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PURE CLOSURES 

LADISLAV BICAN, Praha 

(Received June 29, 1970) 

The purpose of this note is to give some sufficient conditions for the existence of 
co-pure closures of any submodule of an arbitrary Л-module B. 

First of all we shall give basic definitions. In this paper Л stands for an associative 
ring with unity. We shall say that in the category of (all) yl-modules a purity со is 
given if in any Л-module B, some set of submodules called co-pure in В is taken (the 
fact that Ä is co-pure in В being denoted by Ä я а>В) such that: 

PO: Any direct summand of В is co-pure in Б, 
PI: Л c , ß , Б с , С = > Л ç ^ C , 
P2: Л ç Б с С ^), Л с ^C => Л ç ^ß, 
РЗ: Л ç ^Б, X с л => Л/Х с ^BJK, 
Р4: К Ç Л с Б, X Ç ^Б, ÄJK ç ^BJK => А я ^В. 
Let ^ be any set of (left) ideals of Л, Л ^ Б Л-modules. We say that Л is (f-pure 

in Б if for any commutative diagram 

where I e S" and x, i are canonical injections there exists ф : Л -> A such that хФ = (p-
It can be shown that all the properties PO —P4 are satisfied in this case. A Л-module Л 
is called co-divisible if it is co-pure in any of its extensions. It is easy to see that any 
projective module is co-divisible (for any purity со). An extension Б of Л will be called 
an co-divisible closure of Л if Б is co-divisible and no proper submodule of Б containing 
Л is co-divisible (such a Б need not exist and need not be unique). Similarly, a Л-mo­
dule С with A ^ С ^ В will be called an co-pure closure of Л in Б if С £ ^Б and до 
proper submodule of С containing Л is co-pure in Б (again, such a С need not exist 

^) Throughout this paper A ^ В means that У4 is a submodule of B. 
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and need not be unique). Finally, a Л-module С is called co-flat if, for any epimorphism 
(p :B -> C, Ker (p is co-pure in B. 

1. Throughout this section let S' be some set of maximal left ideals of Л and let CD 
denote the <f-purity. For any Л-module G and any / G <f we put G(l) = {g e G; 
Xg = 0 for any Я е / } . 

Lemma 1.1. Let G be a A-module, G its injective closure, I eS. Then G(l) = ô( / ) . 

Proof. It clearly suffices to show ô{l) Ç G(/). Proving this relation indirectly, 
let us suppose the existence of g e G(/) — G{l) and let us consider the module Ag. 
In view of of Ф 0 and g = Ig there is Ag Ф 0. To any /x ̂  / there exists geA and 
<r el with Qfi + a = 1 fox I being maximal. Then g = д/лд ф G, hence /лд ф G which 
implies Л̂ ^ n G = О — a contradiction with the essentialhty of G in G. 

Theorem 1.2. Let G be a A-module and G its injective closure. If D ^ ^G, then 
DnG^ ^G. 

Proof. For any / e ^ let us consider the following two diagrams 

(*) C**\ 

DnG -^G 

where %, i, j are canonical injections, (p, rj arbitrary homomorphisms making (*) com­
mutative and ^, в are defined as follows: lî Irj = g then в is determined by 10 = g 
and S = ejL Now the diagram (**) is commutative because for any Xel it is Ш = 
= À9 = Ag = Àrj = Àcp G D n G ^ D. By hypothesis there exists Q : A -^ D with 
XQ = S. Denoting 1^ = d WQ have ÀXQ = Ad = AS = Àg for any lei which implies 
À(d — g) = 0, i.e. d — g e 6( /) . From Lemma LI we get J — ^ e G(/) £ G, hence 
deG. Now we can define a homomorphism ф : A -^ D n G by putting 1ф == d. 
Then for any lei there is 1хф = /i<i and /l(p = Ixrj = Ig = Id so that хФ ~ 9 and 
the proof is finished. 

The following example shows that the maximality of ideals from ê is essential. 

Example 1.3. For A ••= Z (the ring of integers), G = {a} -i- [b], p^a = pb = 0, 
N = {pa -i- b}, ê = {(p^)} we have N ^^G, N =N nG (for the proof see e.g. [1] 
§ 28, h) and for the commutative diagram 

79 



where %, i are canonical injections and irj = a, cp ~ tj | (p^) it is p^-rj = p^a = 
— p{p^ + b) e N, but no \j/ : Z -^ N with хФ = ^ exists, because for li/r := 
= а(ра + b) we have p î/̂  = 0 while p^cp = p^a #= 0. (This example is essentially 
that from [1] p. 92). 

Theorem 1.4. Let us suppose that the following condition holds: 

(1) N я ,fi=>3D, D я ^0, N = DnG. 

Then any A-module A has an a>-pure closure in any of its extensions if and only 
if A has an œ-divisible closure. 

Proof, a) If A has an co-pure closure in any of its extensions then, particularly, 
A has an co-pure closure A"^ in its injective closure. A^ is o>divisible by 1,7 from [2]. 
In fact, A"^ is an co-divisible closure of A. 

b) Conversely, let В be any extension of A and A"^ an o)-divisible closure of A* 
We can assume Â я Ä"^ owing to A я A^ and Lemma 11.1 from [3]. Then clearly 
Ä я coÄ"^ ^nd by Theorem 1.2 Ä n A^ я ^A^. Ä n Л"̂  contains A and is co-divisible 
by 1,8 from [2], hence Ä n A^ = A^ in view of the minimality of A^. Thus we have 
A"" Я ÂandÂ = J ^ . 

Further, we can assume Â я B. It is A"^ я ^Ä я ^В so that Theorem 1.2 implies 
A"^ n В я ^В. It remains to show that Л"̂  n Б is a minimal Л-module co-pure in В 
and containing A. Let us suppose A я A' я ^A"^ r\ В Я ^B. By (l) there exists 

a Л-module D with D я^А"^ r\B and A' = A"" r\ В n D, It can be assummed that 

A"^ слВ Я Ä since A"^ n В я A"" Я Â. Then D я ^A"" n В я ^Ä ^ Ä'' and by 
Theorem 1.2 D n Л^ с ^A"^, The same arguments as above lead to D n Л" = Л*", 
hence A' = В n A'' rs D = В n Л^. 

2. In this section we shall give a sufficient condition for the existence of co-pure 
closures. 

Theorem 2.1. Let S = [Ajx, ß e M} be any set of maximal principal left ideals 
of A and let œ denote the S-purity. Then any A-module has an œ-divisible closure. 

Proof. First of all let us note that 

(2) A я ^B о ßB n A = fxA for any ße M . 

The proof of this fact we omit because it is given in [2], Prop. 1, 52. Now we shai 
construct an co-divisible closure for any Л-module Л. Let us put DQ = A and if D„ 
is constructed then D„ + i is a submodule of Ä (the injective closure of Л) genetated 

00 

by D„ and alldeÂ satisfying ßd E D„ for some ßeM. Thus D = [J DJssi submodule 
« = o 
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of Ä containing A. For d e fiÂ n D, d = fiä, a eÂ and de D^WQ have ä e D„ + i 
owing to the definition of D„ + i, hence defxD. Thus D ^ ^Ä by (2), which implies 
the û)-divisibiHty of D (by 1,7 from [2]). We are going to show the minimality of D. 
Let us suppose A ^ Q я D, Q ш-divisible. We have DQ Я Q, If D„ ^ Q and 
de D„+i is an arbitrary generator of D„ + i (not belonging to D„) then there exists 
jLieM with fide D„ ç^. Q. Since Q is co-divisible, we have Q ^ ,̂D and ßde fxD n 
^ б = j"ß by (2). Then ii[d — ^) = 0 for a suitable q e Q. In view of Lemma LI 
and A '^ Q ^ D ^ Ä we have d — q e Ä(Aß) = /4(у1̂ г) ^ g and hence (i e Q. 
Thus i)„+i Ç б and finally D = Q, 

Theorem 2.2. L^r (f = {Afi, ц e M] he any set of maximal principal left ideals of 
A such that pA Ç Apfor any peM. Then the S-purity satisfies the condition (l). 

Proof. Let us assume JV £ ^G and let iV ^ D ^ jv be the co-divisible closure 
constructed in the preceding proof. It is obvious that N ^ D n G. On the other hand 
it is clear that DQ n G ^ N. Let us assume we have proved D„ n G ^ N and let 

r 

de D„+i n Gbo an arbitrary element. Then we can write d = d' + Y ^t^b d' e D„, 

Pidi e D„ for suitable pi e M. Then p^pi ... Prd = p^pi . . . Prd' + X! i"ii"2 ••• 
r t = l 

• • • ßr^idi = PiPi • • • M ' + E ^i/^2 • • • /^i- i^'il^idi by hypothesis {X'l are suitable 
i = l 

elements from Л) and therefore р^рг • - • Prd e D„ n G ^ N. Hence Pi{p2 • • • Prd) e 
e piG n N = p^N in view of N Я coG and (2). For a suitable element t e N V/Q have 
ßiißi ^.. Prd - t) = 0 which implies p2 ... p^d - tef}(Api) = N(Api) ç N (by 
Lemma Ll) so that p2 ... p^deN. Similar arguments for p2, ..., Pr lead to deN 
which finishes the proof. 

3. In this section we shall prove a theorem on the existence of co-pure closures 
concerning co-flat modules. We start with the following 

Lemma 3.1. Let В be an œ-flat A-module, К я ^ß, L ^ ^B. If {K, L} is co-flat, 
then К n L^ ^В. 

Proof. From L Ç ^J3 it follows L Ç ^{K, L} by P2 and hence {K, L } / L is co-flat 
by hypothesis and 1,13 from [2]. Then KJK n L^ {K, L}/Lis co-flat. The definition 
of co-flat modules implies that К r\ L я оуК. Now it suffices to use PL 

Theorem 3.2. Let со be an arbitrary purity such that any submodule of an m-flat 
module is co-flat. Then any submodule of an co-flat module В has in В the uniquely 
determined co-pure closure if and only the following condition is satisfied: 

(3) For any decreasing chain В = BQ ̂  B^ 3 . . . ^ 5^ 3 ... ^ BQ of sub-
modules of В satisfying B^^i Я ^B^ and B^ = f) By, a a limit ordinal, there 
is B„ ^ „B. 
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Proof. Let В be an co-flat module, Ä ^ В з. submodule and let the condition (3) 
hold. Using the Zorn's lemma one can easily get the existence of co-pure closures of A 
in B. For the proof of unicity it suffices to use Lemma 3.L 

Conversely, let us have an descending chain В =^ BQ ^ B^ ^ ... ^ B^ ^ ... ^ BQ 
of submodules of В satisfying the conditions stated in (3). It is easy to see that we can 
restrict ourselves to the case B^ ^ ^j5, a < Q, where ß is a hmit ordinal. If B^ is not 
co-pure in B, it has an co-pure closure BQ ф BQ. There exists an ordinal a < Q with 
B^n BQ Ф BQ because the converse leads to the contradiction B^ = B^. By Lemma 
3.1 it is B^ n BQ ^ ^B — a contradiction with the minimahty of BQ. Consequently 
BQ = BQ ^ ^B. 

Theorem 3.3. Let r be a radical in the category of A-modules and let œ be any 
purity such that the class ofœ-flat A-modules coincides with the class of r-semisimple 
A-modules. Then any submodule of an r-semisimple A-module В has in В the 
uniquely determined œ~pure closure. 

Proof. Clearly, the class of co-flat modules is closed under taking submodules and 
direct products by 2.12 from [2]. To prove (3) it suffices to show that for a limit, 
By Ç ^Б, у < ait is B^ я ^В. However, BJB^ can be selected, in the natural way, in 
the direct product of Б / Б ^ , у < a and hence following the arguments mentioned 
above BJB^ is co-flat. Thus B^ ^ ^B owing to the definition of co-flat modules. 

R e m a r k . From the above proof it immediately follows that the condition: "The 
class of co-flat yl-modules is closed under taking submodules and direct products" is 
sufficient for the existence and uniqueness of an co-pure closure of any submodule of 
an co-flat module. 

References 

[1] L. Fuchs: Abelian groups, Budapest 1966. 
[3] A. JJ, Мишина, Л. A. Скорняков: Абелевы группы и модули. Москва 1969. 
[2] С. Маклейн: Гомология. Москва 1966. 

Author's address: Praha 8 - Karlîn, Sokolovskâ 83, CSSR (Matematicko-fyzikâlnî fakulta UK). 

82 


		webmaster@dml.cz
	2020-07-02T22:25:27+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




