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WHITNEY [3] has showed that for finite graphs a line isomorphism is induced by
an isomorphism except in the cases illustrated by Figures 1.1 through 1.4. Jung [2]
has since showed that the assumption of finiteness in Whitney’s result can be dropped.
In this paper we characterize the line isomorphisms on pseudographs that are induced
by isomorphisms. This generalization is obtained by a method similar to that used
by Jung in the infinite graph case.

1. Line isomorphisms induced by isomorphisms. Throughout the paper G and H
will denote connected pseudographs and ¢ will be a one-to-one function of the lines
of G onto the lines of H. However, the results hold for disconnected pseudographs
(without isolated points) as well since line isomorphisms and isomorphisms preserve
connected components. A number of definitions follow: any terms used and not
defined in this paper can be found in HARARY [1].

Definitions. (a) A pseudograph G is an ordered triple (V(G), E(G), I'(G)) where
V(G) # 0 (it may be an infinite set) and I'(G): E(G) —» V(G) & V(G) (unordered
pairs). The elements of V(G) are called points and the elements of E(G) are called
lines. If o € E(G) and I'(G) («) = (a, a), a is called a loop; if a, B € E(G) with
I(G) («) = I'(G) (B), then o and B are called multiple lines and « is called a multiple
of B.

(b) A multigraph is a pseudograph that has no loops. A graph is a pseudograph
with neither loops nor multiple lines. In a graph one usually identifies a line a with
I(«).

(¢) A function 7 :V(G) — V(H) is an isomorphism of G onto H if 7 is one-to-one,
onto, and for every pair of points, a and a’, (a = a’ is allowed) the cardinal number

*) This research was carried out while the author was a N.S.F. Science Faculty Fellow visiting
the University of California at Berkeley.
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of lines between a and a’ is the same as the cardinal number of lines between 'c(a)
and 1(a’).

(d) A function ¢ : E(G) — E(H) is a line isomorphism of G onto H if o is one-to-
one, onto, and for each distinct pair of lines « and B, « and f are adjacent if and only
if o(«) and 7(p) are adjacent.

(¢) A line isomorphism o is induced by an isomorphism 1 if for each « € E(G) we
have I'(G) (¢) = (a, a’) if and only if I'(H) (o(2)) = (x(a), (a")).

(f) For a eV(G) we let S(a) = {o € E(G) : I'(G) («) = (a, a’) for some a’ € V(G)}.
S(a) is called the cluster at a and C is called a cluster if C = S(a) for at least one
aeV(G). Cis called a star, or star with center a, if C = S(a).

(8) We say that a line function ¢ : E(G) — E(H) preserves a particular type of line
set if a(A4) is of that type whenever A is. In particular, we will refer to line functions
that preserve loops, multiple lines, stars, and clusters.

(h) A point a of G is a terminal point of G if there is a point a’ # a with S(a) =
c S(a").

(i) If A = V(G), then the subpseudograph of G generated by A is the one whose
point set is A and whose line set consists of all lines of G that are incident only with
points in A. If A = E(G), then the subpseudograph of G generated by A is the one
whose line set is 4 and whose point set consists of those incident with some line of A.
In either case we use 4 to denote the subpseudograph generated by A.

Theorem 1. Let G and H be connected pseudographs and let o : E(G) - E(H)
be one-to-one and onto. Then the following three conditions are equivalent:

(1) o is induced by an isomorphism,

(2) o and 6! are line isomorphisms that preserve loops, multiple lines, and stars,
and

(3) o and 6" are cluster preserving and E(G) and E(H) do not each consist of a set
of multiple lines; non-loops for one and Icops for the other.

Proof. (1) implies (2). Immediate from the definitions and the observation that 7~
induces ¢! if 7 induces o.

(2) implies (3). Let o be as in (2) and let a € V(G). Then o(S(a)) = S(b) for at least
one b e V(H).

If 6(S(a)) = S(b) N S(b") with b’ # b then o(S(a)) is a set of non-loop, multiple
lines. Hence S(a) = ¢~ '(a(S(a)) is also a set of non-loop, multiple lines, so a is
a terminal point of G. Let a’ be the point adjacent to a. Without loss of generality,
we assume that o(S(a’)) = S(b'). But 6~ *(S(b)) < S(a) or 67*(S(b)) = S(a’). If the
former, then o(S(a)) = S(b) directly. If the latter, then S(b) < ¢(S(a’)) = S(b"), so
a(S(a)) = S(b) N S(b') = S(b). Thus o(S(a)) is a cluster.

If 6(S(a)) = S(b) and a(S(a)) & S(c) for ¢ + b, then neither S(a) nor o(S(a)) is
a set of multiple lines unless S(a) is a set of loops. In either case ¢~ '(S(b)) < S(a)
and so a(S(a)) = S(b).
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By symmetry, ¢~ ! is also cluster preserving and obviously E(G) consists of a set of
loops if and only if E(H) does.

(3) implies (1). Let o be as in (3). Because of the exclusion given in (3) we can
assume that G and H have at least three points and that S(a) = S(a’) if and only if
a = a’, where a and a’ are in either G or H. Thus the function ¢* : V(G) —» V(H)
defined by the equation o(S(a)) = S(6*(a)) is both well-defined and one-to-one.
Moreover it is onto since o(o™'(S(b))) = S(b). For a # a’ in G we have, since ¢ is
one-to-one, a(S(a) n S(a’)) = o(S(a)) N o(S(a’)) = S(6*(a)) N S(a*(a’)); i.e., there
are the same cardinal number of lines between a and a’ as there are between o*(a)
and o*(a’). And, since a is a loop in G if and only if « € S(a) for exactly one a in G, ¢
and ¢~! take loops to loops. So there are the same cardinal number of loops at a
as at 0*(a). Thus ¢ is an isomorphism of G onto H. Clearly o* induces ¢ since
a(S(a)) = S(c*(a)) (this takes care of loops) and for a * a’, o(S(a) n S(a’)) =
= S(o*(a)) n S(o*(a’)) so that I'(x) = (a, a') if and only if I'(6(x)) = (c*(a), 6*(a’)).

That completes the proof of the theorem.

Corollary (Jung [2]): Let G and H be connected graphs and let o be a line iso-
morphism of G onto H. Then o is induced by an isomorphism if and only if ¢ is
different than the line isomorphisms illustrated in Figures 1.1 through 1.4.

Proof. We use condition (2) of the theorem. It is clear that every line isomorphism
preserves k-stars where k =+ 3. If S(a) is a 3-star and ¢(S(a)) is not, then o(S(a)) is
the line set of a triangle. Thus G has no line adjacent to just one line of S(a). Hence G
has either 3, 4, 5, or 6 lines and the four possibilities obviously correspond to the four
cases illustrated in Figures 1.1 through 1.4.

2. Line isomorphisms not induced by isomorphisms. Before describing such line
isomorphisms we give a few more definitions.

Definitions. (a) We say that G’ is a multiversion of G if G is a subpseudograph of G',
with the same point set as G’, such that there is a partition {M(a) : « € E(G)} of E(G')
with M(«) a set of multiple lines containing o for each o € E(G).

(b) We say that a pair of pseudographs, G’ and H', is a o-multiversion of the pair G
and H if G’ and H' are multiversions of G and H with line partitions {M(«) : o € E(G)}
and {N(B) : B € E(H)} respectively, such that there is a one to one onto function ¢’ :
E(G') > E(H') with ¢'(M(x)) = N(o(«)) for each oe E(G). We note that ¢’ is
a line isomorphism if and only if ¢ is and that ¢’ is induced by an isomorphism if and
only if o is.

(c) We say that G, is a terminal piece of G based at a if G = G, U G, with
V(G,) nV(G,) = {a} (Note that a need not be a cutpoint of G since G, (or G,) may
only contain loops at a). We will be interested in three types of terminal pieces:
(1) A terminal star based at its center, (2) a terminal multitriangle, and (3) a terminal
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cluster, with center b, that is based at a with a # b, with S(b) & S(a), and with
|S(b) N S(a)| = 2. Hereafter we will refer to the latter as a non-center-based terminal
cluster. These three types of terminal pieces are illustrated in Figure 2.2.

We are now ready to describe pseudographs G and H that are appropriate general-
ization of the graphs in Figures 1.1 through 1.4.

Fig. 1.1.
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(1) G and H are pseudographs with the property that their line sets consist of
pairwise adjacent lines and o is arbitrary except that ¢ or ¢~ fails to preserve stars,
loops, or multiple lines. Thus G and H are clusters or multitriangles. In contrast to the
case for graphs, the line isomorphism might not be induced by an isomorphism even
though G and H are both clusters, or are both multitriangles. Also there is no restric-
tion on the cardinality of E(G) even when G is a cluster and H is a multitriangle. We
should further point out that line isomorphic clusters and line xsomorphlc multi-
triangles need not be isomorphic.

(2) The pair, G and H, is a t-multiversion of the pair of graphs in Figures 1.3 or 1.4
where 1(x) = x’ for each line y in either figure.

(3) Let the pair, G’ and H’, be a t-multiversion (with partitions {M(x)} and {(N(x)}
respectively) of the pair of graphs in Figure 1.2 where 1(x) = x’ for each line. Then
M(«) is a center-based terminal star of G'. Let a be the base point. Similarly let b be
the base point of the center-based terminal star N(6) of H'. Let G be obtained from G’
by replacing M(«) by a terminal star 4 that is center-based at a, with |4| = |M(«)|,
and that is otherwise arbitrary. Similarly H is obtained from H’ by replacing N(5")
by a terminal star D that is center-based at b and has |D| = |[N(&')|. Let o be any
one-to-one function from E(G) onto E(H) with the property that o(4) = N(«'),
a(M(B) U M(y)) = N(B') u N(y'), and o(M(8)) = D. Then ¢ is a line isomorphism
of G onto H that is not induced by an isomorphism. This situation is illustrated in
Figure 2.1 where the dotted lines are used to indicate that ¢ must map the lines of G
in a region created by the dotted lines onto the lines of H in that region.

Lemma. If ¢ and 6! preserve stars and G and H have non-terminal points then
there is a one-to-one function o* from:the non-terminal points of G' onto the non-
terminal points of H such that o(S(a)) = S(c*(a)) for each non-terminalpointa
of G. Moreover, if we let S'(a) be the maximal terminal star of G that is center-
based at a where a is a non-terminal point of G, then ¢(S'(a)) = S'(c*(a)).

Proof. For aeV(G), o(S(a)) = S(b) for some b and S(a) = o7(S(b)) = S(a’)
for some a’ € V(G). If a is non-terminal then a’ = a so o(S(a)) = S(b). I o(S(a)) =
= S(b') also, with b" = b, then S(b) = S(b’) and H is a star with only terminal
points. Since this is excluded by hypothesis ¢ induces a function ¢*, from non-
terminal points of G to points of H, which is defined by the equation ¢(S(a)) =
= S(c*(a)).

Now o* is one to one for if @ and a’ are distinct non-terminal points of G then
S(o*(a)) = o(S(a)) * o(S(a’)) = S(c*(a’)), and hence o*(a) + o*(a’). If o*(a) is
a terminal point then S(o*(a) = S(b’) for some b’ & ¢*(a). But then, as before,
S(o*(a)) = S(b’) contrary to hypothesis. Thus ¢* takes non-terminal points to
non-terminal points and since the same arguments hold relative to ¢~! we conclude
that ¢* is onto the set of non-terminal points of H. That establishes the first part of
the Lemma.
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If a and a’ are non-terminal points then a(S(a) N S(a’)) = o(S(a)) N o(S(a’)) =
= S(o*(a)) n S(a*(a’)), i.e., o preserves multiple lines between non-terminal points
and it takes lines between non-terminal points to such lines. Similarly for ™.

Fig. 2.1.

Fig. 2.2.

If « is a loop of G at a then a is a nonterminal point so a(x) € S(6*(a)). Moreover
o(a) € S'(a*(a)) for otherwise we would have « = o~ (o(«)) € S(a) — S'(a).

Combining the results of the last two paragraphs we conclude that o(S'(a)) =
< S'(*(a)). But equality must hold since we likewise have o~ '(S'(c*(a))) = S'(a).

Thecvem 2. Let 6 be a line isomorphism of G onto H, G and H connected pseudo-
graphs, where o is not induced by an isomorphism and where G and H are not as in

(1), (2), or (3) above. Then G has a terminal piece G, based at a and H has a terminal
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piece Hy based at b such that o(E(G,)) = E(H,), o(S(a)) = S(b), o restricted to G,
is not induced by an isomorphism, and where G, and H, are one of the following:
(2) center-based terminal stars, (b) terminal triangles, or (c) a terminal triangle
and a non-center-based terminal cluster.

Proof. By Theorem 1, ¢ or ™! fails to preserve loops, multiple lines, or stars.
Suppose o fails to preserve stars, i.e., there is an a € V(G) such that cr—(fsra_)j is a mul-
titriangle. Let A = S(a) and G, = V(A).

We will assume a is not a terminal point for if it is then S(a) = S(a’) for some non-
terminal point a” and ¢(S(a’)) is not a star. Note that G, includes all loops at points
of A.

Suppose that, for each a’ + a, G is not a terminal piece of G at a’. Then there are
distinct non-loops a and B that are not in G, and that are incident with different
points of G,. But then o(«) and ¢(f) are both incident with the multitriangle o(S(a)).
Hence o and f are both adjacent to some y € S(a). Under our assumptions this means

that « € E(G,) or B € E(G,) which is a contradiction. We conclude that G, is a terminal
piece of G at a’ for some a’ * a.

We consider two cases: G; + G and G, = G. First suppose that G, = G. Then
there is an o € S(a’) — E(G,). Since a is not a terminal point, o(«) is incident with
the multitriangle ¢(S(a)) at a unique point, say b’. Let b and b” be the other two
points of a(S(a)). Then a(S(a) N S(a’)) = (S(b') n S(b")) U (S(b') A S(b)). On the
other hand if o(B) is in the latter set and B ¢ S(a) N S(a’) then G, must be a multi-
triangle on {a, a’, a"} where I'(8) = (a’, a"). In either case o(S(a")) = S(b') and
a(S(a’) " E(G,)) = S(b") n E({b, b", b"}). Also in either case o(S(a) n S(a’)) has
non-empty intersection with both S(b') n S(b) and S(b") N S(b"). Because of this
distribution of S(a’) N E(G,) by ¢ we conclude, in either case, that H, = {b, b’, b"}
is a terminal piece of H at b’ and we get the conclusion of the theorem with G,and H,
as in (b) or (c) where loops at a’ and b’ have been removed from G, and H,.

Suppose nexi that G, = G. If G, has a loop « at a’ = a then o(e) is incident with
a unique point b’ of o(S(a)). If we let G; = G, — {«} and H; = H — {o(x)} then as
in the last paragraph we get the desired conclusion with Gy and H, as in (b) or (c).
Thus E(G,) — S(a) contains no loops. Let « € E(G,) — S(a) (possible since G is not
a star), say I'(«) = (a’, a"). Then o(x) € S(b) where b is one of the points of a(S(a))
and o() is not a multiple of any line in ¢(S(a)) for then G and H would be multi-
triangles. Moreover if « and B are multiple lines then o() € S(b) and is not a multiple
of any line in o(S(a)). If E(G,) consists of S(a) and the multiples of « then we conclude
that G and H are as in (3) preceding the theorem. The existence of one more such set of
multiple lines in G easily implies that the pair, G and H, is a t-multiversion of the
pair of graphs in Figure 1.3. The existence of two more such sets of multiple lines in G
implies that the pair, G and H, are t-multiversions of the pair of graphs in Figure 1.4.
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There are no other possibilities in the case that o fails to preserve stars and by the
results in that case we see that the same conclusions will hold for ¢ if we assume
that ¢! fails to preserve stars.

Thus we assume that ¢ and o~ ! preserve stars. Since G and H are not stars we can
apply the Lemma. From it we get center-based terminal stars G, = S'(a) and H, =
= S'(¢*(a)) as in the conclusion of the theorem.
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