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1. INTRODUCTION

The object of the present paper is to introduce a new class of spaces (named almost
K-compact) which is a generalization of the concept of K-compact spaces introduced
by H. HERRLICH [5] recently. These spaces also generalize, as can be seen immediately
from the definition given in section 3, the concepts of almost compact spaces and
almost realcompact spaces [2] It will be shown that this very general class of spaces
has a number of useful properties like productivity, feeble hereditaryness and others.

Before going on to the main object of this paper we present in section 2, some results
connected with the theory of K-compact spaces. In section 3, we introduce the defini-
tion of almost K-compact spaces some of whose properties are worked out in section 4.
Finally in section 5, we characterize them in terms of a Completeness property, the
idea of which is due to E. CecH and which has been stated explicitely by FroLik [2].
A brief mention is made in section 2 of a type of space that we have called oy-
compact. Its properties will be studied elsewhere.

Notations and terminology. We denote a family of sets as # = {U,:a eA} or
simply % = {U,}, where U, is indexed by the elements a of an index set 4. We will
denote union and intersection of all the members of such a family by U% or U,4,
and N% or N,U, respectively. If % is a family of subsets of a space X and 0 a subset
of space X, then  n 0 will be used to denote the family of all U n 0, U € %. The
closure of a subset O of a space X will be denoted by 0%, or simply O, if no confusion
can result thereby. % will be used to denote the family of sets {U : U € #}. The
cardinality of a set 4 will be denoted by card (4). Throughout this paper K will denote
an infinite cardinal number. '

All through the paper we assume the spaces consideted to be Hausdorff except in
section 2, where complete regularity is also assumed.

A family § of sets is said to have K-intersection property if the intersection of
every subfamily §' < § with card (§) < K is non empty. K-intersection property
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is known as centredness or finite intersection property (respectively countable inter-
section property) when K = ¥, (respectively K = N,). A subset of a space X is
said to be regular closed if it is the closure of an open set or equivalently if it is the
closure of its own interior.

2. K-COMPACT AND K-LINDELOF SPACE

In this section, all spaces are assumed to be completely regular. According to H.
Herrlich, a space is K-compact if every Z-ultrafilter with K-intersection property is
fixed. This can also be stated as follows:

Definition 2.1. A space is K-compact if every maximal centred family of zero-sets
with K-intersection property has non empty intersection.

Remark 2.1. This is to be distinguished from the concept of (K, f)-compactness
to be defined in section 4.

Now, K-Lindelof space, introduced by Frolik [3], can be stated as:

Definition 2.2. A topological space X is said to be K-Lindeldf if every family of
closed sets of X with K-intersection property has non empty intersection.

Theorem 2.1. Every K-Lindeldf space is K-compact.

Proof. Infact, a space has K-Lindelof property if every z-filter with K-intersection
property is fixed and obviously it implies the following condition: every maximal
Z-filter with K-intersection property is fixed, which is nothing but a K-compact
space.

The converse of the above theorem may not be true. However, it can be shown to
hold under some additional conditions.

BAGLEY and McCNIGHT [ 1] introduced the concept of I-Space. In a similar manner
we can define what may be termed as an I -space.

Definition 2.3. A space is said to be Ix-space if each collection of closed sets with
K-intersection property is contained in a collection of closed sets which is maximal
with respect to this property.

Theorem 2.2. 4 normal, K-compact, Iy-Space is K-Lindeldf.

Proof. Let X be the space satisfying the given conditions and let {Fa} be a maximal
family of closed sets of X with K-intersection property. Let us denote by & = Z,
the collection of all zero sets lying in the above system. Evidently & has K-inter-
section property. We shall show that it is maximal. :
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Ify = {Z,,} is not maximal, then there exists a zero set Z which intersects all the
elements of {Z,} but is not a member of {Z,}. Thus, Z is not in {F,} and since this
collection is maximal with K-intersection property it contains a set F such that
Z n F'= 0. In view of the normality of X, there exists a zero set Z, for which Z,> F
and Zo,nZ =0. But Z,e{F,}. Then this contradicts the assumption that Z
intersects each member of Z. Thus & must be maximal with respect to the K-
intersection property.

Since X is a K-compact space, we have

NZ,+0
;. ZpyeZ
and since a closed set in a completely regular space is the intersection of zero sets
containing it, '
NaZs = N,F, .

This shows that each maximal family of closed sets with K-intersection property
has a non empty intersection and in an I-space this clearly implies that X is a K-
Lindelof space.

A variant of the definition of o-compact spaces can, however, be shown to imply
the K-Lindelsf property.

Definition 2.4. If X = U{C : C € %} where each member of the family ¢ is a com-
pact subspace of a space X and card (%) < K, then X will be said to be ox-compact.

Clearly every og-compact space is K-Lindel6f and hence is K-compact.

o -compact space will be studied elsewhere.

3. ALMOST K-COMPACT SPACE

In this section we define a new class of topological spaces, called, almost K-
compact, which is a generalization of K-compact spaces of Herrlich [5].

Definition 3.1. A space X is said to be almost K-compact if % is a maximal centred
family of open sets such that % has the K-intersection property, then % =+ 0.

Equivalently, a space X is almost K-compact if % is a maximal centred family of
open sets with % = 0, then ¥ =0 for some subfamily ¥~ of # with card
() <K.

Every completely regular K-compact space is almost K-compact and so from the
definitions themselves, it follows that every completely regular K-Lindeldf space is
almost K-compact.

A space is almost Ny-compact when it is almost compact and almost ¥,-compact
when it is almost realcompact. Every almost N¥,-compact space (i.e. almost compact)
is almost N ;-compact (i.e. almost realcompact). In general, we can say that if  and I
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are two cardinal numbers with ¥ <[, then every almost f-compact space is almost
[-compact.

Remark 3.1. If the space is completely regular and if ‘open sets’ are replaced
by ‘zero sets’ in definition 3.1, then we reach the definition of K-compact spaces.

4. PROPERTIES OF ALMOST K-COMPACT SPACES

4.1. Subsets. It is well known that realcompact and K-compact spaces are weakly
hereditary. Our almost K-compact space is not hereditary. It is not even weakly
hereditary, since even almost realcompact spaces do not have this property.

Definition 4.1.1. A property P of a topological space is said to be feebly hereditary
if every regular closed sub-space of the space has the property P.

Almost compact spaces and almost realcompact spaces are feebly hereditary, and
we will show that almost K-compact spaces are also feebly hereditary.

Theorem 4.1.1. 4 regular closed subset of an almost K-compact space is almost
K-compact.

Proof. Let X be an almost K-compact space and O be an open subset of X.
Then a regular closed subset of the space X is a set of the form 0. We have to prove
that O is an almost K-compact space.

Let % be a maximal centred family of open subsets of O such that the intersection
of closures of sets from # in O is empty ie. ({UN O :Ue#} = 0.

Let ¥~ be a maximal centred family of open subsets of X with ¥~ o' % n 0, such
that ¥ = 0. Since X is an almost K-compact space, we have € = 0, for some
subfamily ¢ of ¥~ such that card (%) < K. Now it follows from the maximality of %
that ¥ N 0 < % and N% n 0 = 0. This means that the intersection of closures of
sets from some subfamily of % whose cardinality is less than K in O is empty.

Thus O is almost K-compact.

Ny 2 YO

Theorem 4.1.2. Intersection of almost K-compact subspaces of a“)s,pace is -itself
almost K-compact.

Proof. Let (X,) be a family of almost K-compact subspaces of a space X and let
I = N,X,. We have to prove that I is almost K-compact.

Let % be a maximal centred family of open subsets of I with %' = 0. N%* is at
most a singleton, and so we can choose an almost K-compact space X, containing I
such that %*a: = 0. Let ¥~ be a maximal centred family of open subsets of X,
such that % < 7" n 1. It follows that then we have actually ¥ n I = %, and we get

0 = NU*a: = 7 ¥ai,
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Since the space X, is almost K-compact, there exists a subfamily ¢ of ¥~ with
card (%) < K such that Ng*es = 0. But we have 4 nI < % and from above
N% N I*a: = 0. Since I = X, this remains true also in 1.

Hence I is an almost K-compact Space.

Corollary 4.1.1. Every closed subspace of a regular (or semi-regular) almost
K-compact space is almost K-compact.

We know that every closed subspace in a regular (or semi-regular) space is the
intersection of regular closed subspaces and hence the corollary follows from the
theorems 4.1.1 and 4.1.2.

4.2. Products. Now we examine the behaviour of almost K-compactness with
regard to products. Herrlich [5] proved that the product of an arbitrary family of
K-compact spaces is K-compact. We find that the same is also true for almost
K-compact spaces.

Theorem 4.2.1. An arbitrary product of almost K-compact spaces is an almost
K-compact space.

Proof. Let X be the topological product of a family {X, : a € A} of almost K-
compact spaces, i.e., X = X{X,:ae A} where each X, is an almost K-compact
space. We have to prove that X is an almost K-compact space.

Let % be a maximal centred family of open subsets of X such that # has K-
intersection property and =, the projections of X onto the co-ordinate space X,
such that .

m(x) =x, for x ={x,:aeA}.

Since , is open continuous, the family %, = {n,(U):Ue } is centred family of
open subsets of X,. We have to show that %, is maximal. Let us suppose O to be an
open subset of X, intersecting every member of %,. Then =, !(0) is a subset of X
intersect'ng every member of %. Hence by the maximality of %, n;'(0)e%.
Therefore,

n(n;(0)) = Oe,.

Thus %, is also a maximal family of open subsets of X, with finite intersection proper-
ty. Now it remains to show that %, has K-intersection property.
Now, for any subfamily %, of % with cardinality less than K and such that

N U # 0, we have
Ue%

0+ x(O0) < N n(0) < N (0).

€Uo Uelo

This implies that %, has K-intersection property, since its members are of the form
n,(U), U € %. The space X, being an almost K-compact space, there exists a point
(x,) € N%Y<, where x, is a point in X, for every a € 4.
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Consequently (x) = ({x, : a € A}) e N%* where x = {x,} is in the space X, that
is, N%* + 0.
Hence the product space X is almost K-compact.

4.3. Mappings. In his paper [5], Herrlich proved that, the inverse image of each
K-compact subset of a space under a continuous mapping is K-compact. In our case,
however, we are able to prove a corresponding theorem only under an additional
hypothesis of regularity for both the spaces.

Theorem 4.3.1. If f is a continuous mapping from a regular almost K-compact
space X into a regular space Y, then the inverse image of each almost K-compact
subset of Y is almost K-compact.

Proof. Let S be an almost K-compact subspace of Y. It is well known that f ~(S)
is homeomorphic to the set {(x, y) : xe X and y = f(x) e S} and this set is closed
in X x S. Since regularity is a hereditary property and it is also productivity, X x S
is regular and so by the theorem 4.2.1, X x S is almost K-compact. The theorem,
then, follows from the corollary 4.1.1.

The most interesting result of almost K-compact space is that it can be preserved
under a (K, f)-perfect mapping which is a notion weaker than that of a perfect

mapping.

Definition 4.3.1. A space is said to be (K, f)-compact if every open covering of
cardinality <K has a finite subcovering.

Definition 4.3.2. A mapping f: X — Y is (K, f)-perfect if f is closed and f~*(y)
is (K, f)-compact for every point y in Y.

Remark 4.3.1. If K = N, then we call the mapping quasi perfect.

Theorem 4.3.2. The image under a (K, f)-perfect continuous mapping of an
almost K-compact space is almost K-compact.

Proof. Let f be a (K,f)-perfect continuous mapping of an almost K-compact
space X onto a space Y. We have to prove that Yis an almost K-compact space.

Let = {U,} be a maximal centred family of open-subsets of Y such that # has
K-intersection property. Let ¥~ = f~}(%) = {f 7'U : U € %} be a centred family of
open sets of X, where ¥~ has K-intersection property. Let us supplement it to a maxi-
mal centred family ¥ of open sets of X. Now we will show that ¥ has K-intersection
property.

Let us suppose that there exists a subfamily ¥ "o = {V;} of the family ¥~ with
card (¥7g) < K. If 7" does not have the K-intersection property, then we can take
the subfamily such that 7"y = 0. Taking complements on both sides, we have the
family M = {X — V, :V, e ¥7;} which is an open covering of X such that card
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(M) < K. This family will surely cover the subset f~*(y) of X for any y e Y. Since
for each y e Y, f7*(y) is (K, f)-compact, we can pick up a finite family {¥,,,} from
the family 77, of cardinality <K such that for an integer n,, the family {X — V, ,}
also covers f ~*(y), where i = 1,2,3,...,n,

Since the mapping f is closed and continuous, we have f(V) = f(V) for each subset
of X.

So, for each er,yeO{Y—f(—V)}.
i=1

Thus the family Rt = {Y — f(V,) : ¥, € ¥",} is an open cover of Y, such that card
(M) <K
Hence there exists a ¥}, in ¥7 such that

Y — f(V,:) eY,
then f~[Y - f(V;)]e ¥". From V,e¥" and Voo f Y — f(V,)] =0, we get
a contradiction of the fact that ¥ is centred. Hence ¥ ¢ + 0, i.e., ¥ has K- -
intersection property.
Since the space X is an almost K-compact space, we have () V, % 0. This gives
us N.f~X(U,) # 0 so that s
NU, 0.

Thus Yis an almost K-compact space. Hence the theorem.

Remark 4.3.1. This theorem leds to a slight improvement of the Frolik’s theorem
[2] if we put K = N,. His theorem remains true if we take quasi perfect mapping in
place of perfect mapping.

5. CHARACTERIZATION OF ALMOST K-COMPACT SPACES
BY A COMPLETENESS PROPERTY

In his paper [2] Frolik defined completeness in the following way.

Definition 5.1. Let o = {%} be a collection of open coverings of a space X. An
a-Cauchy family is a centred family ¥~ of open subsets of X such that for every %
in o there exists an U in % and a Vin ¥ withV < U.

The collection o is called complete if (¥~ + O for every a-Cauchy family 7.

Note 5.1. Let a be a collection of open covering of a space X and let ¥~ be a maxi-
mal centred family of open sub-sets of X. ¥" is an a-Cauchy family if % n ¥~ £ 0
for every % in « [2].

Using the above definition of completeness we shall prove the following theorem.

Theorem 5.1. A space X is almost K-compact if and only if the collection 6 of all
open coverings, with cardinality less than K, of X is complete.
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Proof. Necessity. Let § be the collection of all open coverings with cardinality
less than K and let ¥~ be a §-Cauchy family. Without loss of generality we may
assume that ¥~ is a maximal centred family since every centred family of open sets is
contained in a maximal one. Now we have to show that ¥ has K-intersection
property.

Let ¥, be a subfamily of ¥~ of cardinality less than K, such that %, = 0.

Let # = {X — V:Ve¥,}. By our assumption, % belongs to 8. Since ¥ is J-
Cauchy family, by note 5.1, we can choose an U = X — Vin % n ¥". We have

Ue?,Ve?,U nV = 0 which contradicts the finite intersection property of 7.

Thus N7, + 0, that is, ¥ has K-intersection property.

The space X being almost K-compact, ¥~ #+ @, which shows that the collection &
of all open coverings of X of cardinality less then K is complete for every 4-Cauchy
family 7.

Sufficiency. Let ¥~ be a maximal centred family of open subsets of X such that ¥~
has the K-intersection property and let § be the collection of all open coverings with
cardinality less than K. First we have to prove that ¥~ is a §-Cauchy family.

If ¥ is not 6-Cauchy family, then by note 5.1 we have % n ¥~ = 0 where % €.
Then evidently, for every U in %, the sets of the form X — U belong to ¥~ and form
a subfamily ¥, of ¥~ with card (¥,) < K.

Now X ~UcX-U,or, X-UcX-U=X-U. Thus N{X - U:
Ue%cN{X -U:Ue%} =X — N% =9, which contradicts the K-inter-
section property of ¥". Hence ¥~ is 6-Cauchy family.

Since & is complete, then for every d-Cauchy family ¥~ we have

N7 +90.

Hence X is almost K-compact.

Addendum. 1. In the theorem 2.1 of Section 2, inplace of K-Lindel6f space we can
take, K-quasi-Lindel6f spaces, as according to Frolik [3] a completely regular space
is K-Lindelof iff it is K-quasi-Lindelof.
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