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GREEN’S RELATIONS ON A COMPACT SEMIGROUP

BEpRICH PONDELICEK, Podébrady

(Received May 4, 1970)

Let S be a semigroup. Then °K will denote the equivalence on S: for a, be S,
a®Kb if and only if there exist positive integers m, n such that a” = b". In [1] J. T.
Sedlock studies necessary and sufficient conditions on a periodic semigroup S in
order that °K coincide with any one of the Green relations [2]. In our paper [3] we
considered an arbitrary semigroup having similar properties.

The fact that any element x of a compact semigroup S belongs to some idempotent
(see [4]) leads us to define an equivalence °Ky on S by: for a, b € S, a°K;b if and only
if the elements a, b belong to the same idempotent. The purpose of this article is to
investigate the structure of compact semigroups such that °K; coincides with any one
of the Green relartions.

Let %(S) denote the set of all ¥-closure operations for a non-empty set S, i.e.

(0) Uc%(S)< U:expS > exp S
and

(1) U =0,

(2) A< Bc S=U(4) < U®B),
3) A < U(4) foreach Ac S,
@ U(U(4)) = U(4) foreach Ac S
hold.

A subset 4 of S will be called U-closed if U(4) = A. The set of all U-closed subsets
of S will be denoted by #(U).

Let U, Ve %(S). Then we define

U<V<U4) cV(4) foreach 4<S.
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We have

(%) FU v V)=7ZU)nF(V),
(6) UsVeZ(V)c #(U).

We shall denote by 2(S) the set of all 2-closure operations for a set S, i.e. 2(S) <
< %(S) and for every U € 2(S) and for every A = S

() U(4) = U U(x)
xeA
holds. If U, ¥V € 2(S) then
(8) Us<VeU(Kx) cV(x) foreach xeS§.

Let U e 4(S). We define U* € 2(S). If A = S then x € U*(4) if an only if U(x) N
N A # 0. For U, V e 4(S) we have

9) UL V= Uk S V*|

(10) U(x) = U**(x) forevery xeS,
(11) U* = U*** and U** < U.
See [5].

Let U e 4(S). We shall introduce the equivalence °U on S by: for x, y € S, x°Uy
if and only if U(x) = U(y). For any element x of S, let U, denote the °U-class of S
containing x. If U, V € 4(S) then we have

(12) UsvV=°Uc®v,

(13) UAV)=>Un°V,

(14) x°Uy < xeU(y) and yeU(x).
See [3]. '

Let S be an arbitrary semigroup. Forany A = S, 4 # 0, let us put L(4) = SA U 4
and R(4) = AS U A. Finally, L(0) = 0 = R(9). Clearly L, Re 2(S). Put M = L v R,
H = L A R. F(L) [F(R), F(M), F(H)] is the set of all left [right, two-sided, quasi)
ideals of S (including 0). It is known that ‘

(15) H, is the maximal subgroup of S belonging to the idempotent e .

PutP(0) = 0.If 4 = S, A + 0, then by P(A) we denote the subsemigroup generated
by all elements of A. Evidently P € %(S), P < H and #(P) is the set of all subsemi-
groups of S (including 0). See [5].

Let K = P* v P** Then K = K* and x°Ky if and only if there exist positive
integers n, m such that x" = y™. See [3].
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Let now S be a compact (Hausdorff) semigroup. If A < S, then by T(A) we denote
the closure of 4. It is known that T € 4(S) and .

(16) T(AUB)=T(A) UT(B) for AcS and Bc S,
(17) T(x) = {x} foreach xeS.

We shall prove that

(18) T(4B) = T(A)T(B) for 9 +Ac S andfor 0 Bc< S.

Actually, it follows from 2.1.3 [6] that T(4) T(B) = T(4B). Since T(4), T(B) are
compact, it follows from 2.1.5 [6] that T(A4) T(B) is also compact and thus we have
T(4) T(B) € Z(T). By (3), we obtain that 4 = T(4), B = T(B). Hence AB <
< T(A) T(B). Using (2), we have T(4B) = T(T(4) T(B)) = T(4) T(B). This means
that (18) holds.

Put P, = P v T. It follows from (5) that #(Py) is the set of all closed subsemi-
groups of S (including ). It is known from [4] that for x € S

(19) Pr(x) = T(P(x)) is the commutative subsemigroup having a unique
idempotent.

Lemma 1. Let A = S. Then A € #(PY) if and only if
(20) Pix)nA+0=>xeA
for every x € S.

Proof. Let A € #(P}). If P(x) n A + 0 for some x € S, then there exists y such
that y € P(x) and y € A. It follows from (2) that x € P;(y) = P3(4) =

Let (20) hold for every x € S. Evidently P} € 2(S). If A # 0, then by (7) we have
P3(A) = P*(x) If y e P5(A), then y e P}(x) for some x € A. Since x € Py(y), it

follows by (20) that y e A. Therefore, Pf(4) = A. It follows from (3) that 4 =
= P3(4) e Z(P}).

Remark. Let A < S, A % 0. Then PF(A) is the set of all almost nilpotent elements
(in topological sense) with respect to A. (See [7].)

Proof. If x € P{(A4), then there exists y € A n Py(x) = A n T(P(x)). If O is an
arbitrary beighbourhood of A, then O is also a neighbourhood of y and thus x" e O
for some positive integer n. Therefore, the element x is almost nilpotent with respect
to A.

If x is an almost nilpotent element with respect to 4, then in every neighbourhood
of A there exists at least one element of P(x). Suppose that x ¢ P3(4). This implies
that Py(x) n A = 0. Evidently O = S — Py(x) = S — T(P(x)) is a neighbourhood
of A and A n P(x) = 0, which is a contradiction. Therefore, x € P(4).
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Definition. K; = P; v P7*.

Lemma 2. K; = K},

Proof. (9) implies that Pf* < K7 and P7** < K7. It follows from (11) that
Ky = P} v Pf* < K}. According to (9) and (11), we have K} < KI* < K.
Hence K; = K;.

Lemma 3. Let x, e€ S and let * = e. If e € Py(x), then x°Kre.

Proof. If e e P(x), then x € P7(e) = Ky(e). It follows from (10) that e € Py(x) =
= P3*(x) = Ky(x). (14) implies that x°Kre.

Lemma 4. Let e, f € S and let ¢* = e, f* = f.If e°Kyf, then e = f.

Proof. Using (14) we obtain e € K¢(f). Let A = {u € S|f € Py(u)}. We shall show
that Ae #(K;) = Z(P v Pi*) = Z(P}) 0 #(PF*) (see (5)). If Po(x)n A +0
for some x € S, then there exists u such that u € 4 and u e Pr(x). This implies that
fePy(u) = Py(x) and thus we have x € A. By Lemma 1, 4 € Z(P}). If x € PF¥(A),
then by (7) and (10) we have x € P;*(u) = Py(u) for some u € A. This implies that
P;(x) = Py(u). Since f € Py(u), hence, by (19), f € Py(x) and thus x € 4. This means
that P7*(A) = A and according to (3) we obtain 4 = P}*(4) € #(P§¥). Therefore,
A e Z(Ky;). Since f € 4, (2) and (4) imply e € K{(f) = A and thus we have f € P,(e) =
= {e} (see (17)). Therefore, ¢ = f.

Theorem 1. Let x, y € S. Then x°Kyy if and only if there exists an idempotent e
of S such that ‘

(21) ee Pr(x) n Py(y).

Proof. Let x°Kyy. By (19) there exist e, f of S such that e = e? € Py(x) and f =
= f? € P¢(y). Lemma 3 implies that e°K,f. According to Lemma 4, we have f = e
and e € Py(x) N Py(y).

Let (21) hold. Then according to Lemma 3, we have x°Kye and y°Kye. This implies
that x°K;y.

Lemma 5. K £ K; and °K < °K;.

Proof. Evidently P < P v T = P, and (9) implies that P* < P} and P** < PF*.
Therefore, K £ K;. By (12), we have °K < °K;.

Lemma 6. If e is an idempotent of S, then eK;, = Ky,e = H,.

Proof. See Theorem 8 in [4].
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Put Ly =LV T,Rr=RVvTand M; =M v T. Note that M; = L, v R.. It

follows from (5) that Z(Ly) [#(R;), #(M;)] is the set of all closed left [right, two-
sided] “deals of S (including 9).

Lemma 7. We have

1. °L = °L; and L = L}¥,
2. °R = °R; and R = R},
3. °M = °M; and M = M¥*.

Proof. Let x € S. It follows from (16), (17), (18) and (5) that L(x) € #(L;). This
implies that L(x) = Ly(x). By (14), we have °L = °L;. Further, by (10), we obtain
that L(x) = L7*(x). According to (8), we have L = Ly*.

Analogously we can prove the statements 2 and 3

Lemma 8. L < R if and only if L; < R;.

Proof. f L< R, then Ly =L v T<R v T=R; Let L; £ R;. Then Li(x) =
< Ry(x) for every x € S. According to the proof of Lemma 7, we have L(x) < R(x).
It follows from (8) that L < R.

Lemma9.If A c S, A + 0, then

(22) NxS= N xS

xeAd xeT(4)
holds.

Proof. Let z € n xS. Suppose that z ¢ () xS. It follows that z ¢ uS for some

xeT(A4)
u € T(A). By (17) and (18), uS is a closed subset of the compact semigroup S and
there exists a neighbourhood O of uS such that z ¢ 0. Evidently ua € O for every
ae S. It follows from the continuity of multiplication that there exist neighbour-
hoods 0,(u) of u and O(a) of a such that 0,(u) O(a) = O.1tis clear that S = | O(a).

acS
Since S is a compact semigroup, there exists a finite system O(a,), O(a,), -.., O(a,)
which also covers S. If we put Og(u) = 0,,(u) n O,,(u) ... O,(u), then
0o(u) S = 0. Since O4(u) is a neighbourhood of u, there exists x € A4 N Og(u).
Evidently z € xS. If z = xb for some b € S, then z € Oy(u) S = O which is a contra-

diction. Hence z € [} xS. According to (3), we have A = T(A) so that [} xS <
xeT(4) xeT(A)
< N xS. Hence (22) holds.

xed

Lemma 10. If A = S, A + 0, then

(23) NSxS = N SxS

x€A xeT(A)
holds.
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Proof. Let ze () SxS. Suppose that z¢ () SxS. It follows that z ¢ SuS for

xeA xeT(A)

some u € T(A). By (17) and (18), SuS is a closed subset of the compact semigroup S
and there exists a neighbourhood O of SuS such that z ¢ 0. Evidently aub e O for
every a, b € S. It follows from the proof of Lemma 9 that there exist neighbourhoods
0.(au) of au such that O/(au) S = O for every a € S. The continuity of multiplication
implies that there exist neighbourhoods O(a) of a and O,(u) of u such that
0(a) 0,(u) = O,(au). Evidently S = U O(a). Since S is a compact semigroup, there

exists a finite system O(a,), O(a,), .. O(a ) which also covers S. If we put Oo(u) =
= 0,(u) N 0, (u) A ...... N O,(u), then SOu(u) S = (n 0,(au)) S = 0. Since
i=1

0o(u) is a neighbourhood of u, there exists x € A N Oy(u). Evidently : e SxS.
If z = axb for some a,beS, then ze SOy(u) S = O which is a contradiction.

Hence ze () SxS. The rest of the proof is analogous to that of Lemma 9.
xeT(A4)

Theorem 2. The following conditions on a semigroup S are equivalent:

1. S is right regular;
2. P* < Ry
3. K; = Ry
4. °K; < °R.

~ %

=
A TIA

Proof. 1= 2. Let S be a right regular semigroup. Let A4 be a closed right ideal of S,
ie. Ae Z(Ry). If uePy(x) n A(x € S), then by (2) we have Ry(u) = 4. Since S is
right regular, x € x"S for every positive integer n. It follows from Lemma 9 that

x€e ) vS= () vS.This implies that x e uS = Ry(u) = A. By Lemma 1 we have
veP(x) vEPT(x)

A e Z(PY). It follows from (6) that P} < Ry.

2 = 3. Suppose P} < R;. Since P < R, it holds P; < R;. According to (9) and
Lemma 7, we have P;* < R}* = R £ R;. Thus K; = P} v P§* < R,.

3 = 4. This follows from (12) and from Lemma 7.

4 = 1. If °K; < °R, then by Lemma 5 we have °K < °K; < °R. It follows from
Theorem 6 in [3] that S is right regular.

The dual statement reads as follows:

Theorem 3. The following conditions on a semigroup S are equivalent:
1. S is left regular;
2. P: =Ly
3K =Ly
4. °K; < °L.
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Theorem 4. The following conditions on a semigroup S are equivalent:

S is a union of groups;
P <Ry A Ly

K; < R; A Ly

°K; <= °H.

L=

Proof. 1 = 2 = 3. This follows from Theorem 2 and Theorem 3.
3= 4. It follows from (12), Lemma 7 and (13) that °K; = °(R; A L;) = °Ry 0
Nn°L; =°Rn°L="°R A L)="H.

4 = 1. If °K; < °H, then by Lemma 5 we have °K <= °H. It follows from Theorem
8 in [3] that S is a union of groups.

Theorem 5. The following conditions on a semigroup S are equivalent:

. S is intraregular;
P: = Mg
Ky < My;
°K; = °M.

el o

Proof. 1= 2. Let S be an intraregular semigroup. Let 4 be a closed two-sided
ideal of S, ie. A e F(M;). If u € Py(x) n A (x € S), then by (2) we have My(u) < A.
For every positive integer n, we have x"*? € Sx"S. It follows from Theorem 9 of [3]
and (6) that Sx"Se #(M) = F#(P*). Lemma 2 in [3] implies that x e Sx"S. It

follows from Lemma 10 that xe  SvS = () SvS. This implies that x € SuS =
veP(x) vePr(x)

< My(u) = A. Tt follows from Lemma 1 that 4 € #(P}). By (6) we have P} < M;.
2 = 3 = 4. The proof is analogous to the proof of Theorem 2.

4 = 1. If °K; = °M, then by Lemma 5 we have °K < °M. Tt follows from Theorem
9 of [3] that S is intraregular.

Theorem 6. The conditions of Theorems 2, 3, 4 and 5 and the following condition
on a semigroup S are equivalent:

°K; = °H.

Proof. 2 of Theorem 2 = 2 of Theorem 5. If P < R;, then Py < R; £ M.

2 of Theorem 5 = 1 of Theorem 4. Let x € S. It follows from (19) that e € Py(x)
where e? = e. By Theorem 1 and Lemma 6 we have ex € H,. (15) and (6) imply that
ee SexSe F(M;) = Z(PY). According to Lemma 1, we obtain that x e SexS.
Then there exist a, b € S such that x = aexb. If we put ¢ = ae, then x = cexb and
¢ = ce. This implies that x = c"exb" and ¢" = c"e for any positive integer n. Let

75



f € Py(c) where f2 = f (see (19)). Then by Lemma 9 we have xe () vS = () »S
veP(c) vePy (c)

so that x € fS. Since P(c) = P(c) e, we obtain by (18) and (17) that Py(c) = Pr(c) e.
Since f € Pr(c) e, it holds f = ue for some u € Py(c). Therefore f = ue = ue® = fe.
Since x € fS, x = fz holds for some z € S. This implies that x = fz = 2z = fx =
= fex. According to (19), we have ex ='xe and thus R(xe) = R(x) = R(fex) =
= R(fxe) = R(xe). Therefore R(x) = R(xe) = R(ex) = eR(x). Since x e eR(x), it
s x = ew for some w e R(x). This implies that x = ew = e’w = ex € H,. Hence S
s a union of groups.

4 of Theorem 4 = °K; = °H. Suppose °K; = °H. If °K; =% °H, then there exist
x, y € S such that K, % Ky, and K;, = H, = H, o K. Let e € P(x) (¢* = €) and
let f € Px(y) (f* = f). Lemma 3 implies that e € Ky, and f € Ky, and thus we obtain
that e, fe H,. According to (15), we have e = f so that K;, = K;, = K;, which is
a contradiction. Hence °K; = °H.

°K; = °H = 4 of Theorem 3. This follows from °H < °L (see (12)).

2 of Theorem 3 = 1 of Theorem 2. Let x € S. It follows from (19) that e € Py(x)
where e = e. Since ee See F(L;) = F(PY) (see (6)), hence Pr(x) n Se + 0.;By
Lemma 1 we have that x € Se. Therefore x = ue for some u € S and so x = ue =
= ue® = xe. According to Lemma 6 and Lemma 3, we have x € H,. This implies
that S is a union of groups and therefore, S is right regular.

Theorem 7. The following conditions on a semigroup S are equivalent:
1. S is a semilattice of right groups;

. S is a union of groups and L; < Ry;

P: S Ly SRy

Ky = Ly =Ry

°K, < °L  °R;

°K,; = °L.

N YR W

Proof. 1 = 2. It follows from Theorem 10 of [3] that S is a union of groups and
L < R. By Lemma 8 we have L; < R;.

2 = 3= 4 = 5. This follows from Theorem 3, Theorem 4 and from (12).
5= 6. If °L = °R, then by Theorem 6 and (13) we have °K; = °H = °L.

6= 1. If °K; = °L, then by Theorem 6 and Lemma 5 we have °K < °K; =
= °L = °H < °R. Theorem 10 in [3] implies that S is a semilattice of right groups.

We have:

Theorem 8. The following conditions on a semigroup S are equivalent:

1. S is a semilattice of left groups;
2. S is a union of groups and Ry < L;;
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Theorem 9. The following conditions on a semigroup S are equivalent:

1. S is a semilattice of groups;

2. S is a union of groups and Ly = Ry;

3. P <Ly =Ry

4. K; < L; =Ry

5. °K; = °L = °R;

6. °K; = °L = °R; )
7. °K; = °M.

Proof. 1 = 2. It follows from Theorem 12 of [3] that S is a union of groups and
L = R. Thus we have L; = R;.

2= 3= 4= 5= 6. This follows from Theorem 7 and Theorem 8.

6 = 7. It follows from Theorems 7 and 8 that L; = R;. According to Lemma 8
and its dual, we have L = R = M so that °K; = °L = °M.

7 = 1. Theorem 6 implies that °H = °K; = °M = °L = °R. According to Lemma
5, we have °K = °L = °R. It follows from Theorem 12 in [3] that S is a semilattice
of groups.
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