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Introduction. Let G be an arbitrary open set in Я"", the Euclidean m-space of dimen­
sion m > 2, and suppose that its boundary В is compact and non-void. Let ^ denote 
the space of all finite signed Borel measures with support in ß ; 93 will be treated as 
a Banach space with the usual norm ||/i]j equal to the total variation of fi on B. Let 
us fix a non-negative element Я e ©. With each ju e 93 we associate its potential 

Uß{x) = f p{x - y) dß{y) 

corresponding to the Newtonian kernel p{z) = lz|^"'"/(m - 2) as well as the class ^^ 
of those infinitely differentiable functions cp with compact support in R^ for which 
the integral 

(1) JM={ q>{x)p{x-y)dX{x)dß{y) 
J ß X ß 

converges. The symbol ^ц stands for the functional over ^^ defined by 

(2) <Ф,^А^>=/Дф) + grad ф(х) . grad Uß{x) dx . 

If ß is a smooth hyper surf ace with the exterior normal n and Я is absolutely con­
tinuous with respect to the area measure H on ß, then, under suitable conditions con­
cerning Ufi, (^(p, ^11} transforms into 

]B \Sn àH ) 

which shows that £Г^ is a natural weak characterization of 

1 t/u . 
dn йН 
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If я = о, ^ /z reduces to the generalized normal derivative of UJÂ as investigated 
in [12]. In the case of G being a complementary domain of a simple closed surface 
in R^ submitted to some further restrictions, the third boundary value problem (some­
times called the Robin problem) with a weak characterization of boundary values 
was treated in [21]. Making no a priori restrictions on G we shall give a necessary and 
sufficient geometrical condition (connected with the shape of G and the distribution 
of X over B) in order that, for each ju G Ф, ^fi be representable by means of a unique 
element of ©. Let us briefly recall the necessary notation. As in [12] we call x a hit 
of a half-line S cz R^ on G provided x e S and each open ball Q^[x) with center at x 
and radius r > 0 meets both S n G and S — G in a set of positive linear measure. 
Given y e R"", в e Г = {z e K'"; \z\ = l} , consider the total number п^{в, у) (O ^ 
^ Поо(о, у) й oo) of all the hits of {y + Q9; Q > 0} on G. For fixed j , n^{ö, у) is 
a Baire function of the variable в e Г and we may put 

^oo(v) = п^{0.у)6Н^_,{в), 

where H^_i stands for the Hausdorif (m — l)-measure. 
Using some results of [12] we prove in Section 5 the following theorem (which was 

announced without proof in [16]): 

Theorem. The following conditions (i) and (ii) are equivalent to each other: 

(i) sup [v^{y) + Jo- Q'-- ^МУ)] d^] < ^; 
ysB 

(ii) For each fie^, there is a unique v e © such that <(p, v> = <ç), ^fi} for all 

(Note that the integral occurring in (i) is just the value of U?. at y.) 

Suppose now that (i) holds. In view of the above theorem, ^fi can be identified 
with a unique element of ©. The operator ^ : ß -^ ^fi is bounded on $B. 

Let B' denote the set of those y e В at which the m-dimensional density d{y) of G 
equals ^. Then B' is a Borel set with Я^_ ^(В') < oo and one may consider the set 5Вд 
of all the elements of Ф that are absolutely continuous with respect to the restriction H 
ofH^_, to B\ 

In connection with solving the operator equation ^ß = v (connected in a natural 
way with the third boundary value problem) over 23 it is of interest to clear up the 
relationship between ©я and ^ ( Ф ^ ) . The following proposition is proved in Section 
12 ( ^ _ |̂ (23я) denotes the inverse image of ©^)' 

Proposition. If Àe ^ „ , then 
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and the following conditions are equivalent: 

(i) ^ _ , ( » я ) ^ 9 3 н ; 

(ii) For each у e В there is d{y) ф 0. 

The results of this paper will be used in [17], [18]. 

1. Notation. Throughout this paper, m > 2 will be a fixed integer. For M a R"" 
we shall denote by fr M, cl M and diam M the boundary of M, the closure of M and 
the diameter of M, respectively. As in the introduction, G will be a fixed open subset 
of jR'" such that В = îr G is compact and non-void and ^ will stand for the class of 
all infinitely differentiable functions with compact support in R"^. The symbols p, Ф 
and Uß (with // e 33) will have the meaning described in the introduction. In what 
follows, л is a fixed non-negative element of Ф and for j.i e ^ , the functiohals /̂ ,̂ ^jn 
over ^^ are defined by (l), (2). The functional .Tji is said to be representable by an 
element v G 33 over ^^ if 

(3) <<̂ , .Tfi} = (p dv 

holds for each cp e Qi^\ every such v will be called a representing element cor­
responding to ^Tß. For each cp e Qi whose support does not meet В is, of course, 
<p e ^^, 11X9) — Ö ^^^^ 0"^ easily verifies that also 

grad (p(x). grad Uj.i{x) dx = 0 
I G 

(compare [12], l . l) . We see that the support of any v satisfying (З) is contained in В 
or, which is the same, the representing element corresponding to ^f.i (with /x e 23) 
belongs to 93. 

For each positive integer к and M с Я'", Hj^M will denote the outer Hausdorflf 
/c-dimensional measure of M defined by 

(4) HkM = 2 ~ 4 iim inf X(diam M„f , 
£-»•0+ n 

where ocj^ is the volume of the unit /c-ball and the infimum in (4) is taken over all 
sequences {M„},f=i of sets M„ with \JM„ = M such that diam M„ ^ г for all n. 

n 

H^ thus coincides with the Lebesgue measure in R"^. 
For X e R"^, г > 0, we shall write 

Q,{x) = {zER^;\z-x\<r], Г ^ fr Q,{0), A = Н^_,{г) . 

The unit point mass ( = Dirac measure) concentrated at у will be denoted by ^3,. 
The symbol 

M -~ N 

will stand for the symmetric diff'erence (M - iV) ^ ( ^ " ^ ) ^^ ^^^ ^̂ ^̂  M,N a R"". 
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2. Some background material. Let M с К'" be a Borel set with a compact boundary 
and let 5 с i '̂" be a half-line. As in [12] (see definition 1.5), z G 5 is termed a hit 
of 5 on M provided 

Hi{Q,{z) n S n M) > 0 and H,{üXz) n (S - M)) > О 

for each r > 0. Let в e Г, у e R''\ The total number (possibly zero or infinite) of all 
hits of 

{z e R""; z = у + gO, g > 0} 

on M will be denoted by 

(5) гф,у). 

For fixed у and M, (5) appears to be a Baire function of the variable в e Г (see [12], 
proposition 1.6) and hence the definition 

(6) v^Xy) 
Г 

is justified. 
Let us recall that a unit vector Ö G Г is called the exterior normal of M at у e R"" 

in the sense of H. Fédérer provided the set 

M •-- {xe R^; (x - y) . в < 0} 

has m-dimensional density 0 at y. In what follows we shall put n^{y) = в if в e Г 
is the exterior normal of M at y and we denote by n^{y) the zero vector if there is no 
exterior normal 9 e Г ât y m the above mentioned sense. 

If (6) happens to be finite, then M has a well defined m-density 

d^{y) = lim {H„[Q,{y) n М]/Я J ß , ( y ) ] ) 

at у (see the proof of lemma 2.7 in [12]). In view of the inequality 

\H^[Q,{y} пМ]~ H^lüXz) п М ] | S H^[QXy) - игШ , 

Hj„[^^r{y) (^ M] is a continuous function of y. In particular, d^^ is a bounded Baire 
function provided (6) is finite for each y G В. If there is no danger of ambiguity, we 
shall write simply d{y), v^{y), njd, y), n{y) instead of ^^(y), vl{y), n%Q, y\ n%}). 

Fix now у G jR"". As shown in [12] (see propositions 1.6, 2.6 and lemma 2.2 where 
(; = jR"' — G; compare also lemma 3.2), 

( 7 ) î^oo(>') < 00 
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is a necessary and sufficient condition for the existence of a v̂  e Ж such that, for each 

(8) A d{)) cp{y) + <(p, Vj,> = grad (p{x). grad Uôy{x) âx . 

If (7) holds, then (8) determines v̂  uniquely and v^(y) equals the total variation of vy 

By Fubini's theorem, 

(9) {A d{y) (p{y) + <^, v ,̂)) âfi{y) = grad (p{x) . grad Ufi{x) âx 
J в J G 

for (peS^ and /г e © (see (1.2) in [12]). 

In order to prove the theorem stated in the introduction it is useful to establish 
some estimates. The first one expresses actually nothing else than the fact that the 
total variation of the spatial angle under which the oriented sphere Г is visible 
from f] does not exceed A. 

3. Lemma. The inequality 

(10) 

holds for every ц e R" 

Proof. By lemma 2.12 in [12] it is easily seen that the integral in (10) equals V%{Y]) 
where we put Q — ̂ ^(O). 

Consider at first rieQ. Since n%{9, ц) = 1 for every в e Г, (6) yields in this case 
v%ri) = A. 

It remains only to consider r] ф Q. Denoting Г' = {в e Г; rj , 0 < 0] WQ see that 
n^(e, y) = 0 for вф r while for веГ obviously п^{в, rj) g 2. Observing that 
H^_i{r') — iA we obtain again from (6) the desired inequality v^(ri) ^ A; this com­
pletes the proof. 

4. Lemma. Let h be a continuously differentiable function of the variable t ^ 0 
such that h vanishes near 0, /z' ^ 0 and 

lim h{t) = 1 . 
t~*co 

Fix z eR^ and put 

Then, for each у e R^, >-

I I grad (Ph{x) . grad lJèy{x)\ dx ^ ^. . 
J ( 
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Proof. Put 

/ = |grad (p,lx) , grad Udy{x)\ dx 

Simple calculation shows that 

' X - z ^ - 3̂  /==£mx-z | ) . 
\x — z\ \x — y\ 

dx 

Letting, for each r > 0, 

one obtains easily that 

/ й [ h'{r)/{r)dr. 

By (10), / ( r ) ^ Л foi each г > 0 so that /SA. 

The proof of the following theorem makes essential use of a result of [12]. 

5. Theorem. The condition 

(11) sup[i;,X.v) + Ш(у)] < сю 
уеВ 

is necessary and sufficient for each ^\i with /г G Ф to be representable by a unique 
element of 33 over Q)^. 

Proof. Suppose first that for each ii e ©, ^\x coincides with a uniquely determined 
element of © over ^^. Then Ш < oo everywhere. Indeed, lJX{z) = oo for some 
z eR^ would imply z EB and (p{z) = 0 for all (p e QJ^^, which, in view of the equality 

<Ф, erb,-} = <ф, ^ö, + kô,y , keR\ 

would contradict the uniqueness of the representing element corresponding to ^3^. 

We are going to show that 

(12) sup UÀ{y) < 00 . 
уеВ 

In the opposite case there would be points yj e В with lim У; = ^ ^ ^ ~" {з^ь 3̂2» • • •} 
suchthat -̂ '""̂  

t/A(y,) > 2̂  

317 



for all j . Put 

i" = E 2-^'S^ 
J - 1 

yj 

and fix an arbitrary positive integer n. Further denote by Я̂  the restriction of X to 
R'" — Qr(z), Choosing г > 0 small enough one may suppose that 

For each ^ > 0 denote by h^ an infinitely diff'erentiable non-decreasing function on 
<0, oo) such that h^ = 0 on <0, i^> and h^ = 1 on <^, oo). Fix R > r with 

and define 

В с: Q^{z) 

Cp{x) = K{\X - Z\) ~ /Z2K(|X - z\) . 

Since UÀ is finite and (p vanishes in some neighborhood of z, we have cp e Q)^. Noting 
that ip — \ oxvB — Qr{z) we obtain 

On the other hand, lemma 4 shows that, for all j , 

a J = |grad (p{x), grad Udyi^x)\ dx й 2Ä 

hence 

so that 

I, grad (p{x) . grad Uß{x) éx 

<r/), ^ / (> = Ij^cp) + grad (p(x) . grad Uß{x) dx > n — 2A , 

We conclude that there is no element of © representing ^pi, because n was arbitrary 
and \(p\ ^ 1. Thus (12) is proved. 

Under the condition (12), ^^ = ^ for each // e © and the Riesz representation 
theorem may by applied to assert that I^ is representable by an element of ©. Con­
sequently, the distribution NUfi defined by 

(cp, iV(7/z> = (cp, ^/г> - I^cp) , (pe9, 

is representable by an element of ^ if and only if the same is true of ^fi. In order to 
make the proof of our theorem complete it remains to refer to theorem 1.13 in [12] 
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stating that NUß is representable by an element of Ф for each /.ьеЪ if and only if 

(13) sup V^{y) < 00 . 
уеВ 

The proof is complete. 

6. Remark. In [12] the distribution NUß was called the generalized normal deriv­
ative of the potential Uß. In the case of G being a complementary domain of a surface 
in R^ such functionals — termed boundary flows ~ were treated in [2]. In [ l ] these 
boundary flows have been applied to the boundary value problem for simply con­
nected domains G ci JR'" satisfying the Carathéodory condition fr G = fr (jR'" — cl G). 
The analoguous concept of "Randström^ung" may be found in the classical treatment 
of J. PLEMELJ (see [19]). By means of that concept, boundary value problems for 
plane domains bounded by curves of bounded rotation were studied by J. RADON 
in [20]. 

The related weak characterization of boundary values, the so called flows of heat, 
has recently been considered in [13] in connection with the Fourier problem of the 
heat equation. Diverse weak characterizations of boundary values and further 
references may also be found in [22], [14], [3], [6]. 

The classical methods of potential theory (compare e.g. [11], [10], [7]) usually 
used for solving the third boundary value problem in the case when appropriate 
smoothness conditions on the boundary and the boundary condition are required 
are no longer applicable under the general condition ( l l ) . Using the concept of the 
boundary flow, V. D. SAPOZNIKOVA has investigated the third boundary value problem 
in [21] for a special kind of domains in R^ by means of potentials having the same 
interior and exterior limits. An unusual formulation of the third boundary value 
problem on a Green space is given in [14], [6]. 

7. Notation. If /i e ©, we shall often write </, ß) instead of 

\ fdß 
J в 

provided the last integral is meaningful. J* will stand for the Banach space of all 
bounded Baire functions on В equipped with the supremum norm ||...|| . ^ is the 
subspace of all continuous functions in ^ . The dual space .^* of J* is formed by all 
additive set functions of bounded variation defined on the system of all Borel subsets 
of Б (see [4]). Of course, Ф is a closed subspace of J**. 

If/i e 33 and g is SL function which is integrable (/x), then gß e Ъ is defined by 

In what follows we agree to impose (13) and (l2) on G and Я, respectively. 
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In particular, the m-dimensional density ^(j;) of G at y is well defined and d e ^. 
According to theorem 5, for each ß e 23, there is only one v e 93 representing ^ц on ^ . 
For each // e ^ , ^ß will be identified with the corresponding element of 93, so that ^ 
becomes a linear operator on Ъ. 

Given / G ^ , we define 

(14) Wf{y)=^Acl{y)f{y) + if,v,y, уеВ. 

Clearly, 
\Wf{y)\ è{A+ | |vj) l/ll SlA+ sup v^{y)] l/ll . 

уеВ 

I f / i s continuous on B, then so is 1^(see lemma 3.4 in [12]). Hence it follows easily 
that Wf e J* whenever / e ^. Consequently, 

is a bounded operator acting on M with 

(15) ||Ж|| g Л + supi ;^};) , 

(16) Ж^ с: ^ . 

It should be noted here that the validity of (13) does not guarantee that J5 is a smooth 
or piecewise smooth hypersurface. On the other hand, there are open sets with 
a piecewise smooth boundary for which the validity of (13) is violated (see [15]). 
In general, of course, (12) does not imply continuity of the potential JJX. 

The following proposition will be also useful for further investigations of properties 
of the operator ^ , 

8. Proposition. Let 

(17) yfb^-UfKy)^ y^B, fe^. 

Then Vf e ^ whenever f e iM and 
V:fi-^Vf 

is a bounded operator on ^ with 

IIКII = 8 и р Ш ( з ; ) . 
уеВ 

If Т* /5 the dual operator (acting on J**) ofT= W + V, then ^ coincides with the 
restriction of T* to ^B a i^*. 

Proof. \ï cp e ^ and /x G S , then by Fubini's theorem 
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In view of (9) and (14) we have 

<Жр, /г> = grad (p{x) . grad Uß{x) dx , 
J G 

hence 

(18) <T(p, ^> = i(p, ^iiy . 

The rest is easy. It is sufficient to notice that the class of all cp e ^ satisfying (18) 
contains the limit of each uniformly bounded pointwise convergent sequence of its 
elements. Consequently, (18) holds for each cpe ^. 

9. Remark. In particular, the above proposition shows that the operator ^ is 
bounded on 93. The operators defined in this paper are more closely investigated in 
[17] and [18]. 

The formula (20) of the following simple lemma enables us to give more geometrical 
form to the condition (U). 

10. Lemma. Let Xr,y stand for the characteristic function of Qr{y)- If У e R"^, 
r > 0 and ÀQ is a non-negative element o / S , then 

(19) Uxr,yФ) - , ^'^^if^L + fV-'" Ao[ßM d,. 
(m - 2) r^ ^ Jo 

In particular, the equality 
(20) Ш{у)=\ e'-'"A[QXy)'\de 

holds for each у e R^. 

Proof. Since 

uxr,y ЧУ) = ("̂  - 2)-^ f |x - jf-'^ dio(x) = 

/*oo 

= (m - 2 ) - 4 Яо{х e Q,{y); \x - y\'-- > t} dt, 

we get by a simple calculation 
Лоо 

U7.r,y ЯоЫ = e''"'^o{x e Qr{y)l \x - у\ < Q} dg . 

Now (19) follows immediately. 
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Putting Яо = A in (19) and assuming r -^ oo we obtain (20), which completes the 
proof. 

11. Notation. Let us recall that the set Ê of all у with n(y) Ф 0 is called the reduced 
boundary of G. From proposition 2.10 in [12] and from the results of E. DE GIORGI 
and H. FEDERER (see [5], [9] and 2.11 in [12]) we know that 

H^_,{B)< cx). 

As shown in theorem 4.5 in [8], Б is a Borel subset of Б. In connection with the defini­
tion of the set B' given in the introduction it should be mentioned here that 

F „ _ j ( B ' - B ) = 0 
(see lemma 3.7 in [12]). 

We denote by H the restriction of //,„_i to Ê. It follows from the results of [12] 
(see lemma 2.12) that, for each y e B, Vy is absolutely continuous (Я). 

The symbol 33^ will stand for the set of all elements of © which are absolutely 
continuous (я). In particular, as mentioned above, v̂  G ^ ^ for each y e B.Jf jne ©^, 
the Radon-Nikodym theorem may be applied to assert the existence of a function h 
integrable (Я) over В such that 

dji = hdH , 
Then we have 

4} \h\dn 

and we conclude that ©я is isometrically isomorphic to the Banach space L^(B, H). 
In particular, ©^ is a closed subspace of Ф. 

There is a question of the relationship between ©^ and ^(33^)- The following 
proposition (stated in the introduction) answers this question under the natural 
assumption À e ©^- It should be noted here that to give a v G ©^ is actually the same 
as to prescribe a density with respect to an "area measure" on B. 

12. Proposition. If Àe ЗЗд, then 

(21) ^(Фя) ^ ^H 

and the following conditions are equivalent to each other: 

(i) ^ _ , ( » я ) с 9 3 н ; 

(ii) For each у e В there is d{y) ф 0. 

Proof. For each J e Б we put 

с17Гз,(х) = p{x - y) dÀ{x) . 
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Since X e 93я, it is Пу e Фя for each у еВ, For any Borel set M с J5 the characteristic 
function of M is denoted by Xw 

Suppose that M is an arbitrary Borel subset of В with Я(М) = 0. Recalling that 
v̂  G ©я for each 3; 6 Б we see that 

(22) Ttu{y) = A d{y) iu{y) • 

Consequently, 

for each jn e ©я ^^^ we conclude that ^/л e ©Я' (^0 ^̂  verified. 

Suppose now (ii) and let ^fi e Ъд for a /г e *B. We are going to show that jn e ©я-
Let Q stand for a Borel subset of В with H{Q) = 0 and put f = -/Q . d. Choosing 
a Borel set P c= Б we may apply (22) with M = P n ß to obtain 

0 = <ZM. ^Ai> = <TXM^ î > = ^ < ^ • XM^ f^y = MdXQXp^ M> = A(f. XP, А >̂ • 

Consequently, / = 0 almost everywhere (/i) and by the hypothesis (ii), Хо{у) == 0 
holds for jLZ-almost all у e B. Hence in{Q) = 0 and we have ft e ЗЗя-

As to the converse, suppose <i(jo) = 0 for a jo G Б. Going back to (8), we see that 
for each cp eQJ, 

hence 

^K = bo + ^yo e ®Я • 

On the other hand, ôy^ ф ^ я -

The proof is complete. 
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