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PURE CLOSURES

LADpISLAV BicAN, Praha

(Received June 29, 1970)

The purpose of this note is to give some sufficient conditions for the existence of
w-pure closures of any submodule of an arbitrary A-module B.

First of all we shall give basic definitions. In this paper A stands for an associative
ring with unity. We shall say that in the category of (all) A-modules a purity w is
given if in any A-module B, some set of submodules called w-pure in B is taken (the
fact that 4 is w-pure in B being denoted by A < ,,B) such that:

PO: Any direct summand of B is w-pure in B,

Pl: A< B, Bc C=>4¢c,C,

P2: AcBcC'), A< ,C=>4c B,

P3: Ac B, K< A= AK < ,B/K,

P4 KcA<B Kc B AK < ,BK=4c ,B.

Let & be any set of (left) ideals of A, A = B A-modules. We say that A4 is §-pure
in B if for any commutative diagram

I—%2 >4

A—" 5B

where I € & and y, i are canonical injections there exists Y : A — A such that yy = ¢.
It can be shown that all the properties PO—P4 are satisfied in this case. A A-module A
is called w-divisible if it is w-pure in any of its extensions. It is easy to see that any
projective module is w-divisible (for any purity w). An extension B of 4 will be called
an w-divisible closure of A if B is w-divisible and no proper submodule of B containing
A is w-divisible (such a B need not exist and need not be unique). Similarly, a A-mo-
dule C with 4 = C = B will be called an w-pure closure of 4 in Bif C = ,B and no
proper submodule of C containing 4 is w-pure in B (again, such a C need not exist

1y Throughout this paper A & B means that 4 is a submodule of B.
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and need not be unique). Finally, a A-module C is called w-flat if, for any epimorphism
¢ :B— C, Ker ¢ is w-pure in B.

1. Throughout this section let & be some set of maximal left ideals of A and let w
denote the &-purity. For any A-module G and any I €& we put G(I) = {g e G;
Ag = 0 for any Ael}.

Lemma 1.1. Let G be a A-module, G its injective closure, I € &. Then G(I) = G(I).

Proof. It clearly suffices to show G(I) = G(I). Proving this relation indirectly,
let us suppose the existence of g € G(I) = G(I) and let us consider the module Ag.
In view of g + 0 and g = 1g there is Ag £ 0. To any u ¢ I there exists ¢ € A and
o €I with gu + o = 1 for I being maximal. Then g = gug ¢ G, hence ug ¢ G which
implies Ag N G = 0 — a contradiction with the essentiallity of G in G.

Theorem 1.2. Let G be a A-module and G its injective closure. If D < G, then
DnGc G
Proof. For any I € & let us consider the following two diagrams

X X

I———— 4 I—— 4
o e
PAG—G p—1 ¢

where y, i, j are canonical injections, ¢, 1 arbitrary homomorphisms making (*) com-
mutative and 9, 0 are defined as follows: If 1y = g then 0 is determined by 160 = g
and 9 = 6/I. Now the diagram (**) is commutative because for any 1 eI it is 19 =
= A0 =1g = A = lp e D n G = D. By hypothesis there exists ¢ : A4 — D with
e = 9. Denoting 1¢9 = d we have Ayp = Ad = A9 = Jg for any 1 €I which implies
Md - g) =0, ie d— geG(I). From Lemma 1.1 we get d — g € G(I) = G, hence
de G. Now we can define a homomorphism  : 4 - D n G by putting 1y = d.
Then for any A €I there is Ayy = Ad and ¢ = Ayn = Ag = Ad so that yy = ¢ and
the proof is finished.
The following example shows that the maximality of ideals from & is essential.

Example 1.3. For A = Z (the ring of integers), G = {a} + {b}, p*a = pb = 0,
N = {pa + b}, & = {(p*)} wehave N =, G, N = N n G (for the proof see e.g. [1]
§ 28, h) and for the commutative diagram ,

02
1
N G
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where y, i are canonical injections and 1n = a, ¢ = 7| (p?) it is p’n = p*a=
= p(pa + b)eN, but no ¢ : Z > N with y) = ¢ exists, because for 1y =
= apa + b) we have p*y = 0 while p?¢ = p?a + 0. (This example is essentially
that from [1] p. 92).

Theorem 1.4. Let us suppose that the following condition holds:
) Ng,G=3D, D=,6, N=DnG.

Then any A-module A has an w-pure closure in any of its extensions if and only
if A has an w-divisible closure.

Proof. a) If A has an w-pure closure in any of its extensions then, particularly,
A has an w-pure closure A% in its injective closure. A® is w-divisible by 1,7 from [2]
In fact, 4% is an w-divisible closure of A.

b) Conversely, let B be any extension of 4 and 4 an w-divisible closure of A°
We can assume 4 < A“ owing to 4 < A” and Lemma 11.1 from [3]. Then clearly
A = ,A® and by Theorem 1.2 4 n A° < ,A®. A n A® contains A and is w-divisible
by 1,8 from [2], hence A N A® = A® in view of the minimality of A°. Thus we have
A° < Aand 4 = 4°.

Further, we can assume 4 < B. It is A° < ,4 < B so that Theorem 1.2 implies
A® N B < _B. It remains to show that A” n B is a minimal A-module w-pure in B
and containing A. Let us suppose 4 < A’ = ,A° n B < ,B. By (1) there exists

. —_—
a A-module D with D =, A” n Band A’ = A° n B n D. It can be assummed that
/\

A°NBc A4 since A "B< A< A. Then D < ,A°B< ,A = A° and by
Theorem 1.2 D n A® < ,A®. The same arguments as above lead to D n A® = A,
hence A’ = Bn A n D = B n A°.

2. In this section we shall give a sufficient condition for the existence of w-pure
closures.

Theorem 2.1. Let & = {Ap, p € M} be any set of maximal principal left ideals
of A and let w denote the &-purity. Then any A-module has an w-divisible closure.

Proof. First of all let us note that
2 A< ,B<uBnA=puA forany peM.

The proof of this fact we omit because it‘is given in [2], Prop. 1, 52. Now we shal
construct an w-divisible closure for any A-module A. Let us put D, = A and if D,
is constructed then D, is a submodule of A (the injective closure of A4) generated

by D, and all d e A satisfying ud € D, for some y € M. Thus D = {J D, is a submodule

n=0
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of A containing A. For depud n D, d = pa, ac A and de D, we have @€ Dy
owing to the definition of D, ;, hence d € uD. Thus D < ,4 by (2), which implies
the w-divisibility of D (by 1,7 from [2]). We are going to show the minimality of D.
Let us suppose 4 = Q < D, Q w-divisible. We have D, = Q. If D, < Q and
d € D,., is an arbitrary generator of D, (not belonging to D,) then there exists
pueM with pde D, = Q. Since Q is w-divisible, we have Q = ,D and ud e uD N
N Q = puQ by (2). Then p(d — g) = 0 for a suitable g € Q. In view of Lemma 1.1
and A< Q< Dc A we have d — ge A(Ap) = A(Ap) = Q and hence d e Q.
Thus D,,; € Q and finally D = Q.

Theorem 2.2. Let & = {Ap, pe M} be any set of maximal principal left ideals of
A such that pA < Ay for any p € M. Then the &-purity satisfies the condition (1).

Proof. Let us assume N < ,G and let N = D = N be the w-divisible closure
constructed in the preceding proof. It is obvious that N = D n G. On the other hand
it is clear that Dy n G < N. Let us assume we have proved D, n G = N and let

de D,,1 n G be an arbitrary element. Then we can write d = d’ + Y, A d,;, d' € D,,

i=1 r
ud; e D, for suitable u;e M. Then up, ... pd = pypy ... p,d + Y ity ...
, i=1
e Aidy = oy oo d Y s . o Ajid; by hypothesis (1) are suitable
i=1
elements from A) and therefore pyp, ... g, d € D, n G = N. Hence py(u, ... p,d) e
€ 1t;G N N = ;N in view of N € ,,G and (2). For a suitable element t € N we have
pa(ga .. ud — t) = 0 which implies p, ... pd — t € N(Ap,) = N(Ap,) = N (by
Lemma 1.1) so that g, ... ud e N. Similar arguments for p,, ..., g, lead to de N
which finishes the proof.

3. In this section we shall prove a theorem on the existence of w-pure closures
concerning w-flat modules. We start with the following

Lemma 3.1. Let B be an w-flat A-module, K < ,B, L < ,B. If {K, L} is w-flat,
then K n L < _B.

Proof. From L< ,B it follows L < ,{K, L} by P2 and hence {K, L}/L is -flat
by hypothesis and 1,13 from [2]. Then K/K n L = {K, L}/Lis w-flat. The definition
of w-flat modules implies that K n L = ,K. Now it suffices to use P1.

Theorem 3.2. Let w be an arbitrary purity such that any submodule of an w-flat
module is w-flat. Then any submodule of an w-flat module B has in B the uniquely
determined w-pure closure if and only the following condition is satisfied:

(3) For any decreasing chain B=By, 2B, 2...2B,2... 2 By, of sub-
modules of B satisfying B,,, < ,B, and B, = () B,, « a limit ordinal, there
is B, < ,B. r=s
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Proof. Let B be an w-flat module, A < B a submodule and let the condition (3)
hold. Using the Zorn’s lemma one can easily get the existence of w-pure closures of A
in B. For the proof of unicity it suffices to use Lemma 3.1.

Conversely, let us have an descending chain B= B, 2 B; 2 ... 2 B, 2 ... 2 By
of submodules of B satisfying the conditions stated in (3). It is easy to see that we can
restrict ourselves to the case B, < B, o < Q, where Q is a limit ordinal. If B, is not
o-pure in B, it has an w-pure closure B, F Bo,. There exists an ordinal « < Q with
B, n By § By, because the converse leads to the contradiction B, = B,. By Lemma
3.1itis B, n B, = ,B — a contradiction with the minimality of B,. Consequently

B, = B, € ,B.

Theorem 3.3. Let r be a radical in the category of A-modules and let ® be any
purity such that the class of w-flat A-modules coincides with the class of r-semisimple
A-modules. Then any submodule of an r-semisimple A-module B has in B the
uniquely determined w-pure closure.

Proof. Clearly, the class of w-flat modules is closed under taking submodules and
direct products by 2.12 from [2]. To prove (3) it suffices to show that for o limit,
B, < ,B,y <aitis B, < ,B. However, B/B, can be selected, in the natural way, in
the direct product of B[B,, y < a and hence following the arguments mentioned
above B/B, is w-flat. Thus B, < ,,B owing to the definition of w-flat modules.

Remark. From the above proof it immediately follows that the condition: “The
class of w-flat A-modules is closed under taking submodules and direct products” is
sufficient for the existence and uniqueness of an w-pure closure of any submodule of
an w-flat module.
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