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Czechoslovak Mathematical Journal, 22 (97) 1972, Praha 

BOUNDED FUNCTIONS WITH POSITIVE REAL PART 

R. J. LIBERA^) and A. E. LIVINGSTON"^), Newark 

(Received May 16, 1970) 

1. Introductory Remarks. Let 0^ denote the class of functions F{z) which are 
regular in the open unit disk centered at the origin, symbolized by A, and satisfying 
the conditions 

(1.1) P(0) = 1 and R e { P ( z ) } > 0 for z in A . 

The class 0^ has interesting properties and many useful applications, particularly in 
the study of special classes of univalent functions; it has, as a consequence, experienced 
a long and detailed history. 

Recently, several authors have examined some properties of functions F{z) in 0 
satisfying the additional requirement that 

(L2) \?{z) - M\<M , zeh, 

for a fixed M, M > ^; the resulting subclass of ^ has been written 0^. 

KACZMARSKI [6] obtained sharp coefficient estimates for meromorphic and uni­
valent functions 

(1.3) F{z) = - + a^z + a2Z^ + . . . , z e A 

2 

which for a fixed a, 0 ^ a < 1, satisfy the condition 

-zF{z) (1.4) ' 
(a - 1) L m 

+ a 

All F(Z) meeting these conditions form a subclass of the starlike functions of order a 
introduced by POMMERENKE [10]. Kaczmarski also gave the coefficient bounds for F{z) 
which are meromorphically spirallike in A, [13], and meet a condition similar to (1.4). 

^) Supported in part by N.S.F. Grant No. 11726, Renewal of GP 7439. 
^) Supported in part by the University of Delaware Research Foundation. 
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GoEL [3] gave the coefficient estimates and some distortion theorems for an arbi­
trary P(z) in 0^j^, M ^ 1, and applied his results to subclasses of close-to-convex 
functions introduced by LIBERA [7]. 

SINGH [12] obtained coefficient and distortion bounds for regular starlike functions 

(L5) f{z) = z + a,z' + .... Z G A , 

such that z f'{z)lf{z) e ^^. JANOWSKI [4] established radii of starlikeness for functions 
of the form (1.5) which are defined by operations on regular starlike functions and 
members of ^д^, M ^ 1 ; Janowski's functions may not be univalent throughout the 
disk Л. More recently he has announced additional results [6]. 

If P(z) is in .^i^i, then P[A], the image of Л under P(z), is contained entirely in the 
disk of radius M centered at M; and thé converse holds too. In this paper we study 
functions P{z) in i^ for which Р[Л] is contained in an arbitrary (but fixed) disk con­
tained in the right half-plane and which contains the point 1 ; these results are then 
used to generalize and extend some of the work mentioned above. 

2. The Class /^ [a, t, Q']. A disk of radius ^, ^ > 0, lying in the right half-plane is 
tangent to a line w — a + iv, a ^ 0, г; real, at a point a -\- it and its center is at 
{Q + oi) + it. If it is required that 1 be in this disk, then |l — (^ + a + it)\ < Q, or 

(2.1) D - D(c(, t, Q) = 2Q{\ - a) + a(2 - a) - (l + /^) > 0 . 

Except for a rotation of A the linear transformation mapping A onto the above disk 
with 0 corresponding to 1 is 

(2.2) Ŵ = f-t---
Bz + Q 

with 

(2.3) A = /i(a, r, Q) = ^(1 - 2a) + a(l - a) - t^ + it and 

В = Б(а, f, ^) - 1 - ^ - a + it. 
it is useful to observe that the discriminant of L(z) is Q{A ~ B) — QD. 

Definition 1. P{z) is in ^ [ a , f, ^ ] , 0 ^ a < 1, t real, Q > \ and Z)(a, f, ^) > 0 if 
and only if there is a function <jo{z) regular in A such that 

(2.4) P{z) = ? - ± - ^ й and \œ{z)\ g \z\ for z in A, 
Q + В 0){z) 

and A and В are defined by (2.3). -• 
As a consequence of the principle of subordination [9, p. 226] we conclude that 

every P(z) in .^[a, t, Q] is subordinate to L{z), therefore P[A] is contained in the open 
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disk of radius g and centered at (g + a 4- it). The class ^д^, mentioned above, is the 
same as ^ [ 0 , 0, M] . For every admissible g and t, ^ [ a , t, ̂ ] is a subclass of the func­
tions of "positive real part of order a" which are defined implicitly in [10] and [11] 
and explicitly in [8]. 

The subsequent parts of this section deal with the coefficient and distortion bounds 
on functions in ^ [ a , t, g~\; the coefficient bounds which follow (and those given in 
later theorems) are derived by using the Method of CLUNIE [2]. 

00 

Theorem 1. / / P{z) = I + J] Pu^^ is in ̂ [oc, /, g], then 

(2.5) Ы ^ 2 ( 1 - а ) + « ( ^ - ° ' ) - ^ ^ ^ + ' ) , n = l , 2 , . . . ; 

Q 

these results are sharp for all admissible a, t and g. 

Proof. The representation for P{z) in (2.4) is equivalent to 

(2.6) [A- В P(z)] co(z) = g\P{z) - 1] , 

or 
00 00 

(2.7) [^ - ß I Ри^Ц c,{z) = Q X p,z^ , Po = 1 • 

This can be rewritten 
n— I n 00 

(2.8) [{A-B)-BY^P,Z'']CO{Z) = QJ:P,Z'^+ ^ q,z\ 
k=l k ^ i k==n+l 

the last term also being absolutely and uniformly convergent in compacta on Л. 
Writing z = re'^, performing the indicated integration and making use of the bound 
\oj{z)\ ^ |z| < 1 for z in Л gives 

(2.9) \Л - B\' + \Bfl\p,\'r'^^ = ^ "'^ 
k=l In 

>1 

(Л - Б) + Б X Pkr^e'^^Y do ^ 

^ ~ f ' 1{ (^ - ^) + ^VP/C ' - ' ^ ' " ' ' } co{re'')Y dS ^ 
2KJQ k=i 

f* 2n n 00 n CO 

J o fc=l /c = « + l fc=l k = n+l 

The last term is non-negative and r < 1, therefore 

(2.10) H-ß|^ + |ßr"lN^^e^Zhh 
fc=l fc=l 

or 

(2.11) e'\Pn\' й\А- ВР + (|ßP - в')Ш\' . 
/ с = 1 
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A brief calculation shows that |JB|̂  — Q^ = — i)(a, t, Q), which is negative, (2.1), 
hence 

(2.12) W S H J = ' * ^ ) , 
Q Q 

and this is equivalent to (2.5). If co(z) = z", then 

(2.13) P ( z ) = l + ^feA?)z" + . . . , 
Q 

which makes (2.5) sharp. 
If P(z) 6 ̂ [a, t, Q], then 

P 
(2.14) e(z) = -^ 

}^]-n^m 
= ,^nc) ( i - | c l%^. . . 

Re P(C) Re P(C) 

is in ^ for each С in A. Furthermore ô[A] is contained in the disk of radius e/Re P(C) 
centered at [(a + Q) + i{t - Im P(C))]/Re P(C), consequently Q{z) is in 

[КеР(С)' ReP(0 ' ReP(öJ 

and in this case (2.12) reads 

^ -* ReP(C)^ " ^ - e UeP(C) ReP(C) Re ^ 0 7 

Summarizing and rewriting these results we have the following 

Corollary 1. / / P(z) G ^[a, t, Q] and z e Л, then 

(2.16) |F(z)| (1 - H^) ^ 2(Re P(z) - a) - (^e P(z) - a)- + (. - Im P(z))- _ 
Q 

Theorem 2. / / P(z) e i^[a, f, e], then 

1 - r^) ê  + r^ie + a) D + ir^tD\ - rgD 
(2.17) 

(1 - r^) Q^ + r^D 

< IPC^XI < 1(1 - r^) ĝ  + r^JQ + g) D + <>̂ Ш| + rgP 
- ' ^ '̂ - (1 - r^) e^ + r^D 
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and 

(1 - к) Q^ + r'^D 

< I r[r(l - a ) - ^ ( l + r ) ] D 
(1 - r^)^^ + r^i) ' 

/o r |z| ^ Г. These bounds are sharp for each r,0 < r < 1, and all admissible a, t 
and Q. 

Proof, (in the theorem and below D = £)(а, t, g).) A calculation shows that L{z), 
(2.2), maps the disk {z : |z| g г} onto the disk with its center at 

(2.19) . 0 = ^ - ^ ^ ^ ^ - ^ ^ 

and radius 

(2-20) Я = //И-Д, . 
к - HI ''I 

From (2.1) and (2.3) we conclude that 

(2.21) 1̂ ^ - |Бр r'l = (1 - r^) ^^ + r^D > 0 , 

therefore 

(2.22) Wo = - \B\^ r^ (1 - r^) ^^ + r^D 
and 

(2.23) R = - ^ . 
^ ^ (1 - r^) Q' + r^Z) 

If P(z) is in ^ [ a , ,̂ ^ ] , it follows by subordination that 

(2.24) |wo| - R^ \P{z)\ ^ |wol + R 

and 

(2.25) Re {wo} - Я ^ Re {P(z)} ^ Re {WQ} + P , 

for |z| ^ r; and these are equivalent to (2.17) and (2.18) respectively. 
For any choice of values of a, t and Q members of ^ [ a , t, ^] are necessarily bounded 

in Л, consequently \J^[(x, t, ^ ] , the union being taken over all a, t and Q, is a proper 
subset of ^ . However, for any fixed t and a, the class (J ^ [ a , r, ^] is dense in the 

Q>l/2 

family ^ [ a ] of functions P{z) in ^ for which Re P{z) > a for z in Л. Therefore, the 
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preceding results can be extended to -^[a], 0 < a < 1, and ̂ {0] == ̂ , by taking 
appropriate limits. 

If, in particular, we choose a = Г = 0 and let ̂  —• oo, then Theorem 1 gives the 
classical coefficient bound of CARATHEODORY [1] and Theorem 2 gives known 
distortion bounds [9, p. 173] for every P(z) in ̂ . 

In a similar way, setting t = 0 and letting ^ -> oo in (2.5), gives sharp coefficient 
bounds for ^ [ a ] , which appear in [8]. The same procedure in Corollary 1 and Theo­
rem 2 gives the following distortion bounds. 

Corollary 2. / / P(z) is in P?\a\, for a fixed, 0 < a < 1 and \z\^ r < \, then 

(2.26) _ i £ Z M _ ^ J^L^ , 
^ ' Re {P(z) - a} - 1 - r^ 

(2.27) 1 - 2 ( l - « ) r + ( l - 2 « ) r ^ ^ |̂ ^^_ |̂ ^ 1 + 2(1 - «) r + (l - 2a) r^ ^ 

and 

(2.28) l ^ L 2 ( l ^ z j O L ± i i ^ _ M i : ! ^ Re (P(,)} ^ 1± :2 (1 - a) r + (l - _ 2 « ) ^ 
1 — r^ 1 — r^ 

Choosing a = f = 0 and ̂  = M in Definition 1 gives the class ^^ defined by 
(1.2) and studied earlier by Goel [3], Kaczmarski [6] and Janowski [4]; however 
they restricted their attention to the case M ^ 1. In general, we have the following 
corollary. 

Corollary 3. / / P(z) is in ^ [ 0 , 0, M] = 0^^ for fixed M, M Z h and P{z) = 
00 

= 1 + ^ p,,z^, then 
k= 1 

(2.29) | p , | g 2 - l , к =1,2,...; 
M 

(2.30) \P'{z)\ (I - IzP) ^ 2 Re P(z) - M ! , ^ e A ; 
M 

^'•'^^ M 4 - ( M - l ^ - ' ' ^ ^ ' ^ l - M - ( M - l ) | z | ' ' " ^ ' 

and 

(2.32) _"('-M) <к.р(,)^_ман-М) ^^^ 
M + (M - 1) |z| M - (M - 1) |z| 
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3. other Results. In this section we will indicate some of the many possible 
applications of the preceding results. 

00 

Definition 2. F{z) = 2" ^ + ^ Ö^Z ,̂ meromorphic in Л, is in E*[a, Г, g] if and only if 
л = о 

(3.1) " T T V ^ ''''' 4^^t,Q]. 
F{z) 

The restrictions on a, t and Q are those in Definition 1. For each a, Î *[oc, f, ^] is 
a subset of the class of meromorphic starlike functions of order a, [10], hence all 
functions covered by Definition 2 are univalent in Л. 

Theorem 3. If F{z) = z~^ + ^ a^^z^ is in E*[a, t, Q], then 
k = 0 

(3.2) | , J < g M i ) ^ 2 ( 1 _ ^ ) a ( ^ «) - (1 + Г-) „ ^ 0 , 1 , 2 , . . . ; 
^ ' ' "' - e(n + ]) (n + 1) e(n + 1) 

eac/z 0/ ^/tese inequalities is rendered sharp by the function F{z) in Z*[a, t, g] 
defined by 

(3 3) - i ^ == Q + Az^^' 

^'^ F{z) Q + Bz"^'' 

for all ОС, t and g admitted above, with D, A and В defined by (2.1) and (2.3). 

Pi oof. Using Definitions 1 and 2 we write 
,- .. -z F'(z) g + Aœ(z) . 
(3.4) ^-- = =̂ ^-^ , for z m Л , 

^ F{z) g-i-Bœ{z) 

with co{z) satisfying Schwarz's Lemma [9, p. 165]. Using the power series representa­
tion for F[Z) we may rewrite (3.4) as 

(3.5) - I e(fe + 1) a.z" = + X (^ + Bk) a,z* co{z) . 
k = 0 [_ Z k = 0 J 

The last equation implies that ga^ = (A — B) oj'{0), and since |co'(0)| ^ 1, it follows 
that 

(3.6) |ao| ^ = - . • 
g g 

On the other hand for n > 0 and because a)(0) = 0, (3.5) can be rewritten 

(3.7) - E e(fc + 1) a,z^ + X d.z" = \'^ + Y^{A+Bk) a A m{z), 
k=0 A=n+1 [Z k=0 J 
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YJ d^z^ being absokitely and uniformly convergent on compact subsets of Л. 
k=n+l 

Letting z = re'^ and using the assumption that co(z) is bounded by 1, we conclude 
that 

(3.8) ~- f ' V t Q{k + 1) a,r'e^'' + f d,r'e'''\^ ав й 
2л; J о /с = о fc = п +1 

^ -^ f ^\Dr-'e-'' + 1 ( Л + ß/c) a,rV^^|2 do , 

which, by an application of Parseval's identity [9, p. 100] is equivalent to 

и CO r\2 n~ i 

(3.9) I Q\k + гу \a,Y r'" + I \d,\' r^" â ^ + S И + Б/сР la,P r^" . 

Since the infinite series is non-negative and 0 < r < 1, we can write 

(3.10) i e\k + ly \a,\' S D' + i V + Bk\' \a,\' , 
fc=0 fc=0 

or 
n - 1 

Г! л 1 Dh\2 ^2fi, , i\2-l i.̂  (3.11) e > + 1)^ \a„\' ^ D^ + X [ И + Bkp - e%k + If] la,l^ 
it = 0 

The remainder of the proof consists of showing that the coefficient of |а^|^ is not 
positive for /c = 0, 1, 2, . . . 

For each /c, 

(3.12) \A + Bk\^ ~ Q^k + 1)' = {(1 - Q- ^Y + t^- Q^}e + 

+ {2(1 - ^ - a) [^(1 - 2a) + a(l - a) - r ' ] + 2r' - 2^'} к + 

+ {[^(1 - 2a) + a(l - a) - t^f + t' ~ Q^} . 

The coefficient of /ĉ  is — D(a, t, Q), (2.1), hence it is negative. Rewriting the coef­
ficient of /c as a quadratic in t gives us the form 

(3.13) 2(^ + a) [(1 - a) (1 - 2^ - a) + r ' ] = 2{Q + a) [ -D(a , t, ^)] < 0 . 

The constant term in (3.12) can be rewritten and bounded in the following way 

(3.14) [^(1 - 2a) + a(l - a) - t^f + t^ - g^ = 

= a(l - a) (2^ + a) (1 - 2^ - a) + [2^a + a ' - (1 - a) {2Q + a - 1)] Г̂  + r̂  = 

= a(2^ + a) ( - / ) - t^) + (2^a + oc^ - D ~ t^) t^ + t"^ = 

= - D(2^a + a^ + r^) < 0 . 
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Consequently, (3.11) implies that 

(3.15) д\п + 1)' \a,\^ й D{a, t, gf , n =. 1, 2, . . . ; 

which is equivalent to (3.2). 

If for any fixed n, n = 0, 1, 2, ..., we let F(z) be defined by (3.3) and have the series 
representation of the hypotheses of Theorem 3, then 

(3.16) 

or 

(3.17) 

-zF'(z) , A - В „ 
^-^ = 1 H z" + 

F{z) в 

k = 0 I 0 
| (z-+fa,z^). 
J k = 0 

A comparison of coefficients shows that â^ = 0, for /c = 0, 1, ..., n — 1 and that 

(MS) M'f^f,. 
Q{n + 1) 

This completes the proof of Theorem 3. 

An examination of the preceding proof yields the following analog of the Area 
Theorem [9, p. 210]. 

00 

Corollary 4. IfF{z) = z~^ + ^ a^z^ is in E*[a, t, Q], then 
k = 0 

00 

(3.19) Y [^' + 2{Q + a)k-\- {Iga + a ' + t^)] \a,\^ й D{oc, t, Q) . 

Proof. Applying Parseval's identity to (3.5) and making use of the bound on co(z) 
gives 

(3.20) f le\k + ly -\A + Bk\'-} \a,\' й\А- В\' , 
k = 0 

which, by making use of the calculations in (3.12), (3.13) and (3.14), may be written 

00 

(3.21) Y. [^^' + 2(̂  + a) ^^ + ^i^O^ + «' + ^')] Ы^ ^ ^ ' • 

This form is equivalent to (3.19). 

By specializing the choices of the parameters a, t and Q in Theorem 3, we get some 
interesting special cases which have appeared elsewhere. 
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Corollary 5. IfF{z) = z~^ + Y, ^/c '̂' is in I*[0, 0, M] , then 

(3.22) | , д ^ Ж г ± ^ n = 0 , 1 , 2 , . . . 
M{n + 1) 

This result appears in [6], with the additional proviso that AQ = 0; many other 
theorems appearing in [6] for meromorphic starlike, or spiral, functions can be 
extended by the above methods. 

Let Z*[a] be the class of meromorphic starlike functions of order a, [10]. For any 
fixed t, (J S*[a, t, ^] forms a dense subclass of S*[a], consequently, letting Q -> со 

Q>l/2 
in (3.2) we obtain the following theorem of Pommerenke [10]. 

CX) 

Corollary 6. If F{Z) = ^"^ + X a,.z^ is in X*[a], then 

(3.23) k l ^ ^ ^ i ^ - ^ , n = 0 , 1 , 2 , . . . 
П + 1 

Theorem 4. If F{z) is in E*[a, t, Q~\, Л and В are as in (2.3) and \z\ = r, 0 < r < 1, 
then 

1 /n 4- 1Я1 rVB-A)/2\B\ / 2 _ 1̂ 12 2\(ß-A)Reß/21ßp 

r\Q - \B\ rj V^^ - \B\^ r^j 

and these inequalities are made sharp when t = 0, in which case A and В are real, by 

(3.25) f ( . ) = l ( ^ ^ ) 

Proof. From (3.4) we have 

(3.26) _ . A , o g [ z / ( z ) ] = ( l ^ ^ ) , 
dz Q + В co(z) 

or 

(3.27) ^-(2) = - exp I - Z) f ' ^^i^) del ' 

therefore 

(3.28) l,^.i,.J-o!\J^^yj\. 
r { Jo \Q-\-Bw{se'^)J 5 J 

recalling that Л - Б = D > 0. 
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Excepting the constant term {A — B), the right side of (3.26) is subordinate to the 
linear transformation 

(3.29) /(z) = 
Q + Bz 

which for any r, 0 < r < 1, maps the disk {z : |z| ^ r} onto the disk with center and 
radius 

(3-30) - ^ ^ ^ ^ ^ and ^'• 

having observed in (2.21) that the denominators in (3.30) are positive. Therefore, as 
in the proof of Theorem 2, we conclude that 

(3.31) - ^", + " ^ ^ <, Re ( ^̂ -̂ ^ Л ^ ^' - '-' R^ 5 
\B\'r^ \Q + B(o{z)J ~ Q^ - \В^г^ 

The left side of this inequ'i. v yields 

= exp D i f , log { ^ ^ Ш + ^ ^ log i - ^ — ^ . 

Combining this with (3.28) gives the upper bound in (3.24); the lower bound is ob­
tained in much the same way. 

If г = 0, then В is real and (3.31) reads 

(3.33) - - ^ s Re ( - ~ ^ ^ à \ ^ ^ ^ . 

Q ~ Br \Q + в (0{z)j Q + Br 
These bounds are sharp when co{z) = z with equality on the left occurring for z = — r 
and on the right for z = r, 0 -^ r < 1; consequently for this choice of ca(z) and with 
0 = 71, (3.32) is sharp, whereas with 0 = 0 the correspnnc'.g lower bound is sharp. 
The function given in (3.25) comes from this choice of o)(z;\ 

In concluding the proof of Theorem 4 we should like to rcma'-k that equality on 
either side of (3.31) obtains at a point z, |z| = r, if and only if a){z) = cz, \c\ = 1. 
However, a calculation shows that equality will occur on either side of (3.31) at 
points re'^^ and re'̂ % 0^ and 02 being dependent on r. As a result, the estimates made 
in (3.32) are not sharp in general because the integration is performed along a ray 
from the origin. 
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The remaining portion of this section deals with applications to regular functions. 

Theorem 5. If f{z) = z + ^ aj,z^ is regular in A and, for a fixed Q, ^ < Q < 1, 
fe = 2 

(3.34) 

then 

(3.35) 

:/'(г) 
m 

a.. ^ 2e 
ein - 1) 

< Q , Z E A , 

И = 2 , 3 , . . . , 

These equalities are sharp, equality being attained for each n, by 

(3.36) /(,) = Ji+J'l^\,'.-»T 

This theorem has been given for ̂  = 1 by Singh [12] and Janowski [5] recently 
announced partial results for ̂  > 1. 

Proof. Condition (3.34) is equivalent to requiring that z f'{z)lf{z) be in ^ [0, 0, Q]. 
In this case Definition 1 gives 

(3.37) 
f{z) Q + {1 -Q)CO{Z) 

, Z E A , 

oj{z) satisfying Schwarz's Lemma. Substitution of the Maclaurin series for / (z) 
enables us to write 

.^^ (3.38) t(k - 1) a,z' = a>(z)J^ ( l - ( ' — ? ) k\ a, 

or because co(0) = 0, 

(3.39) t oik - I) a.z" + f c.z'^ = «(z) Z (e(/c + 1) - /c) a,z*, 

00 

the series ^ c,,z^ being uniformly and absolutely convergent on compact subsets 
k = n + l 

of A. Since \oj{z)\ ^ 1, z G A, 

(3.40) i_ 
27Г 

f* 2ж n 00 

I X 3(fc - 1) a,r''e"''> + X Ci^r^e'^X dO ^ 
Jo *=2 *="+! 

^ — f YX {e{k + Ï)- k) a,r*e-*f do , 
2rtJo '=» 
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for о < 7̂  < 1. Applying Parseval's identity to both sides of (3.40) gives 

(3.41) t Q\I< - 1)' Ы' '• ' ' + i Vu\' r'' йШк + 1) - kf |a,|^ r^*, 
k=2 k=n+l k=l 

and this, upon letting г -> 1 and neglecting the (non-negative) infinite series, gives 

(3.42) t eXk - iy |a,P è "lieik + 1) - kf \a,\' . 
fc=2 k=i 

In consequence, 

(3.43) e\n - ly \a„\' ^ {2e - ly + "^{(в{к + 1) - кУ - в\к - iy} |«,p = 
k = 2 

= ( 2 ö - iy + "Y.k{2Q-k)(2e- l ) | a l ^ •*k\ 

By assumption, ^ < ^ < 1, therefore 0 < 2Q — 1 < { and 2Q — к ^ 0, к = 
= 2, 3, ..., w — 1; hence from (3.43) we infer that 

(3.44) ç'{n-iy\a„\'^_i2e-\y, 

and this is equivalent to (3.35). 

Theorem 6. If f{z) is regular in Л, /(0) = / ' ( 0 ) — 1 = 0 and it satisfies (3.34) 
for Q ̂  1, then f{z) is convex for 

(3.45) |z| < ( 4 . - l ) - V 0 - 8 , + 12,-) _ 
2Q 

moreover there is a function satisfying the given conditions which is not convex 
in a larger disk. 

This result was announced recently by Janowski [5] where he indicates that his 
proofs depend on variational methods; the proof given below makes use of a classical 
inequality for bounded functions [9, p. 165]. Singh gives the bound (3.45) for the 
case ^ = 1. 

Proof. From the hypotheses, in particular (3.34), we can say that there is a function 
ф(г) regular and bounded by 1 in Л such that 

(3.46) Ц ^ = ^(1 + ф(1)), z G Л , and ф(0) = ^ ^ . 

Therefore, 

^ ^ m _ (I + ФШ 
^ z ф'(1) (1 + ф{г)) + g|l + ф{г)\' (1 + ф{z)) 

|1 + ф{г)\^ 
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It is well-known [9, p. 224] that /(z) maps the circle |z| = r onto the boundary of 
a convex set whenever the real part of the form in (3.47) is non-negative for \z\ = r, 
and conversely. 

(3.48) Re {z ф'{г) (l + Щ) + Q\1 + ф{2)\^ (l + ,^(z))} ^ 

è e|i + Ф(--)1' (1 + Re ф{2)) - |z ф'(2)| |i + ./-(z)! = 

= |1 + ф{2)\ {в\\ + ф{2)\ (1 + Re ф(2)) - |z </.'(z)|} ^ 

^ | l + ^(z) |Ml- |</>(z) | )^- |z^ ' (z) l}-

and making use of the inequality [9, p. 168], 
Ч 

(3.49) \фЩ^1р&, ,eÄ, 
1 — |zp 

we write 

(3.50) e(l - |<;.(z)|)̂  - \z ф'{2)\ ^ g{l - \ф{2)\У - M l L - J Ä ) 
1 - |z| 

= (1-\Ф(2)\)^,(1-\Ф(2)\)-\А(1±ШЁу 

Since [9, p. 167] 

-(..Д|,)|*й1*(.-Др)-
« 4. NI \ / ( g - 0 + e|^h _ [g|zi" + (J - 4g) |z| + g] 

1 - |z|V V̂  + (̂  - 1) И ; (1 - И) {Q + (̂  - 1) 1̂ 1) 

Consequently, Re {1 + z/"(z)//'(z)} > 0, \z\ = r, whenever 

(3.53) gr^ + (1 - 4^) r + ^ > 0 ; 

and this qiadrctic is positive for the values in the disk given by (3.45). 
If 

(3.54) /(z) = z M + / i ^\z\ , ^ Ф 1 , 
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then/(z) satisfies (3.34) and 

Гз55^ 1 + -^/l(z) ^ g-^ + ( 4 g - i ) z + g 
^ /'(z) ( ]+z) (e + ( i - g ) z ) ' 

which is equal to zero for 

_ ( 4 g - l ) - v ( l - 8 g + 12g^) 
2Q 

Therefore/(z) shows the bound indicated in (3.45) is best possible for ^ ф 1. Singh 
[12] gives an extremal function for the case ^ = 1. These methods do not seem to 
give sharp results for the case i < Q < 1. 
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