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1. INTRODUCTION

The well known theorems of Perron and Frobenius have been generalized to
operators in a partially ordered Banach space (cf. [7]). This has motivated several
authors to consider linear operators (or matrices) in a finite dimensional space
which leave a cone invariant (cf. [1] and [16]). Our purpose is to continue the exten-
sions of Perron-Frobenius theory to the more general case of a matrix nonnegative
with respect to a cone. We assume a familiarity with the papers of BIRKHOFF [1] and
VANDERGRAFT [16].

Throughout we shall use iff for if and only if, and on occasion we use V and 3
for for all and there exists respectively. For cones K we let K° denote the interior
of K, 0K its boundary, and if F is a face of K (definition 2 below) F denotes the
relative interior of F. Finally, if A = 0 then g(A) denote the Perron root of 4, that is,
the eigenvalue of A which is the spectral radius.

2. CONES AND PARTIAL ORDERS

Definition 1. A set K in a real vector space V of dimension r is said to be a cone iff

(i) K is a nonempty closed subset of V,
(i) K + K € K,
(iii) aK < K for all o > 0,
(iv) K n (—K) = {0}. ’
If in addition K satisfies '
(V) K- K=V,

then K is a full cone. In general we shall use K to denote a full cone, but we shall
omit the word full.
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As is well known a cone K determines a partial order in V. For this partial order
we use the notation

x = 0iff x € K (x is nonnegative),
x > 0iff x = 0 and x = 0 (x is positive),
x > 0iff x € K° (x is strictly positive).

Definition 2. Let K be a cone. By a face F of K is meant a subset of K which satisfies
(@), (i), (iii), (iv) above and the following condition:
0<y=x and xeF implies yeF.

This definition of face is due to HANS SCHNEIDER. In what follows we may regard
vectors in V as column vectors in R" and vectors in the dual space may be regarded as
row vectors. Thus if x € R", if A is an n x n matrix, and if f € (R")*, then fAx and fx
are just the usual products of matrices.

Finally, we set
K* = {feV*|fx =0, all xeK}.

If S = K, we shall denote by &(S) the intersection of all faces containing S. Clearly,
@(S) is a face. It is called the face generated by S.

The set of all n X n matrices
C={A|4K < K}

is easily seen to be a cone in the space of all n x n matrices. With respect to C we
have two additional refinements of the order relation.

Definition 3. Let A € C.

(i) A is irreducible [16] iff A leaves invariant no face of K except {0} and K itself.
(if) A is primitive, denoted by A (>0, iff

VxedK\{0}3In A"x > 0.

It is well known [7] that for fe K*, f > 0 (in the partial order induced by K*) iff
fx > Ofor all x > 0. An analogous result holds for 4 > 0.

Proposition 1. 4 > 0 iff Ax > 0 for all x > 0.

Proof. Let us first observe that if feV* and x €V, then the operation defined by

(f, x) A = fAx

is a linear functional on the set of n x n matrices. In particular, if fe K*, x e K,
then (f, x) e C*.
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Suppose first that 4x > 0 does not hold for all x > 0. Since Ay > 0 for some
y > 0implies AK® = K°, there is an x € 9K \ {0} for which Ax € 0K. But then there
is a linear functional f > 0 for which the hyperplane fy = 0 contains 4x. Let I =
= (f,x)e C*, I is not the zero functional. We have I4 = fAx =0, so A¢C°.
Thus A4 € C° implies Ax > 0 for all x > 0.

Conversely, suppose 4 > 0 for all x > 0. The mapping (4, x) > Ax is jointly
continuous in A and x. Let | .|| be a norm on Vand let

s=Knlx|]x] =1}

For each x € S there are open neighborhoods U,(A) and N(x) of 4 and x respectively
such that U,(4) N(x) = K° since Ax > 0. However S is compact. We may therefore
extract a finite subcover N(x,), ..., N(x,) of it and take the corresponding neigh-
borhoods U,,(4), ..., U, (4) of A. Let

U= NU4).

U is an open neighborhood of A. Let BeU. If x € S, then x € N(x;) for some i.
Since B e U, (4), we have Bx > 0. Thus BS < K°. If x e K\ {0}, then x| ™' x € S.
Thus

Bx = [x] B(|x[ ' x) » 0

and so U < C°. Hence 4 € C° and the proposition is proved.

3. PRIMITIVE MATRICES

KRrEeIN and RUTMAN [7 Definition 6.1] have introduced the concept of a strongly
positive operator. However, in the matrix case it is the generalization of primitivity,
so we employ this latter term in definition 3.

Proposition 2. A is primitive iff 3In Vx > 0, A"x > 0.

Proof. Since the condition is clearly a strengthening of definition 3, we need
prove only that if A is primitive then n is independent of x.

Let B= {xeV|x"x =1} and let Q = K n B. Q is compact, and A restricted
to Q remains continuous. For each x € Q, there is an integer n(x) and a set U(x)
open in the relative topology of Q such that '

A" U(x) = K°.

The collection {U(x) | x € @} is an open cover from which we may extract a finite
subcover, say U(x1), ..., U(X,) with corresponding exponents n(xy), ..., n(x,,). Let
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n = max {n(x,), ..., n(x,,)}. For any x € Q, 3x; such that x € U(x;). Thus
A'x = AT ATED) € KO
If x € K° then Ax € K° so A"x € K°. If x € 0K \ {0}, then (x"x)™'/? x € Q. Thus
(xTx)""2 4"x = A((x"x)""* x)eK°,

whence A"x € K°, and the theorem is proved.

1t is clear that if A is primitive, then A is irreducible. Let us remark in passing that
if A is irreducible the spectral radius g(4) > 0, if dimV > 1.

Theorem 1. A (> 0 iff A leaves no subset of 9K other than {0} invariant.

Proof. Let A (> 0. Then 3n for which
*) A {0)) = K°
by proposition 2. If S = 0K is invariant under 4, then

A'S = Sc K.

Hence by (*) S = {0}.

Conversely suppose A4 leaves no nonzero subset of dK invariant. This implies that

ker A n 0K = {0} .

Let x € 0K \ {0}, and consider the sequence

Xo =X, Xy =Ax,..,x, = A"x, ...

If there is no n such that A"x > 0, then the set S = {xo, X1 } satisfies
S 0K\{0}, AS<=S.

However, this is impossible, so there is an n = n(x) such that A"x > 0. Hence A is
primitive.

When K is the nonnegative orthant the relation between 4 (> 0 and A¥ irreducible
is well known (see Ptak [12]). Our analog to this theorem is

Theorem 2. If K is a polyhedral cone with the positive basis {x', ..., x?}, then the
following are equivalent:

(1) A(> 0;
(2) A% is irreducible for k = 1,2,...;
(3) the matrices A, A%, ..., A? are irreducible, where g = 27 — 1.
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Proof. To show (1) implies (2) assume (1) hold but (2) is false. Then AK° < K°.
Assume for some k that 4* has an invariant face F. There is an m such that A™ > 0.
Then we can find an r for which rk > m and A™*F < F < 0K. On the other hand

Ark(F\ {0}) — Ark~m(Am(F\ {0})) c Ark—mKO c KO .
This contradiction establishes the implication.

(2) obviously implies (3).

Suppose (3) holds but A is not primitive. Then by theorem 1 there is a set S = 0K
such that AS = S. We assume that S is maximal; that is, S is the union of all the
proper faces F such that AF < JK. Since K is polyhedral, S is the union of finitely
many faces. Let F; = S. Then AF, is a cone. If ®(AF,) = K, there are vectors
X1, ... X, € F; and scalars o, ..., o, > 0 such that A(e;x; + ... + o,x,) > 0. This

contradicts AF; < 0K, whence F, = ®(AF,) is a face contained in S, an F, + F;.
Continuing in this fashion we obtain a sequence

* F, o AF,_, o ... o A*F,.
k 1

But there are only finitely many faces so there is an F such that A™F < F. Since the
face F, was arbitrary we may take F; = F, and the sequence (*) becomes

F, > AF,_, o ... o A*F, = A*F,

where all the inclusions are proper by irreducibility. But K has at most 27 faces, so
k < 27 — 1. This contradicts the irreducibility of 4, 4%, ..., 4% and so (3) implies (1).
For general cones (2) does not imply (1). If in R* we take

Xy
K=3|x||(x3 +x3)" < x,

X3

and let A be a rotation of the cone through an irrational multiple of 2z, then A* is
irreducible for all k. However A(0K) = 0K, so A is not primitive. If instead we take A

to be a rotation through the angle 27/N, then A', ..., AV~! are irreducible while A¥
is reducible.

4. IMPRIMITIVE MATRICES
Definition 4. Let 4 > 0 be irreducible. A is called imprimitive iff there is a set
S = 0K, S =+ {0}, such that AS < S.

Note that by theorem 1 any irreducible matrix is either primitive or imprimitive.

Proposition 3. Let A be irreducible. A is imprimitive iff there is a maximal nonzero
invariant subset S < 0K. If A is imprimitive, then S is closed.
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Proof. If such an S exists, then A4 is clearly imprimitive. If 4 is imprimitive, let {S,}
be the collection of all invariant sets of A(S, = 9K of course), and define

S =Us,.

S is obviously the maximal invariant subset of K. Let y be a limit point. Then there
is a sequence {x,} = S such that x, » y as n — oo. By continuity for k = 0, 1,2, ...,

Axx, — A*y
as n — o0. Since for all n and all k A*x, € K and 9K is closed, then 4*y € K for all k.

Thus
SU{4* k=012 ..}

is an invariant subset of A. By the maximality of S, A*ye S, k =0,1,... So S is
closed.

In the remainder of this section S will denote the maximal invariant subset of 4
whenever A is imprimitive. We shall also let T = 0K \ S. Note that T may be empty.

Theorem 3. Let A be imprimitive and let F be a face of K.
(i) F*n T+ @ implies F* = T.
(i) FAn S + @ implies F < S.
Consequently, if T consists of finitely many open faces, and in particular if K is
polyhedral, then there is a k such that
A*T = K°.

Proof. Let xe F* n T and y e F*. Then there are « > 0, k > 0 such that 0 <

< ax £ yand 0 < A*x. Then
0 < adkx < A*y,
whence 4Fy > 0.

Now let xe F* A S. Then ®(x) = F. If y € F, there is an a > 0 such that 0 <
< ay £ x. Thus 0 £ ad*y < A*xfor k = 0, 1, 2, ... But A*x € S, whence 4*y e dK.
Thus S U F is an invariant subset of dK, and by the maximality of S, F < S.

Finally, if

A
F;,

=

T=

i

1

choose x; € Ff, i = 1, ..., p. We can find k; for which
 Ahx > 0.

Let k = max {ky, ..., k,}. Then 4*T = K°.
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We know that if A is imprimitive, then for each y e Tthere is a k such that A¥y > 0.
Theorem 3 shows that if K is polyhedral, then the k may be chosen independently
of y. Whether k can be taken indepedently of y for arbitrary cones remains an open
question.

If A is imprimitive and n = 2, it is clear that S = JK.

Theorem 4. Let n = 3, and let A be imprimitive. If S\ {0} is arcwise connected,
then S = JK.

Proof. To the contrary, let us suppose that S + K. For xe K we let (x) =
= {yeK |y = ax}, the ray determined by x. Let B = {x | x"x = 1}. Then the
curve ¢ = B n S is rectifiable with endpoints x,; and x,, say. We define a distance
function ¢ on the rays of S as follows: if 1, t, € o, then o(t;, t,) is the arc length of
the segment of o determined by #; and ¢,; if x, y € S there are unique vectors ¢, €
e(x) na, t,e(y) n o and we set o((x), () = o(ty, 1,). Note that ¢ is well defined
since there is only one segment of ¢ joining ¢, and t,.

Aisirreducible, so that Ax = 0 for x € K only if x = 0. Since g is jointly continuous
in t; and ¢,, then the function Q(x, Ax) is continuous on the compact set g, and there-
fore assumes its infimum g, at some point x, € o.

Suppose g, > 0. Then as x traverses o from x; to x,, Ax determines a connected
segment of ¢. Hence g, > 0 implies that Ax moves from Ax, to x,, otherwise there
would be a y € ¢ such that Q(y, Ay) = 0 < g,. But then Ax, = Ax,, a contradiction.
Hence g, = 0. But then 0 = (X, Ax,), 0 Axo = Ax,, A > 0. This contradicts the
hypothesis that A4 is irreducible. So S = 0K.

To see that some condition on A is needed, let

_XI
K =3|%||(x] +x3)"* < x5
-x3
Let
1 0 -1 -100
ol =10, v*=1|1], °= 0|, A= 000
1 | 1 g 001
We see that 4 > 0, v € 9K for all i, and
X1 —Xy
Alx,| = 0
X3 X3
0
A is irreducible since it has but one eigenvector w = | 0| in K, and w e K°. The
1
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eigenvector w corresponds to A = 1. Since Av! = p?, and Av® = v, A is imprimitive.
Av? €K° so S #+ 9K. In fact

X1
2 2
S={|x,|eK|x; =0, x{ =x3¢,
X3

and S\ {0} is not arcwise connected.

The proof of theorem 4 depends upon the topology of 3-space, and it does not seem
to carry over to higher dimensional spaces. We have not been able to resolve the
problem of when S = 0K in general, but if 4 is invertible, we have

Theorem 5. Let A be irreducible and invertible. Then A is imprimitive with
S = K iff A=' > 0. Further, if A~! > 0, then A~ is also imprimitive.

Proof. Suppose 4~ ! > 0. Then since 4 and A~ ! are both homeomorphisms, we
have AK® < K® and A7'K° < K°. Thus A(dK) < K and A~ '(0K) < 0K, from
which it follows that A(0K) = 0K = A~ '(0K). Therefore, A is imprimitive. However,
A~! can have but one eigenvector in K, and it is in K°. Thus 4~ is irreducible and
therefore imprimitive.

Conversely, suppose A is imprimitive with S = dK. By continuity 4~! > 0 will
follow from A~!K°® < K. Suppose this is false. There exists a y € K® such that
A 'y eV\K. Since A is irreducible, there is an x > 0 for which Ax = gx, ¢ =

= o(A4) > 0. Then for all «, 0 < o < 1 we put

w, =0y + (1 —a)xeK°.
Further we have A" 'wg = 0" 'wg = 0" 'xo » 0 and 4™ 'w, = A" 'y e V\K. Thus

thereis a f > 0for which w = wj satisfies 4~ 'w = z € 9K. But then Az > 0 contrary
to the hypothesis that S = 9K. Therefore, A" 'K® < K, and the theorem is proved.

5. OTHER ASPECTS OF NONNEGATIVITY

Another useful strengthening of the notion of nonnegativity (cf. [8], [10], and [11])
is contained in the following

Definition 5. A matrix 4 = 0 is called u,-positive iff Ju > 0, Vx > 0, o, § > 0,
3k > 0 an integer such that

au < A*x < Bu.

If u > 01is any vector for which the conditions in definition 5 are satisfied, then we
say that A is u,-positive for u.
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Proposition 4. If A is u,-positive for u and u > 0, then A is primitive. If 4 is
u,-positive and irreducible, then u > 0.

Proof. If A4 is irreducible, then there is an x > 0 such that Ax = gx. However for
suitable o, B, k we have

ou < A < Pu, au < A% =< Pu.

But x > 0 implies u > 0. So for u > 0 and for each y € K\ {0} there are a, k such
that

0 <ou < Ay,
whence A4 is primitive.

It is obvious that if A is primitive, then A is irreducible and u-positive. However,
there need be no relationship between irreducibility and u,-positivity for the same
cone K (cf., however, [16]).

First let K be the nonnegative orthant and let

A= 01 .
10
Clearly A is irreducible but not primitive. Hence by proposition 4 A cannot be u,-
positive. Again, let K be the nonnegative orthant but take

A= 1 .
00
Then A is reducible. However, A is u4-positive for u = [(1)]

The relations among irreducibility, u-positivity, and primitivity in finite dimension-
al spaces can be derived from the next theorem.

Theorem 6. Let A be uy-positive for u. Then there is an integer g for which
A(K N (0) < (0(u))*

Proof. By proposition 4 we need be concerned only with the case u € 0K. We have
of course that u € (#(u))*. Note that for any x € K, Ax € K. For if Ax € K°, then for
all p, A’x > 0. But for some integer r and a, f > 0,

0<au<A’x§ﬂu,‘

whence u > 0 contrary to hypothesis. Let x, > 0 be an eigenvector of A4 belonging
to ¢. Then from

O<ou <APxg Z Pu, O0<oau < 0Px9 < Pu
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we infer that x, € ®(u)*. Thus
0 < adu £ oPAx, = 0"*'xy < BAu .

Since x, € ®(u)*, we have Au e d(u)*. Therefore, A"u e d(u)* for all r, and so if
APx e ®(u)®, then A%x e ®(u)" for all ¢ = p. Also if y € &(u), then from

0syy=u, 0=y Ay £ Au £ you

we infer that Ay e ®(u). Thus &(u) is an invariant face of A4 and ®(u) — ®(u) is an
invariant subspace of 4. Consequently, for a suitably chosen basis of ¥ we have that

ye®(u) implies y = [}(')1] . and A = [A1 Bo] .

0 4,
On the one hand, 4 restricted to @(u) is A;. So A, is primitive on ®(u) and there is
a k such that for any y € ®(u), y + 0, Ay € O(u)™.

On the other hand if y > 0 then there is some m such that A™y € ®(u)* since 4 is
uy-positive. Thus

Amy — [AT B::] [yl] — ‘: Tyl 1— Bmyl] — [y'] A
0 47 Y2 A7y 0
Therefore, 4, is nilpotent of some order mg, and if y > 0, m = m, then A™y € &(u).
Let g = kmg. Then for any y > 0

A%y e d(u)*.

Corollary. Let A be uqy-positive for u > 0. Then for any y eV, Iy > 0,

yA%y S u,
where q is as in theorem 6.

In the representation used in the proof of theorem 6, we observed that 4, was
primitive. Hence by theorem 6.3 of [7] o(4,) is larger than the modulus of any other
eigenvalue of A, and therefore of 4 as A4, is nilpotent. Since it is clear that any eigen-
vector of A lying in K must lie in &(u) we have established

Proposition 5. If A is uq-positive, then ¢ > || for any other eigenvalue 1 of A, and
the Perron vector X, is the only eigenvector of A in K.

This proposition is known as well for operators leaving invariant a cone in a Banach
space (cf. [8], [10], [11]). ’
In partially ordered Banach spaces other generalizations of irreducible matrices

have been studied. We shall close this section by examining three of these in the con-
text of a finite dimensional space.
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Definition 6. (a) 4 = 0 is called semi-nonsupporting iff
Vx> 0V/>03p=p(x,f), fA°x>0.
(b) 4 = 0is called nonsupporting iff
Vx> 0Vf>03p=p(x,f)Vn = p, fAdx>0.

Definition 6 is due to IKUKO SAWASHIMA [13]. She further introduces the notions
of nonsupporting vectors and strictly nonsupporting operators. In the finite dimen-
sional case these become elements of K° and primitive matrices, respectively. MAREK
[10] also treats both nonsupporting operators and quasipositive operators. In finite
dimensional spaces Vandergraft [16] has shown that the classes of quasi-positive
matrices and irreducible matrices coincide.

The fundamental result about semi-nonsupperting matrices is

Sawashima’s Theorem. A is semi-nonsupporting iff 0 > 0 and the row and
column eigenspaces are one-dimensional spaces determined by vectors x, € K°
and f, € (K*)°.

Lemma 1. If A is semi-nonsupporting, then A is irreducible.

Proof. Suppose A is reducible. Then there is a proper face F of K for which
AF < F. Let f € K* be so chosen that

{y|fy=0, yeK} 2 F.

If x € F, then for any p, fAP’x = 0. Hence 4 is not semi-nonsupporting.
We shall shortly see that the converse is also true.

Examples. We know the following implications: u,-positive and irreducible <> prim-
itive = nonsupporting = semi-nonsupporting = irreducible. We shall now show
that two of the arrows cannot be reversed. Let K be the cone in the example following
theorem 4.

(a) Let
cos® sin® 0
A=|—-sin® cos® 0
0 0 1

where @ is not a rational multiple of 7. Let f € 0K* \ {0}, x € 9K \ {0}.
If

H(f) = {y|fy = 0}

then H(f) n K is a line segment in K. By the choice of @ there is an integer p such
that n > p implies A"x ¢ H(f) n K. So fA4"x > 0. Thus A is nonsupporting but not
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primitive. It is worth noting that if K is polyhedral, then primitive and nonsupporting
equivalent. This is an immediate consequence of the spectral properties of irreducible
matrices which we shall publish elsewhere.

(b) If A is of the same form as in (a) but @ = 2x/r, r and integer greater than one,
then A is semi-nonsupporting. However, given x € 0K \ {0}, there is an f such that
Jx = 0. Thus

fAPx > 0 if p = qr,
fAPx =0 if p=gqr.
Consequently 4 is not nonsupporting.

V. JA. STETSENKO in his paper [15] has used the following as his definition of ir-
reducibility:

C:o>0, xo>0, oaxo= Ax, implies V/ >0, fxo>0.

Proposition 6. A matrix A is irreducible iff it satisfies condition C.

Proof. Suppose condition C is satisfied and F is a face of K which A4 leaves in-
variant. Let x, € F2. Since Ax, € F, there is an « > Osuch that ax, = Ax,, whence
by C

Vf>0, fxo>0.
Therefore, x, > 0;i.e., F = K, unless x, = 0. Thus A4 leaves no prover face invariant.

Conversely, suppose A is irreducible. Let o and x,, satisfy
«>0, x>0, axo= Axg.
For any y € ®(x,) there is a § > 0 for which fx, = y = 0. Thus
afxe = BAxy = Ay,

and therefore Ay € ®(x,); i.e., P(x,) is an invariant face of K. Since xo % 0, P(x,) =
= K and so x, > 0. It follows that for any f > 0, fx > 0.

In his paper Stetsenko also states two theorems which we shall paraphrase here for
finite dimensional spaces.

Theorem 7. A is irreducible iff A is semi-nonsupporting.

Theorem 8. A4 is irreducible iff A* is irreducible with respect to K* (regarded now
as column vectors, not row vectors).

The proof of theorem 7 follows from lemma 1, Sawashima’s theorem, and theorem
4.2 of [16].
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Proof of theorem 8. Suppose A4 is reducible. Let F be a proper invariant face of 4.
Define

F* = {feK*|fx =0, xeF}.
It is easily seen that F* is a proper face of K*. Further for x € F

(fA)x = f(4x) = 0
since AF < F. Therefore A*F* < F*. Thus

A reducible implies A* reducible, or

A* irreducible implies 4 irreducible.
Hence

(A*)* irreducible implies 4* irreducible, or

A irreducible implies A* irreducible.

6. SPLITTINGS OF MATRICES

In this section we shall use the results on matrices nonnegative with respect to
a cone to obtain a generalization of the theory of M-matrices. While our definition
of an M-matrix requires A4 to be nonsingular, we note in passing that some authors use -
a different definition which permits singular M-matrices. For a synopsis of the theory
of M-matrices see FIEDLER and PTAK [4] and [5]. In our generalization we shall use
the concept of a splitting of a matrix which concept finds application in the iterative
solution of systems of equations (cf. [17]). Also our definition of an M-matrix yields
a larger class of matrices when K is the nonnegative orthant than the usual definition.

Definition 7. (a) A matrix 4 admits a regular splitting iff A = B — C where B! 2
>0,C=0.

(b) A admits a completely regular splitting iff A = B — C with B > 0, B™! > 0,
Cc=0.

(c) A is an M-matrix iff A admits a completely regular splitting and 4~' > 0.
A key result for the proposed extension is the following lemma due to H. SCHNEIDER

[14].

Lemma 2. Suppose S = 0 and either RK® 2 K° or RK° " K° = 0.If T= R —S,
then the following are equivalent.

(l) R is nonsingular, R™' > 0, and Q(R_IS) < 1;

(2) Tis nonsingular and T™'K® < K

(3) TK® A K° + 0.
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This result contains a generalization of theorem (3.13) of [17]. This same result
has been generalized in a different way by O. L. MANGASARIAN in [9] for K the non-
negative orthant.

Theorem. Let A, M, and N be n x n real matrices, let A = M — N, let A and M
be nonsingular, and let
M'y 20 imply Ny=z=0,
Ay 20 imply N'y=0,
where the prime denotes transpose. Then o(M~'N) < 1.

Mangasarian proved this theorem using the theorems of the alternative. Using
instead the fact that K** = K we can generalize this result to arbitrary cones.

Theorem 9. Let K be a cone. Let A = M — N, let A and M be nonsingular, and let
M eK* imply fNeK*, fAeK* imply fNeK*.
Then M~'N = 0 and o(M~'N) < 1.
Proof. Let g € K*. Since M is 1 — 1, there is an f € V* such that g = fM. There-
fore, fN € K*. Consequently,
| gM™IN = (fM)M™'N = fN e K*.

Thus K*M~!N < K*, whence M~*N = 0. Similarly A7!N = 0.
The argument given by VARGA on pages 88 and 89 of [17] now applies and the re-
mainder of the theorem follows.

Another sufficient condition for 47! > 0 is containted in the next theorem,

which is a generalization of lemma 0 of HOUSEHOLDER [6].

Theorem 10. Suppose A = B — C is a completely regular splitting. If for any
x > O thereis an f > 0 such that fAx > 0, then A~ > 0.

Proof. B7'C 2 0so let ¢ = g(B~!C) and let y > 0 be an eigenvector belonging
to g. If o = 0, then A™! > 0 by lemma 2. Let us therefore assume that ¢ > 0. Thus
ey > 0. From B™'Cy = oy it follows that (¢B — C) y = 0. If ¢ = 1, then ¢B = B,
so pB — C =2 B — C. Thus

0=0@B-C)y=(B-C)y.
If f is the functional guaranteed by the hypothesis, we have
0=f(eB—C)y=(e—1)fBy +f(B-C)y.
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Butg — 1 > 0and fBy = Osince B> 0, f > 0. Also
f(B—C)y=fAy>0.
Thus

0=f(eB—-C)y>0,

a contradiction. Therefore ¢ < 1, and 47" > 0 by lemma 2.
For a converse we have

Proposition 7. Suppose A™! > 0. Then there is an f > 0 such that for all x > 0,

fAx > 0. Moreover, if A~' (> 0, then f can be taken as the eigenvector of A™'
in (K*)°.

Proof. Let f; > 0. Then for all x > 0, fx > 0. Since A~! > 0, we have

ATI(KN{0}) = K\ {0} .
Thus f;A7'x > 0 for all x > 0, so take f = f;A~! » 0. Then

fAx = ffA"'Ax = fix > 0
for x > 0.

Finally, if 47" (> 0, its eigenvector f > 0 satisfies
f=e'f4
where ¢ = o(4™") > 0. Thus 0 < fx = ¢~ 'fAx for x > 0.
The next result and some of its consequences are patterned after known results in

the theory of M-matrices. In particular see section 4 of [4].

Proposition 8. Let 4 and A, satisfy the following conditions:

(1) 4 = B — C is a regular splitting,

(2) Ay = B, — Cy is a completely regular splitting,

(3) 4, = 4,

4) 47 > 0.

Then A7 exists and A=* > A7' = 0.

Proof. LetU =1 — Bj'4A, = B{'C, 20, V=1I— B]'A. Then
V=I-B{'A=1—~-B{'4,=U=0.
(I-v)"'=(B'4)" =A47'B, 20,

so Vis convergent. Since 0 < U*¥ < V*for k = 1, 2, ..., it follows that

AT'By=T+V4+V?+...21+U+U*+...=(B{'4,) ' 20.

So A™'B, = A{'B,. However, B{' > 0,50 47! = 4"

I\

0.
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Corollary. If A = B — C is a regular splitting, D' > 0, D = B, and A~ > 0,
then (D™'C) < 1.

Proposition 9. Let A = B — C be a regular splitting. Then the following are
equivalent:

(1H)4at>o

(2) the real parts of the eigenvalues of B~'A are positive,

(3) the real eigenvalues of B~ 'A are positive.

Proof. If A™' > 0, then ¢(B™'C) < 1. The eigenvalues of B~'4 are of the form
1 — A for 4 an eigenvalue of B~'C. But then |4 < 1, so |[Re | < 1, and so Re (1 —
— 1) > 0.

That (2) implies (3) is obvious.

If the real eigenvalues of B~ "4 are positive, then in particular 1 — g(B~'C) > 0.
So1> g(B™'C),and A~' > 0 by lemma 2.

However the situation regarding the eigenvalues of an M-matrix 4 is not so simple
as in the standard case. If

1
K:{["‘]]0§§x,§x2§2xl}, A:[s 0],
X2 > —1

then 4 = A™' > 0 is an M-matrix with respect to K(C = 0). The eigenvalues of 4
are 1 and —1, so A is even irreducible.

Notation. If A4 is a matrix, then Z(A) will denote the set of eigenvalues of A.

Proposition 10. Let A be an M-matrix. If (B — al)™" > 0 for all « < 0, then the
real eigenvalues of A are positive. Further, if there is a f > 0 for which fI > B,
then the real parts of the eigenvalues of A are positive.

Proof. Let « < 0. Then
Ay =A—-oal=B-al)—C=2B-C=4.

Further A, admits a completely regular splitting, so by proposition 8 it is an M-
matrix. Thus « ¢ 2(4).

Since (B — al)™' > 0, « ¢ 2(B). Let B > 0 be such that fI > B. Then
Bl—A=Bl—B+C>0.

Thus o(fI — A) = f — A, where 1€ 2(A) and A real hence positive. If & € 3(4),
then § — & e (I — A) and

B-¢<p-2<p.
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So
B>|B—¢ =[(B—Re&)?+ (Im&P?]"? = |B — Regl.

Hence Re € > 0.
Theorem 11. Let A = B — C be a completely regular splitting and let A be

nonsingular. Suppose for every nonsingular Ay = B; — C,, where By, C is
a regular splitting, we have the following condition:

A, > A implies A7'>0.
Then A~ > 0.

Proof. Let A(e) = B + ¢l — C. For all sufficiently small ¢ > 0 we have that
[4(e)]~* and (B + eI)~* exist. Clearly B + &I > 0. On the other hand since B™' > 0
we know that B is an open map so B > 0 implies BK® = K°. If x » 0

(B+e)x=Bx+ex>0,
whence by lemma 2 (B + &I)~' > 0. Finally
A)=B+e —C24=B-C

sovA(s) satisfies the hypothesis. Thus [4(g)]~* > 0. Clearly, A(e) — 4, so that since
A~ "exists, [A(e)]”* - A~ ' as & — 0. Since the cone of nonnegative matrices is closed,
it follows that A= > 0.

Proposition 11. If A = B — C is a completely regular splitting and if B~'C
or CB™! has an eigenvector x > 0 corresponding to an eigenvalue A < 1, then
A"t > 0.

Proof. Since B> 0, B™! > 0, we know that BK° = B~ 'K° = K°. Hence
B 'AK®° N K°® % 0 iff AK® N K° + 0 iff AB™'K® n K° + 0. Now let x > 0 be the
eigenvector of B™'C belonging to 2 < 1. (The same proof works for CB™*.)

B 'Ax=(I—-B7'C)x=(1-2)x>0
since I — 2 > 0. Thus A™' > 0 and ¢(B~'C) < 1.
This result is very close to a theorem of COLLATZ which we now establish for
establish for arbitrary cones (cf. WIELANDT [17] page 33).
Theorem 12. If A = 0, x > 0, and 6x < Ax £ 1X, then
g<oA)s7-
Proof. Let f > 0 satisfy f4 = of, 0 = g(4)- Thus
f(ox) < fAx £ 1(5x)
o(fx) < o(fx) £ ®(fx). :
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But f > 0and x > 0, so fx > 0. Therefore

s<est.
Corollary. If A = 0 and there is an x > 0 such that Ax = ux, then Q(A) = u.

Theorem 13. If A = B — C is a completely regular splitting with B> 1 = C,
if Ay = B, — C, is an M-matrix, and if A, = BB; — CC,, then A, is an M-matrix.

Proof. B=1 =0 implies BB, = B; =2 0. Further I = C = 0 implies C, =
= CCy = 0. Consequently

A, =BB; — CCy, 2B, — C; = A,.
Also, BB; — CC, is a completely regular splitting. Thus by proposition 8
ATt 2 A;120.

Therefore A, is an M-matrix.

Ky FAN in [3] gives a definition of multjplication of M-matrices for which the
product of two M-matrices is again an M-matrix. Since in the present situation the
decomposition A = B — C need not be unique, we shall define our multiplication
for the ordered pairs (B, C). We shall call M = (B, C) an M-matrix pair iff B — C
is an M-matrix. For two M-matrix pairs M, = (B, C;) nad M, = (B,, C,) we
define

M, oM, = (B;B,, C,C,).

We would like M; - M, to be an M-matrix pair, but the best we have been able to
do is ‘

Proposition 12. If M, = (B,, C,) and M, = (B, C,) are M-matrix pairs, and
if By, B,, Cy, C, all commute, then N = M, o« M, is also an M-matrix pair.

Proof. Clearly B,B, — C,C, is a completely regular splitting. Let us estimate
Q(Blez_IClCz)- By hypothesis

o(By'C;) <1 and o(B;'C,) < 1.
However, B,, B,, C,, C, commute, SO
B;'Bi'C,C; = (B;'C,) (BT 'Cy) = (B{'Cy) (B;'C)

and (see [2] for the relevant results) for a suitable ordering of the eigenvalues {Ai} =
= 3(B;'C,) and {g;} = 2(By'C,) we have ‘

3(B;'C,BTCy) = { A} -
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Thus
sup; [ ;| < (sup; [4i]) (sup; |u) < 1.

Therefore, (B;B, — C,C,)™ " exists and is positive.
Finally, let us classify those M-matrices for which A™! > 0.

Theorem 14. Let A be an M-matrix with the completely regular splitting B — C.
Then A~* > 0 iff B~1C is irreducible.

Proof. 47! =(I - B™'C)"' B!, or A™'B = (I — B™'C)™". But since BK® =
= B7'K® = K° B(0K) = B"'(0K) = 0K we have that A~' > 0 iff A"'B > 0,
Thus A~ » 0iff

0<(I—-B'C)"'=I+B'C+ (B0} +

Also A~ ! » Oiffforallf > Oand x > 0, f4"'x > 0. Thus A~ > 0 iff
Vf>0Vx>0, f(I-B'C)y'x =k§Of(B’1C)"x >0.
However, since for all k, f(B~'C)* x > 0, then
é:of(B'IC)"x >0 iff Im=m(f,x), f(B"'C"x>0.

This last condition is precisely the definition of seminonsupporting, which we know
is equivalent to irreducibility. The theorem is proved.

Corollary. Let A = B — C be as in theorem 14, and let BC = CB. If C(> 0,
then A~1 > 0.

Proof. For suitable m, (B~'C)" = (B~!)" C™ > 0, so that B~'C is irreducible.
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