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The study of primary semigroups is initiated by the author in [3], and it appears
to be basic in view of the fact that Archimedian semigroups are primary and hence,
according to a well-known theorem, every commutative semigroup is the disjoint
union of Archimedian and thus primary semigroups. In primary semigroups. idem-
potents are linearly ordered. In [3] it is proved that among cancellative commutative
semigroups the property that prime ideals being maximal is equivalent to the property
that the semigroup is primary. If a commutative semigroup has identity and if its
prime ideals are maximal, then the semigroup is always primary. These observations
naturally prompt one to study the interconnections between the semigroups in which
idempotents are linearly ordered and the semigroups in which prime ideals are
maximal and to obtain the conditions when they are primary semigroups. The study
of semigroups (not necessarily commutative) in which prime ideals are maximal is
already initiated by Schwarz [4] and some interesting results regarding the classical
radical in ring theoretic sense are obtained. In 1.1 and 1.3 the necessary and sufficient
conditions are found when a commutative semigroup in which prime ideals are maxi-
mal can have its idempotents linearly ordered and conversely. In 1.4 an example is
constructed to show even the commutative semigroup which has only one idempotent
(hence idempotents are linearly ordered) and has only one prime and maximal ideal
(hence prime ideals are maximal) need not be primary. Theorem 1.5 asserts that the
only primary semigroups in which prime ideals are maximal are Archimedian. In
Section 2 we shall characterize all semigroups in which every ideal is prime (a sub-
class of primary semigroups). Now we shall recall some facts from [3] for ready
reference. An ideal 4 in a semigroup S is primary if xy € A and x ¢ A, then for some
positive integer n, y" € A. A commutative semigroup is said to be primary iff all of
its ideals are primary. A right ideal A in an arbitrary semigroup S is called prime
iff xy e A= x or y € A. If A is an ideal in a commutative semigroup S, then \/(4) =
={xeS | 3 n such that x" e A}. Following the lines of proof in commutative ring
theory [2; 104] it can be proved that (/A is the intersection of all prime ideals that
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contain A. This basic result is frequently used in this paper. The ordering of the
idempotents in this paper is the same natural ordering found in [1]. A commutative
semigroup S is defined to be Archimedian if, for any two elements of S, each divides
some power of the other. If 4 is a subset of a semigroup S, we denote the complement
of Ain Sby S — A.

1. SEMIGROUPS IN WHICH PRIME IDEALS ARE MAXIMAL

1.1. Theorem Let S be a commutative semigroup with identity. Then the following
are equivalent.

i) prime ideals are maximal

ii) S is either a group and so Archimedian or S has a unique prime ideal P such
that S = G U P, where G is the group of units of S and P is an Archimedian sub-
semigroup of S.

In either case S is a primary semigroup and S has at most one idempotent different
from identity.

Proof. The proof for (i) <> (ii) is obvious by noting that S has a unique maximal
ideal which is prime since S has identity. The proof that P is Archimedian is worked
out in the proof of 1.3 below. By theorem 2.5 of [3], S is a primary semigroup. Let S
be not a group. If possible let e and f be idempotents different from the identity. By
virtue of the property of the radical mentioned in the introduction, \/(eS) =./(fS)=

= P, which is the unique prime ideal as well as the unique maximal ideal. This
implies e = ef = f.

1.2. Note. If a commutative semigroup has no identity, the above tyze of result
need not be true. Let S = {a, b, ab : a*> = a; b> = b; ab = ba}. S is a semigroup
with the prime ideals {a, ab} and {b, ab} which are also maximal. The failure of the
conclusion of theorem in this example may be attributed to the fact that the idem-
potents in S do not form a chain. In fact we have

1.3. Theorem. Let S be a commutative semigroup without identity. Then the fol-
lowing are equivalent.
i) prime ideals are maximal and idempotents in S form a chain

iy S is Archimedian or there exists only one prime ideal P in S and
S = P U S — P, where P is an Archimedian semigroup and S — P is a group.

ili) prime ideals are maximal in S and S has at most two idempotents.

Proof. (i) = (ii): If S has no proper prime ideals, then for any a, b € S, we have
J(@uaS) =/(bubS)=S5. Thus there exist positive integers m and n such
that b”" e a U aS and a™ e b U bS. Hence S is Archimedian. Suppose S has a proper
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prime ideal M. Firstly we shall prove that S — M is a group. Let ae S — M. Then
a’>e S — M since M is a prime ideal. Also M is a maximal ideal by hypothesis and
hence M UavuaS =M ua®?ua®S. Thus a =a® or a = a’x, xeS — M and
this implies S — M is a regular semigroup. From this follows that S — M is a group
since S — M has only one idempotent. For, if e and f are two idempotents in S — M,
then MueueS=MuUfuUfS =S. Hence e =f or e = fe and also f = fe or
f = eand so e = f. Now we claim that S has a unique prime ideal. Suppose that M
and N be two proper prime ideals in S. Then S — M and S — N are groups with
identities e and f respectively. Since idempotents form a chain by hypothesis, assume
for definiteness, that e < f, that is, e = ef. This implies that f¢ M since e¢ M.
But S — M has only idempotent since S — M is a group. So e = f. Now xe S —
— M =3 ysuchthatxy =eeS — N.Ifx¢ S — N,then xe N and so xy = e€N,
a contradiction. Thus we have S — M < S — N and by symmetry we assert S — M =
=S — N.Hence M = N. Nowwe have S = M U S — M, where S — M is a group.
Since M is the unique prime ideal in S, for any a, be M, \/(a U aS) =,/(b L bS) =
= M. Then there exist positive integers m and n such that a™ = bx and b" = ay.
Clearly a™*! = b(ax) and b"*! = a(by) where ax and by e M. Hence we conclude
that M is an Archimedian subsemigroup. (ii) = (iii): Suppose S is Archimedian. We
assert that S has no proper prime ideals and there is at most one idempotent, which
proves (iii) in this case. If possible let there exist a prime ideal P = S. Let x € P.
If y €S, since S is Archimedian, y divides some power of x and so y € \/(x U xS).
Thus \/(x U xS) = S. But \/x U xS = /P = P. This implies P = S, a contradiction.
This non-existence of proper prime ideals in S implies that \/(eS) = \/(fS) = S, where
e and f are any two arbitrary idempotents in S. Hence e = ef = f. Assume the second
condition in (ii). If P is not maximal, then P is contained properly in a proper ideal 4.
Let e be the identity of S — P. Since 4 P, there existsan x e A — P suchthat xy = e
for some y € S. This implies e € A. Since A + S, there exists ae S — A. Buta = ae
and hence a € A4, a contradiction. Thus prime ideals are maximal in S. In order to
prove that S has at most two idempotents, it suffices to show that P has at most one
idempotent since the group S — P has only one idempotent. If P has two idempo-
tents e and f, then \/(eS) = /(fS) = P, since P is the unique proper prime ideal in S.
This clearly implies that e = ef = f. (iii) = (i): Let e and f be the only two idem-
potents in S. Since ef is an idempotent, we must have e = ef or f = ef. Thus idem-
potents are linearly ordered.

1.4. Remark. If a semigroup in which prime ideals are maximal has identity, then
it is primary by Theorem 2.5 of [3]. But if the semigroup has no identity, even with
the additional hypothesis that the idempotents form a chain, the semigroup need not
be primary. Consider the semigroup S = {a, a?, ...} U e where ¢* = ¢ and ae =
= ea = a*. P = {a, a®, ...} is the unique prime ideal in S and also is maximal in S.
Also S — P is a group. But the ideal A = {a?, ...} is not primary since aee 4, a ¢ A
and no power of e is in A. The failure of this semigroup to be primary is due to the
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fact that it is not Archimedian, which can be seen in the following. Of course an
easy verification asserts that the only commutative Archimedian semigroups with
identity are groups.

1.5. Theorem. Let S be a commutative semigroup without identity. Then S is
a primary semigroup in which prime ideals are maximal iff S is Archimedian.

Proof. Let S be Archimedian. In the course of the proof of Theorem 1.3 we
observed that S has no proper prime idelas. Hence it is trivially true that prime ideals
are maximal. Let 4 be an ideal in S such that xy € 4 and x ¢ A. By Archimedian
property, there exists a positive integer n such that y" = (xy) k € A. Hence every
ideal 4 in S is primary. Assume now that S is primary and prime ideals in S are
maximal. Since S is primary, the idempotents of S are linearly ordered [3; Prop. 2.1].
Then by 1.3, S is either Archimedian or S = P U S — P, where P is the unique
proper prime ideal in S such that S — P is a group. We claim that the latter case is
not possible. Let e be the identity of S — P. Since S has no identity, there exists
x € P, such that x & ex. Now ex € exS. x ¢ exS, otherwise x = exy = e(exy) = ex,
a contradiction. No power of e is in exS, since otherwise, e € P. Hence exS is not
a primary ideal, a contradiction. ‘

1.6. Corollary. Let S be a commutative semigroup. Then every prime ideal in S
is a union of Archimedian subsemigroups of S.

Proof. By Theorem 4.13 [1; 132], S = US,, where S, is an Archimedian sub-
semigroup of S. Let P be a prime ideal in S. If {S,} is a collection of subsemigroups
of {S,} containing elements of P, then P = US,. But P n S, is a prime ideal of Sj.
As observed in the proof of Theorem 1.5, S; has no proper prime 1deals of its own
and hence P n Sy = Sj, which implies Sy = P. Thus P = US),.

2. SEMIGROUPS IN WHICH EVERY IDEAL IS PRIME

2.1. Proposition. Let S be a commutative semigroup in which every ideal is prime.
Then the following are true.

1) The ideals of S form a chain under set inclusion.
2) S has at most one maximal ideal.

3) Idempotents in S are linearly ordered.

4) If A is an ideal, then A*> = A.

5) S is a regular semigroup.

Proof. Let A and B be vany two arbitrary ideals in S. If A ¢ B and B 4¢: A4, then
there exist ae A and a ¢ B and be B and ¢A4. Then abe An B and a,b¢ A n B.
This contradicts that A N B is prime. (2) and (3) can easily be verified. If 4 is an ideal,
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then for ae A, a*€ 4%, Since A® is prime, a € A2. Thus A = A% To prove (5),
observe a U aS = a® U a*S by (4). Hence S is regular.
Combining 2.1 and 2.4 of [3], we have

2.2. Theorem. Let S be a commutative semigroup. Then every ideal of S is prime
iff S is regular and the idempotents in S form a chain.

2.3. Note. In the non-commutative case the condition that every two-sided ideal is
prime or even the stronger condition that every right as well as left ideal is prime need
not imply that the idempotents are linearly ordered, though the semigroup is regular.
This is illustrated by the example of a semigroup S = {a, b, ba : a*> = a, b*> = b.
ab = a}. However if right ideals are linearly ordered and left ideals are linearly
ordered then it can easily be verified that idempotents are linearly ordered. In general
we have

2.4. Theorem. Let S be an arbitrary semigroup in which every right ideal and
left ideal is prime. Then S is a union of groups and hence is a regular semigroup.

Proof. Let ae S. Since a . a € a? U a%S, which is prime, we have a € a® U a?S.
Hence S is right regular. Similarly S can be proved left regular. This implies that S
is a union of groups by Theorem 4.3 of [1; 122].

2.5. Note. If in a commutative semigroup every ideal is prime, then it is a primary
semigroup. But the converse need not be true. Consider the semigroup S = {a, b, z}
with the multiplication table

zab

zZ zZ2zZ2Z
azaa

bzaa

b*>e{z, a} and b ¢ {z, a} and so {z, a} is not prime. But every ideal is primary.
By virtue of Theorem 2.4 of [3], we have

2.6. Theorem. Let S be a commutative primary semigroup. Then every ideal in S
is prime iff S is regular.
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