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INVARIANT SETS

P. R. FALLONE, Jr., Storrs
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I. Introduction. For (X, n) a (global, bilateral, continuous) flow and x e X we
denote the positive limit set of x by L!, the negative limit set of x by L, and the
trajectory through x by C,. ([1] or [2]).

The following theorem or its generalization [3, Theorem 9.1.] is known as the
Kimura-Ura Theorem [4, Proposition 14]:

Let (X, n) be a flow on the locally compact Hausdorff space X and let M < X be
compact and invariant. Then one of the following holds:
(i) M is positively asymptotically stable.
(i) M is negatively asymptotically stable.
(iii) 3 x,, x, ¢ M such that L, + 0, L, # 0, L} = M, and L, c M.
(iv) For every neighborhood % of M in X 3 x € U such that C, = %\ M.

For the flow on the plane, E?, arising from the system:

dx s 2
= x2 = ,
dt y

dy

_=2x.v,

dt

(Fig. 1) if M = {(0, 0)}, then (iii) and (iv) both occur. We show that, in general, the
absence of (iii) does not insure a stronger version of (iv).

IL. Theorem. Let (X, n) be a flow with X homeomorphic to E* or S*. Let M < X
be compact and invariant. If (i), (ii), and (iii) of the Kimura-Ura Theorem do not
occur, then

(iv)' For each neighborhood % of M in X 3 x € U such that C, = U\ M.

680



Proof. Let a neighborhood # of M in X be given. Then 3 neighborhoods W,V
of M in X such that W We V< V< %, Vis compact, and for each xeV\ M
either @ + L, ¢ M or @ + L, ¢ M. Since (iv) of the Kimura-Ura Theorem must
hold, 3we W such that C, = W\ M and
C,=L,uC,uUL! is compact. Each of y
the sets L) and L, is nonempty, compact,
invariant, and contained in %. If either one
does not meet M, (iv)’ holds and we are done.

Otherwise, WLOG assume that LY n M +
+0 and L, (Z~M)+0. Let zeL} n
N (%~ M). Now L;, cannot be a cycle since (0.0 X
L n M is invariant. Hence, either z is a rest
point or LT and L are nonempty continua
of rest points [5, Proposition 1.11]. If zis a
rest point or either L} or L; is not contained
in M, we are done. Otherwise, LY = M, L] <
< M and this contradicts the choice of V.
The proof is complete.

. Fig. 1.
An obvious consequence: '8

Corollary. Under the hypothesis of the theorem, if M is connected and there is
a simply-connected neighborhood % of M in X such that 9 is compact and %\ M
is free of rest points, then every neighborhood V of M in X contains a cycle ¢ such
that M = B, = the (a, for S*) bounded component of X \ o.

Proof. Let V be any neighborhood of M in X. 3w eV n % = W such that C,
< W~ M. Then C, contains a nonempty compact minimal set, hence, a cycle o since
%\ M is free of rest points. [1, Theorem 12.8]. Since o lies in %, B, lies in %. But
o U B, contains a rest point [6], say p. Then pe M and M n B, # 0. Since M is
connected, M < B,. This completes the proof.

III. An example. For each natural number N let ry = 4(1/N — I/(N + 1)) =
1/3N(N + 1) and let Ty be the torus given by

Ty ={(Xy, Yy, Zy) € E* | Xy = (% + rycos 27z0> cos 2n¢p — <% + rN) ,

Yy = L + rycos 2z )sin2ngp, Zy =~1— + rysin 276,
N N
0<¢<1,0=20<1}.
Let ny be a sub-flow on Ty with just two trajectories: a single rest point, Py, at
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(0,0, 1/N) and the trajectory Cy of a motion everywhere dense on Ty and stable in
the sense of Poisson in both directions [2, Example 4.06]. Let 7, be the flow on

{(0, 0, 0)} such that P, = (0, 0, 0) is a rest point. Put IT = U n; (Fig. 2). Then IT is

a flow [1, Theorem 12.1]. Let M = {P;|j =0, 1,2,...}. Then M is compact and
invariant. Further, (i), (1i), (iii) of the Kimura-Ura Theorem do not hold but (1v) of

section II does not hold.
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