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GREEN'S RELATIONS ON A COMPACT SEMIGROUP 

BEDRICH PONDÊLICEK, Podëbrady 
(Received May 4, 1970) 

Let iS be a semigroup. Then °K will denote the equivalence on S: for a, b e S, 
a^Kb if and only if there exist positive integers m, n such that a"' = b". In [1] J. T. 
Sedlock studies necessary and sufficient conditions on a periodic semigroup S in 
order that °K coincide with any one of the Green relations [2]. In our paper [3] we 
considered an arbitrary semigroup having similar properties. 

The fact that any element x of a compact semigroup S belongs to some idempotent 
(see [4]) leads us to define an equivalence °Kj on 5 by : for a, b e S, a^Kjb if and only 
if the elements a, b belong to the same idempotent. The purpose of this article is to 
investigate the structure of compact semigroups such that °Kj coincides with any one 
of the Green relations. 

Let ^(S) denote the set of all '^-closure operations for a non-empty set S, i.e. 

(0) U G ^(5) о U : exp 5: -> exp 5 

and 

(1) Ц0) = 0 , 

(2) AczBciS=> U{A) c= U{B) , 

(3) A с U{A) for each A cz S , 

(4) Ц Ц ^ ) ) = Ц ^ ) for each A cz S 

hold. 

A subset Л of 5 will be called U-closed if ЩА) = A. The set of all U-closed subsets 
of S will be denoted by #'((/). 

Let U,Ve ^{S). Then we define 

и ^Vo U{A) cz V{A) for each A a S . 
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We have 

(5) ^ ( U V V) = ^(U) n .^{V), 

(6) и ^Vo ^(V) Œ J^(ü) . 

We shall denote by l{S) the set of all ^-closure operations for a set S, \Q. 1{S) 
a ^(S) and for every и G oâ(S) and for every A cz S 

(7) U{A) = и и{х) 
xeA 

holds. If U, ¥ e J(S:)then 

(8) U й VoU{x) с V{x) for each xeS. 

Let U 6 ^S). We define U* e ^(S). If yl ci 5 then x e U^{Ä) if an only if U{x) n 
n Л Ф 0. For Ü, V e ^(S) we have 

9) U ^ V => Ü* ^ / * , 

(10) U(x) = U**(x) for every xeS , 

(11) Ü* = Ü*** and Ü** S Ü . 

See [5]. 
Let и e ^{S). We shall introduce the equivalence °U on S by: for x, y e 5, x'^Uy 

if and only if U(x) = U(y). For any element x of S, let U^ denote the °U-class of S 
containing x. If U,V e ^{S) then we have 

(12) U ^ / => °U с °^ , 

(13) °(U л У) = " U n ° V , 

(14) x°ü>; <^ X e U(>;) and у G U(x) . 

See [3]. 
Let S be an arbitrary semigroup. For any Л c: 5, Л Ф 0, let us put L(Ä) == SÄ и A 

and R{A) = AS u A. Finally, L(0) = 0 = R(0). Clearly L, R G ^ ( S ) . Put /И - L v R, 
H = L л R. F(L) [F(R), F(Mj, F(H)] is the set of all left [right, two-sided, quasi) 
ideals of S (including 0). It is known that 

(15) Hg is the maximal subgroup of S belonging to the idempotent e . 

PutP(0) = 0. If A cz S, A =^ 0, then by Р(Л) we denote the subsemigroup generated 
by all elements of A. Evidently P G ^ ( S ) , P ^ H and .^(P) is the set of all subsemi-
groups of S (including 0). See [5]. 

Let К = P^ V P**. Then К = K"" and x'^Ky if and only if there exist positive 
integers n, m such that x" = y"". See [3]. 
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Let now iS be a compact (HausdorfF) semigroup. If A cz S, then by T(Ä) we denote 
the closure of ^ . It is known that T G ^ ( S ) and 

(16) T{A и B) = T{A) u T{B) for A cz S and В a S , 

(17) T(x) - {x} for each x e S . 

We shall prove that 

(18) ЦАВ) = T{A) T{B) for 0 Ф Л с 5* and for 0 Ф В cz S , 

Actually, it follows from 2.1.3 [6] that T{Ä)T{B) С ЦАВ), Since Г(/4), Т(В) are 
compact, it follows from 2.1.5 [6] that T(A) Т(В) is also compact and thus we have 
T{A) T{B) e ^{T). By (3), we obtain that A с Г(Л), В с T(ß). Hence ЛБ с 
с r{Ä) Т{В). Using (2), we have Т{АВ) a T{T{Ä) ЦВ)) = ЦА) ЦВ). This means 
that (18) holds. 

Put Pj =^ P V T. It follows from (5) that ^(Pj) is the set of all closed subsemi-
groups of S (including 0). It is known from [4] that for x G 5 

(19) Pj{x) ~ T(P(x)) is the commutative subsemigroup having a unique 
id empotent. 

Lemma L Let A cz S. Then A e ^(P^) if and only if 

(20) PT{X) n A ФФ=^ xeA 

for every x E S. 

Proof. Let A G ̂ {P^y If Pj{x) n Л Ф 0 for some X e S, then there exists у such 
that j ; G Pr{x) and yeA.lt follows from (2) that x e Рт{у) с Р*(Л) = A. 

Let (20) hold for every x e S. Evidently Pj e â{S). If Л ф 0, then by (7) we have 
Рт{Л) = и P^i^y If ye Р*(Л), then у e P%x) for some xeA. Since x e PT(J ) , it 

xeA 
follows by (20) that у e A. Therefore, Pj{A) cz A. It follows from (3) that A = 
= = P * ( ^ ) G J ^ ( P * ) . 

Remark. Let A cz S, A ф 0. Then Рт(Л) is the set of all almost nilpotent elements 
(in topological sense) with respect to A. (See [7].) 

Proof. If X G Рт{Л), then there exists у e A n Рт(х) == Л n T(P(x)). If О is an 
arbitrary beighbourhood of A, then О is also a neighbourhood of у and thus x" e О 
for some positive integer n. Therefore, the element x is almost nilpotent with respect 
to Л. 

If X is an almost nilpotent element with respect to Л, then in every neighbourhood 
of A there exists at least one element of P(x). Suppose that x ф Р^(Л). This implies 
that Pj{x) n Л = 0. Evidently О = S - Pj{x) = S -• Т{Р{х)) is a neighbourhood 
of A and Л n P(x) = 0, which is a contradiction. Therefore, x G РЦА). 
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Definition. Kj = P* v P^*. 

Lemma 2. Kj = Kj . 

Proof. (9) impUes that P** g Kj and P^** g K^. It follows from (U) that 
Kj = P* V P** g К*. According to (9) and (11), we bave K* ^ K** ^ K^. 
Hence Kj = K*. 

Lemma 3. Let x, ее S and let e^ == e.If ее Pj{x)^ then х'^Кте. 

Proof. If e G PT{X), then x e P^(e) с ^^(e). It follows from (lO) that e e Pj{x) = 
= P**(x) с Kj{x). (14) imphes that x°K^e. 

Lemma 4 Let е , / б 5 awd let e^- = e,f^ = f. If e'^Kjf, then e = f. 

Proof. Using (14) we obtain e e Kj{f). Let A = {ue SlfePr{u)], We shall show 
that A G ̂ {Kr) = ßF{P% V P**) = J^(P*) n # ' ( Р Г ) (see (5)). If P^(x) n Л Ф 0 
for some xeS, then there exists w such that ue A and w e Pj{x). This impHes that 
/ e PT(W) CZ P^(X) and thus we have хеА.Ъу Lemma 1, Л 6 J^(P^). If x e Рт*(^)» 
then by (7) and (10) we have x e Р^*(м) = Pj{u) for some ue A. This imphes that 
Pj{x) cz Pj{u). Since/G PT{U), hence, by {19), f e Pj{x) and thus x e A. This means 
that Р**(Л) с A and according to (3) we obtain A = Р**(Л) G J ^ ( P * * ) . Therefore, 
Л G ^(Kj). Since/ G Л, (2) and (4) imply e e Kj{f) cz A and thus we have / G Pj{e) -
= {e} (see (17)). Therefore, e = f. 

Theorem 1. Let x, y e S. Then x°Kjy if and only if there exists an idempotent e 
of S such that 

(21) eePr{x)nPr{y). 

Proof . Let x'^Kjy. By (19) there exist e,f of S such that e = e^ e Рт(х) and / = 
= / ^ e Рт{у)- Lemma 3 imphes that e°Kjf. According to Lemma 4, we have f = e 
and e e Рт{х) n Рт{у)-

Let (21) hold. Then according to Lemma 3, we have x'^Kje and y'^Kje. This impHes 
that x'^Kjy. 

Lemma 5. К ̂  K^ and °K с ""Kj. 

Proof. Evidently P g P v T = P^ and (9) impHes that P* ^ P? and P** ^ P^*. 
Therefore, К ̂  K^. By (12), we have °K с ^K^. , 

Lemma 6. / / e is an idempotent of S, then eKj^ = Kj^e = H^. 

Proof. See Theorem 8 in [4]. 
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Put L T = L V Т, R7. = R V Т and My. = Л4 V T. Note that Mj = Lj v Rj, It 
follows from (5) that ^(Lj) [^{Rj), ЩМ^)] is the set of all closed left [right, two-
sided] 'deals of S (including 0). 

Lemma 7. We have 

1. ""L = ''Lj and L = L^*, 
2. °R = X ^nd R = Rj*. 
3. °M = ^M .̂ o/îJ M = УИ**. 

Proof. Let X e S. It follows from (16), (17), (18) and (5) that L{x) e ^{Lj). This 
implies that L(x) = Ly(x). By (14), we have °L = °Lj. Further, by (10), we obtain 
that L(x) = IT {^). According to (8), we have L^ Ij"". 

Analogously we can prove the statements 2 and 3. 

Lemma 8. L ^ R if and only if Lj ^ Rj. 

Proof. If L ^ R, then L̂ . = L v T ^ R v T = R .̂ Let L^ ^ R^. Then LT(X) C: 
с Rj{x) for every x e S. According to the proof of Lemma 7, we have L(x) c: R(x). 
It follows from (8) that L ^ R. 

Lemma 9. If Л a S, A -¥ 0, then 

(22) f)xS == 0 xS 
xeA xeT(A) 

holds. 

Proof. Let z 6 П ^S. Suppose that z ф f] xS. It follows that z фи8 for some 
xeA xeT(A) 

и e T(Ä). By (17) and (18), uS is a closed subset of the compact semigroup S and 
there exists a neighbourhood О of uS such that z ф O. Evidently uaeO for every 
aeS. It follows from the continuity of multiplication that there exist neighbour­
hoods Oj^u) of и and 0{a) of a such that Oa{u) 0(a) с О. It is clear that S = [J 0(a). 

aeS 

Since iS is a compact semigroup, there exists a finite system 0(a^), 0(02), ..., 0{a„) 
which also covers S. If we put Оо(м) = Oa^{u) n O^Ju) n ... n O^Jw), then 
Oo(u) S c: O. Since Oo{u) is a neighbourhood of м, there exists x e Л n Oo(w). 
Evidently z e xS. If z = xb for some b e S, then z e Oo{u) S a О which is a contra­
diction. Hence z 6 П ^'^- According to (3), we have A с T(À) so that f) xS (=: 

xeT(A) ' хбТ(Л) 
С П xS. Hence (22) holds. 

xeA 

Lemma 10. / / Л с S, Л ф 0, f/геп 

(23) CïSxS = П 'S:xS 
X6v4 . теТ(Л) 

holds. 

73 



Proof. Let zef)SxS. Suppose that z ф f) SxS. It follows that z ф SuS for 
xeA xeT(A) 

some и G T(A). By (17) and (18), SuS is a closed subset of the compact semigroup S 
and there exists a neighbourhood О of SuS such that z ^ O. Evidently aub e О for 
every a, b e S. It follows from the proof of Lemma 9 that there exist neighbourhoods 
Oa{au) of au such that O^(aw) S c О for every aeS. The continuity of multiplication 
implies that there exist neighbourhoods 0{d) of a and Oa{u) of м such that 
0{a) Oa{u) CI О^(ам). Evidently S = (J 0(a). Since S is a compact semigroup, there 

aeS 
exists a finite system 0(a | ) , 0(^2), ..., 0(a„) which also covers S. If we put Oo{u) ~ 

n 
= O^X^) n 0^^{u) n П ^aiw), then SOo(i/) S" с ( fj О'^^а^и)) S a О. Since 

£ = 1 ' 

Oo(w) is a neighbourhood of м, there exists x e A n Oo{u), Evidently z G SXS. 
If z = axb for some a,b eS, then z e SOo{u) S cz 0 which is a contradiction. 
Hence z G П 'S'xS. The rest of the proof is analogous to that of Lemma 9. 

xeT(A) 

Theorem 2. The following conditions on a semigroup S are equivalent: 

1. S is right regular; 
2. P* S ^TI 

3. KT̂  g Rj; 
4. °K^ с °R. 

Proof. 1 => 2. Let S be a right regular semigroup. Let Л be a closed right ideal of S, 
i.e. A e ^(RT)- If и e Рт(х) n A{xe S), then by (2) we have Rj{u) <= A. Since S is 
right regular, x e x"S for every positive integer n. It follows from Lemma 9 that 
X e 0 vS = П ^^- This implies that xeuS cz Rj{u) <=: A. By Lemma 1 we have 

veP(x) vePjix) 

A e #'(P*). It follows from (6) that P* ^ R̂ -. 

2 => 3. Suppose Pj ^ Rj. Since P ^ R, it holds Pj ^ R^. According to (9) and 
Lemma 7, we have P** ^ R** = R ^ Rj. Thus K^ = P* v P** ^ Rj. 

3 => 4. This follows from (12) and from Lemma 7. 
4 => 1. If °KT cz °R, then by Lemma 5 we have °K с K̂̂ - с °R. It follows from 

Theorem 6 in [3] that S is right regular. 

The dual statement reads as follows: 

Theorem 3. The following conditions on a semigroup S are equivalent: 

1. S is left regular; 
2. P* S Lj; 
3. Kr ^ Lj; 
4. ""Kj cz ^L. 
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Theorem 4. The following conditions on a semigroup S are equivalent: 

1. S is a union of groups; 

3. KjSf^T^ ^-T'^ 
4. "^Kj с °H. 

Proof. 1 => 2 => 3. This follows from Theorem 2 and Theorem 3. 

3 =^ 4. It follows from (12), Lemma 7 and (13) that °K^ с \Rj л Lj) = ^R^ n 
n °L^ ^''Rn'^L^ °(R л L) = °H. 

4 => L If ^K .̂ с °H, then.by Lemma 5 we have °K с °H. It follows from Theorem 
8 in [3] that S is a union of groups. 

Theorem 5. The following conditions on a semigroup S are equivalent: 

1. S is intraregular; 
2. P* ^ Mji 
3. Kr й Л4г; 
4. °Кт с °УИ. 

Proof. 1 => 2. Let S be an intraregular semigroup. Let Л be a closed two-sided 
ideal of S, i.e. Ä e ^{tAj). If и e Pj{x) n Л (x e S), then by (2) we have Nij{u) с A, 
For every positive integer щ we have x"+^ e Sx^S. It follows from Theorem 9 of [3] 
and (6) that Sx^'S e ^Щ a #^(P*). Lemma 2 in [3] implies that x e Sx^'S. It 
follows from Lemma 10 that x e f) SvS = f) SvS. This implies that x G SUS С 

vePix) vePj(x) 

c= Mj[u) с A, It follows from Lemma 1 that A e ^(Pj). By (6) we have P* ^ УИ̂ . 

2 => 3 => 4. The proof is analogous to the proof of Theorem 2. 

4 =^ 1. If °K^ с °M, then by Lemma 5 we have °K с °M. It follows from Theorem 
9 of [3] that S is intraregular. 

Theorem 6. The conditions of Theorems 2, 3, 4 an^i 5 anJ the following condition 
on a semigroup S are equivalent: 

Proof. 2 of Theorem 2 => 2 of Theorem 5. If P* ^ Rj, then P? ^ Ry ^ Mj. 

2 of Theorem 5 => 1 of Theorem 4. Let x G S. It follows from (19) that e e Pj{x) 
where e^ = e. By Theorem 1 and Lemma 6 we have ex e H^, (15) and (6) imply that 
e e SexS e ^{Mj) с ^(^Pj). According to Lemma 1, we obtain that x e SexS. 
Then there exist a, b e S such that x = aexb. If we put с = ae, then x = cexb and 
с = ce. This implies that x = с"гхЬ" and c" = c"e for any positive integer n. Let 

75 



/ e Pj(c) where / ^ = / (see (19)). Then by Lemma 9 we have xe () vS = П vS 
veP(c) yeP^ (c) 

SO that X efS. Since P(c) = P{c) e, we obtain by (18) and (17) that Pj{c) = Рт(с) e. 
Since / G Prie) e, it holds f = ue for some w G PT(C). Therefore f = ue = ue^ = fe. 
Since X G / S , X = fz holds for some z G S. This implies that x = fz = pz = / x = 
= /ex. According to (19), we have ex = xe and thus R{xe) с R(x) = R(fex) = 
= R(/xe) = R(xe). Therefore R(x) = R{xe) = R(ex) = eR{x), Since x G eR{x), it 
s X = ew for some w G R(X). This implies that x = ew = e^w = ex e H^. Hence S 
s a union of groups. 

4 of Theorem 4 =^ °K^ - °H. Suppose ""Kj с °H. If °K^ Ф °H, then there exist 
X, у G 5 such that K̂ -̂  Ф Kjy and K^^ с H^ = Ну => K^ .̂ Let e G P7-(X) (e^ = e) and 
l e t /G Рт(у) (/^ = / ) • Lemma 3 implies that e e Kj^ a n d / G Kjy and thus we obtain 
that e, fe H^. According to (15), we have e = f so that Kj^ = Kj^ = Kjy which is 
a contradiction. Hence K̂̂ - = °H. 

^Kj = °H => 4 of Theorem 3. This follows from °H cz ^L (see (12)). 
2 of Theorem 3 => 1 of Theorem 2. Let x e S. It follows from (19) that e e Pj{x) 

where e^ = e. Since eeSeeß^{Lj) с #'(P*) (see (6)), hence Рт(х) n Se Ф 0.|By 
Lemma 1 we have that xe Se. Therefore x = ue for some и e S and so x = ue ~ 
== ue^' = xe. According to Lemma 6 and Lemma 3, we have x G H^. This implies 
that S is a union of groups and therefore, S is right regular. 

Theorem 7. The following conditions on a semigroup S are equivalent: 

1. S is a semilattice of right groups; 
2. S is a union of groups and Lj ^ R-y.; 

3. P;uLru f^Tl 
4. KjSLr^ RTI 
5. ""Kj с °L с °R; 
6. ""Kj = ^L 

Proof. 1 => 2. It follows from Theorem 10 of [3] that S is a union of groups and 
L ^ R. By Lemma 8 we have Lj g Rj. 

2 => 3 => 4 => 5. This follows from Theorem 3, Theorem 4 and from (12). 
5 => 6. If °L с °R, then by Theorem 6 and (13) we have ^K^ = °H = °L. 
6 => 1. If °Kj = °L, then by Theorem 6 and Lemma 5 we have ""K cz ""Kj =-

= °L = °H cz °R. Theorem 10 in [3] implies that S is a semilattice of right groups. 

We have: 

Theorem 8. The following conditions on a semigroup S are equivalent: 

1. S is a semilattice of left groups; 
2. S is a union of groups and Rj S ^r? 
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3. P^URTU Lrl 

4. KruRru LT, 
5. ^K .̂ c= °R с °L; 

6. ""Kj = °R. 

Theorem 9. The following conditions on a semigroup S are equivalent: 

1. S is a semilattice of groups; 

2. S is a union of groups and Lj = R̂ -; 

3. P^uLr = Rrl 

4. KruLr = RT; 

5. °K^ c: ^L - °R; 

6. °K^ = U = °R; 

7. °K^ - °M. 

Proof. 1 => 2. It follows from Theorem 12 of [3] that S is a union of groups and 
L = R. Thus we have Lj = Rj. 

2=>3=>4=>5=>6. This follows from Theorem 7 and Theorem 8. 

6 =>1. It follows from Theorems 7 and 8 that Lj = Rj. According to Lemma 8 
and its dual, we have L = R = M so that ""Kj = °L = °M. 

7 => 1. Theorem 6 implies that ^H = K̂̂ - = /̂И = °L = °R. According to Lemma 
5, we have °K c: "̂L = °R. It follows from Theorem 12 in [3] that S is a semilattice 
of groups. 
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