < 1 in the metric ¢ of %)
then f, is also dense in the plane, so f, € & by the argument above. In other words,
A is dense in any sphere of radius not exceeding 1 centered at f.

5. APPROXIMATIONS AND REPRESENTATIONS BY FUNCTIONS
IN THE CLASSES

Next we present some miscellaneous results illustrating the common properties
shared by Darboux and connected functions.

We begin by characterizing the pointwise limits of sequences of connected functions.
It is well known that any function is a pointwise limit of a sequence of Darboux
functions, each of which may be taken to be Lebesgue measurable (resp. of Borel
class «) when the original function is Lebesgue measurable (resp. of Borel class o + 1).
(See [1] and [2].) Part of this characterization carries through for 2 and hence %
as follows: '

Theorem 8. Each function is a pointwise limit of a sequence of connected func-

tions. Moreover, the sequential members may be taken to be measurable if the
original function is measurable.
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Proof. By a result in [3] we may express the domain interval I as |J 4, where
n=0
A, " A, = 0 when n + mand for n = 1 each 4, is a 1*' Category, null F, set which
is c-dense in I and A, is a residual G; of full measure. Let .# be the collection of all
planar continua having non-degenerate projection in I. Let f be the given function.
On each A4, define a function f,, which intersects each member of .# and put

gnzfnUfI(I_An)'

Then each g, is connected and for each x we have g,(x) = f(x) except possibly for
one n so that lim g, = f. Since

[0, <] =([f <] (I = 4) v ([fu <] 0 4,)

and A, has measure 0, g, is measurable whenever f is measurable.

We have been unable to extend Theorem 6 to assert that the functions g, may be
taken to be Borel when f is Borel. Since the “lower envelope” of members of .# are
Borel 1 functions, this assertion would follow from an affirmative answer to the
following open question.

Question 3. Let A be a F, set which is c-dense in R. Does there exist a Borel
function on R which intersects over A each Borel function of class one?

It is also well known that each function is a sum of two Darboux functions where
the summand functions can be taken to be measurable (resp. of Borel class o)
if the original function is measurable (resp. of Borel class ) (see [ 1] and [2]). We can
strengthen this result for the non-Borel case to the following:

Theorem 9. Each function is a sum of two connected functions. Moreover, the
summand functions may be taken to be measurable if the original function is
measurable.

Proof. First we may find disjoint c-dense measurable sets A, B and C such that
I =AuUBuUC and 4 and B are null sets. Let f be the given function. Define h
and g on A4 and B respectively such that h and g intersect each M e . (as defined in
the proof of Theorem 8). Now define

fi=hu(f-9)|BuEf)|C
and

L=(-n]Aavgu(f)|cC.

Then f; and f, are connected functions such that f = f, + f,. Since 4 and B are
null sets f; and f, are clearly measurable whenever f is measurable.
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If the answer to Question 3 is affirmative, then h and g can be taken to be Borel
functions so that f, and f, are Borel whenever f is Borel.

It is also well known that each function is equal to a Darboux function except
on a F, set of 1°* Category and measure 0. (See [2].) This may be strengthened to
connected functions as follows:

Theorem 10. Each function f is equal to a connected function h except on a 1%
Category null, F set. If f is measurable, so is h.

Proof. Let I = |J 4, be the decomposition cited in the proof of Theorem 8. Pick g
n=0

on A, so that g intersects each M € .#. Then h = f|(I — A;) U g is connected

and f = h except on the 1°* Category, null F, set A,. Obviously h is measurable

whenever f is.

Again an affirmative answer to Question 3 would yield an extension of Theorem 10
to cover the Borel case.

In [1] a class of functions & is called a maximal additive family of functions
for # if & is the biggest family of functions ¥~ such that fe ¥ and g € # imply
that f + g € #.1In[1], we proved that the class of constant functions is the maximally
additive class for the Darboux functions. Clearly the maximally additive class of ¥
is % itself. The analogoue for " and % is the following

Theorem 11. The class of continuous functions is the maximally additive class
of functions for both the class of connected functions and the class of weakly con-
nected functions.

Proof. We mustshow (1) 4 + # < A and %6 + % < U;and (2)ifg + # < &
org + % < U, thenge%.1fge %, fe A (or %) and M is a continuum (resp. arc)
jumping f + g, then M — g is a continuum (resp. arc) which jumps f and hence f
hits M — g or equivalently f + g hits M. Thus (1) is proved.

Let us now prove (2) for " (the proof for % is similar). Suppose g + A~ = A'.
Theng = g + 0 = & < 2 so that g is a Darboux function so that the left and right
cluster sets at each point are overlapping closed intervals. Suppose that g is discon-
tinuous at say 0, and 0 is interior to the domain interval I (the proof for 0 an end
point of I is similar). It follows that there exists a finite left cluster value, say 0, and
a different right cluster value, say 1. Now define

) = —g(x)+ 1, xg‘O
/) {—g(x), x<0.

Thenf' (— o0, 0] and f[ [0, 4+ o0) are both connected and 0 is common to the right
and left cluster sets of f at 0. Therefore, f € #". However, (f + g)(x) = 1if x > 0
and = 0if x < Osothat f + g ¢ A, a contradiction.
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