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1. INTRODUCTION

In this article the asymptotic behavior of the solutions of the nth order non-
homogeneous linear system of differential equations

(1) x™ = Aq(t) x + h(1)

where n = 2 will be determined by exhibiting the asymptotic expansions of the solu-
tions. In equation (1), x denotes a d-dimensional vector; 4o = Ao(f) is a d x d
complex-valued matrix which is continuous on the interval J = [to, ©); and h =
= h(t) is a continuous complex-valued d-vector defined on J.

A basic assumption which will be made concerning A, is that the integral
© T
j Ao(s) ds = lim j Ao(s) ds
T- o

converges. The fact that this integral can be conditionally convergent indicates the
direction of the new results of the paper. Under this hypothesis the function

Ay(1) = J TAo(s) ds

is well defined; in general, assuming that the following integrals exist, we define 4;
inductively as :

Ai(t) =J. Aj—l(s)dS, j=12,..,n.
t

*) This research was supported in part by the National Science Foundation under grant
GP-11543.
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Section 2 develops the case where the asymptotic expansions of the solutions of (1)
are polynomials of order less than n. To obtain this conclusion, hypotheses are im-
posed in order that the forcing function has a negligible effect upon the solutions
of (1). More precisely, up to terms of o(1) as t — oo, the behavior of (1) is completely
determined by the solutions of the associated homogeneous system. In Section 3, the
above situation is reversed with a particular solution of (1) now completely deter-
mining the composition of the asymptotic expansion of the solutions of (1).

For n > 2 these results appear to be new even for homogeneous scalar differential
equations. A related result for second order homogeneous equations which is due to
HARTMAN and WINTNER may be found in HARTMAN [6, p. 382]. The main techniques
used to establish the results obtained here are extensions of those used in Theorem 1
of [4]. In fact, when Theorem 1 below is specialized to second order homogeneous
equations then its hypothesis reduces to that of Theorem 1 of [4]. For linear dif-
ferential equations, results which possess conclusions similar to those obtained here
may be found in CoppEL [1, p. 92], HARTMAN [6, p. 380], and HILLE [7, p. 428].
Related results which are valid for nonlinear differential equations may be found
in [2], [3], and [5]. An example will be given to illustrate that our hypotheses are
different from those required in the above references.

2. ALMOST HOMOGENEOUS EQUATIONS

Our first result reveals an asymptotic polynomial development for the solutions of"
(1) whenever the forcing function h = h(r) satisfies

@ [etpona < o

here, and for the remainder of the article,

|| designates some convenient norm.

Theorem 1. Let condition (2) and

O [ aoia<ss [0 o)a<,

be satisfied for some k, k = 0, 1, ..., n — 1.Then, corresponding to any set of k + 1
constant d-vectors dy, dy, ..., d,, there exists a unique solution of (1) which possesses
the asymptotic expansion

K
4) x(f) ~Ydit', t—>o0.
i=0
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Proof. The Banach space &, of all continuous t*-bounded functions defined on J
(with norm of x € & given by x|y = sup 17 x(#)])) will be used in our arguments.

te.
For g, = 2( Z [di]| + 1), consider the subset & ,, of & Which consists of all x € §;

such that ||x ”k < o

The operator ,# which is defined on &, ,, by

5 3 = ¥ dit = A0 ) +
j+1 (s_t)J1 (s) x(s) ds
(- ()f e A ) ) 0 +
T (=1 f (Clall) {A (5) Ao(5) x(5) + [1a + AS)] H(s)} ds

(where I, denotes the d x d identity matrix) maps ke, into itself. To establish this
fact, we note that the following inequality can be obtained from (5):

(6) [t7% #x(1)]| < 02 — 1 + e vilt) + Bt~ f "z 1)' [(s)| ds ;

where
p=sup 1, + 4,0
1e.

and |,

w0 = 1401+, (") j( 7 ol s +

+ t_kJ‘w Sn+k—
e (n—1)!

By virtue of (3), we can assume that y,(f) <  for te J. As a consequence of (2),
we can also assume that ¢, is sufficiently large so that

0(5)” ds.

ﬁt-kJ‘:o (ns"_—ll)! [n(s)] ds < 1, ted.

The combination of these comments into (6) shows’ that ”jx“,‘ < ox; hence,

fgk,ek < 31{,?,"

Let x, and x, be in &,q,; then, from (5), it follows that

”t—k[fxl(t) - fXZ(t)]H < nlt) ”xl - xzuk = %”xl - xl”k , teld.
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Thus, # is a contraction map. By the Contraction Principle, there is an x € & ,,
such that #x = x; that is,

(7) x(1) =i§0dit‘ — A1) x(1) +
+I ')J“( ) G A0 e+

(=1
(- l)f G-

{A (s) Ao(s) x(s) + [1a + Ax(s)] h(s)} ds .
It remains to establish that x, as defined by (7), is a solution of (1) which possesses
the asymptotic expansion (4). The verification of (4) follows directly from the
inequality

®) Ix(r) — é:oditi“ < et n(t) + ﬂJ'mS""’Ilh(s)" ds.

1)'

The function y, satisfies t* y,(f) = o(1) as t > oo by virtue of (3). The condition (2)
applied to the inequality (8) now implies that the expansion (4) is valid.

To complete the proof, we will show that differentiation in (7) leads to

©) [1a + A0 x"(1) = [1a + 4] [Ao(8) x(t) + k()] .

The factor [I, + A,(f)] is invertible for large ¢ because the definition of 4, implies
that A4,(1) = o(1) as t - oo. This fact used in (9) will then establish that x is a solution
of (1).

To derive (9), we note the following identity which may be obtained from Leibnitz’s
rule for derivative of a product:

(10) {1 + 4] (O} = [1a + 4] x7(1) +
+3(-1y ( ,-) Au_ 1) X(d)

We will also need the identity

n—j i .
=Y (=1 (" . ’) Ay (DX, G = 1,2, m— 1.
k=0
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An n-fold differentiation in (7) and then applying the results in (10) and (11) yields
the equation

(12) [1a + A0] X0 = 3 (1" ('J’) Ay ) X0(0) +
5 S () (") At +

+ Ay(t) Ao(t) x(1) + [Ls + A (1)] h(t) .

The second group of terms on the right of (12) can be written as

(13) sz()Z(n“{)nﬁwWﬁM+Awnm=

-3 ('J’) Ay 1) X 0(1) + Ag(t) (1)

In the last step in (13) we have used the fact that the binomial expansion for [1 +

+ (1)) = 0is |
k‘éo(—l)"“(i), ji=12..,n.

The insertion of (13) into (12) yields (9) which, as previously noted, verifies that x
is a solution of (1) which satisfies (4). This completes the proof of the theorem.

The above theorem is consistent with known results which are formulated with
other sets of hypotheses; in particular, stronger integrability conditions are needed
to obtain a higher order asymptotic expansion of a solution than are necessary to
obtain an asymptotic representation of the solution (see [6, p. 429]).

In the known results for linear equations, the hypotheses which imply that an
asymptotic representation is valid for a solution of (1) also implies that there exists
a representation for the remaining solutions. It does not appear that the integration
by parts technique used here gives such a representation for the nonconvergent
solutions of (1).

The techniques used here are readily extendable to include (in (1)) a nonlinear
perturbation term of the form f(t, x) which satisfies a Lipschitz condition in x; see
[4] for a second order analogue.

Next, an example is given to illustrate that Theorem 1 may be applicable in certain
cases where known results do not apply. A result of GHizZETTI (see [1, p. 92]) shows
that if [® "] 4e(f)| df < co then the homogeneous equation (2) has a solution
x = x(t) with lim x(¢) = 1. If Ay(t) = ¢""t*™" with p > n — 1 then the result of

t— o

Ghizzetti is not applicable since [* #"~*||4(t)| dt = oo. However, for this equation,
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the hypotheses of Theorem 1 are satisfied for this function A,; hence, there exists
a solution x = x(r) of the homogeneous equation (1) such that lim x(f) = 1. A more
=0

detailed discussion on the comparison of known results for second order equations
and the second order homogeneous analogue of Theorem 1 may be found in [4]

3. DOMINANT PARTICULAR SOLUTIONS

The case where a particular solution of (1) is dominant at infinity will now be discus-
sed. Because the forcing function h is a vector it is convenient to have a positive con-
tinuous scalar valued function ¥ = y(f) which is an exact measurement for large ¢
of the dominant part of certain integrals of h. That is, there exists a nonzero constant
vector h, with the property that

(14) % h(s)ds ~ ho U(t), t— oo

In order that a particular solution of (1) be dominant at infinity, it will be required
that

(15) Yyl et =0(1), t—> .

In this section stronger integrability conditions on the coefficient in (1) are required
than those used in the previous theorem.

Theorem 2. Let the scalar function Y = (1) be positive and continuous on J and
satisfy conditions (14) and (15). If

(16) rtf"luA,,_,(t)}g Y(dt <o, j=1,2,..,n—1;

o]
J' P4 4,(0) Ao W(0) dt < 0 ;
holds then every solution x = x(t) of (1) has the asymptotic representation

(17) x(t) ~ ho (1), t—> 0.

Proof. The proof again uses the contraction principle to establish the existence of
a solution of an appropriate integral equation. Let d;, i = 0, 1, ..., n — 1, be n given
constant vectors; then set

n—1 )
B = Z ”dz” , B=sup ”Id + An(‘)“ :
i=0 teJ
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Define o = 2[f, + ﬁ“hon + B]and consider the set &, , of all continuous y-bounded
functions, x = x(1), defined on J, with Ix]ly = sup [ =1() x(1)]| < e
Let # be defined on &, by the equation ted

) =t=i:df’i — Ax) x(1) +
+:‘;(— D ('j’) r % Ay (s) x(s) ds +

+enﬁ’%3%}m®Awnwm+

+ t (~t——_—£ [1, + A(s)] h(s)ds .

w (n— 1)

From this definition it follows that

(18) [ #x@)] < B Y TH(0) + en(t) +
+p ‘ l//-l(t)f %:j)T”;"(s) s
where
w0 = [40) + v 0%, () [ Ml v s +

B ] st 1
070 [ 1) A ) 8-
. (n = 1)
In view of (14), the last expression on the right in (18) satisfies the inequality

(19) Hw-wﬂj;%jiﬂ:1M®ds

L) a5 ol + 1

provided t, is sufficiently large. It follows from (15) that ¥~ '(t) = o(1) as t - .
And, by definition 4,(t) = o(1) as t —» oo; hence, from (16), we can assume that %
is sufficiently large so that

lw=2(t) £x(0)] < By + 0f2 + Blho| + BS 0. tel.

This inequality establishes the inclusion £§, , = &y,

Next, it will be shown that # is a contraction map on y - If X; and X, are in Fy.e
then '

telJ.

[t O L7 x1(1) = o x:(0]] £ 2(0) [ %1 = %2y = 3x; = x|

The Contraction Principle implies that there exists a unique x € &y, With the
property that #x = x.

[/
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That is,

(20) xﬂ)=§brhnv“*—Axawo+

+ (=1 J. (z Y A o(5) Ao(s) x(s) ds +

)
) o Uat ALK ds

The function x defined by (20) can be shown to be a solution of (1) by using the
procedure indicated in the proof of Theorem 1, In fact, the only difference occurs in
the contribution of the forcing term where the observation

{ j (E *_5)1)' [, + As)] h(s) ds } v [1a + A(1)] h(1)

is evident.

The remainder of the proof will be to verify that x = x(r) as defined by (20) has the
desired behavior (17). By using (15) and (16) in (20) we obtain

@) O [x0) = ho w1 = v7'(1)

J (E 5 h(s) ds — hy .p(t)“ +

+ Y ][A(s)h(s)||ds+o 1), t- .

1)'

The representation (14) implies that the first term on the right side of (21) is o(1) as
t — oo. Since 4,(f) = o(1) as t — oo it follows that the second term on the right in (21)
is also o(1). This demonstrates that x has the asymptotic representation (17) and
completes the proof of the theorem.

If additional information is known about both the coefficient function A, in (1)
and the asymptotic expansion of the forcing function then additional information
may often be obtained about the solutions of (1). We will restrict our considerations
to scalar equations (d = 1) and develop the expansions of the solutions for a case
where the forcing function has an asymptotic power series expansions.

Theorem 3. Let the hypotheses of Theorem 2 be satisfied with Y(t) = t"*"; in
addition, suppose that

(22) & 4,1) = of1).
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for some positive integer k. If h(t) has an asymptotic expansion given by
N

(23) ™" h(t) = Y. bit™' + Ry(1)
i=0

where Ry(t) = o(t™™) as t > 00, m > k — 1, N 2 k, then any solution x = x(t)
of (1) possesses the expansion

k .
(24) x() ~Yat"" "t to> o0,
i=o
with
b; .
(25) a; = ! i=0,1,...,k.

(m+1—iy(m+2—i)...(m+n—1i)

Proof. The proof is inductive in nature. Theorem 2 implies that any solution x
of (1) has the representation

(26) s(i) ~ [ = hsyds, 1w

o( _1)'

The use of the power series expansion (23) in (26) leads to

bot™*"
o O ey ey e

= apt"*™", t— ©.

This demonstrates that (24) is valid to one term; assume that (24) is valid to ¢ terms
where 1 < ¢ < k. From (20), we have

(26) [x(t) _e.ila,t"‘*'n-i]/t"'h-e ___:;:dn_i_lta—i—m—l — A1) x(f) £ +
j+1 o—m—n w(s—l)j—l
+ Z( 1) ( )t J: Tj——-:l—)!—An_j(s)x(s)ds+

T+ (=1) J (zn _)1) A4,(5) Aofs) x(s) ds +

4 e (E -5 o +A(s)][st"‘ ‘+R~(s)]ds—2at" -

We will now examine each group of terms on the right side of (26) individually to
determine its asymptotic behavior. First, m > k — 1 = ¢ — 1 implies #£~"""! =
=o(1),t > 00,i=0,1,...,n — 1. There exists a constant n > 0 such that

40 x() -] < nlAD] # S nl A # = 1), £ c0.
Similarly, from (16) with y(¢) = t"*", it follows that

e-m=n j (s = 171 Ay_ (5) x(s) ds = o(1),
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and
== J (s = i AL(s) Aofs) x(s) ds = o(1),

The behavior of the terms in (26) which are generated by the forcing function h has
been essentially determined previously in [2]. Using Lemmas 1 and 2 of [2], we can
write

(27) fo=m=n ((‘n*__s)l)i'f h(s) ds =

=;§o [‘i (n : l) = 1)!(5112; 1o i)] but™" +

where C,(1,) designates a constant function (with respect to #), r =0, 1,...,n — 1.
An application of L’Hospital’s rule verifies the relationship

t
t”‘m"’_lf s*™ Ry(s)ds = o(1), t— 0.
to

Noting that ¢ < k and m > k — 1, we use Lemma 2 of [2] to see that (27) can be
written as

cmen [P (=8 e .
e-mon h(s)ds = Y a; > " + o(1), t— o0,
© (n— 1) i=0

where the a; are given by (25). The remaining term in (26),
t

t"*"""-[ (t — 5"~ A,(s) h(s) ds
to

can be shown to be o(1) as t - oo by using L’Hospital’s rule and (22).

The above asymptotic relations when used in (26) establish that the expansion (24)
is valid to ¢ + 1 terms. This completes the induction and proves the theorem.

4. CONCLUDING REMARKS

A deeper analysis of the terms in the integral equation (20) leads to additional
results which allow for an interplay between a particular solution and the com-
plementary solutions of (1). The type of conclusions which may be obtained are
similar to those in [3].
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The problem of securing analogous results to those obtained here for differential
equations which contain terms involving intermediate order derivatives can be solved
in certain instances by using the integration by parts technique developed in this
article. As an illustration of this remark, consider the second order homogeneous
differential equation

x" = By(t)x' + Ay(t)x, tel.

If we assume that B, is differentiable and use the notation
-
B,(1) = j By(s)ds,
t

then an analogue of Theorem 1 may be obtained. The integral equation which is used
to find a convergent solution is

28)  x(i) = do — A;(1) x(1) + 2 J “ A4(s) x(s) ds — j “Bys) x(s) ds —

t

- J.wAz(s) By(s) x(s) ds — Jw(s — 1) By(s) x(s) ds + Jw(s — 1) Ay(s) Ao(s) x(s) ds +

t t

+ .r(s — 1) [A4(s) Bo(s) — Aa(s) Bo(s)] x(s) ds .

It appears that the condition B, eLl(J) is required (among other integrability
requirements) in order to prove the existence of a solution of (28). It would be nice

to know if there are results available where both coefficients have appropriate con-
ditionally convergent integrals.
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