Czechoslovak Mathematical Journal

Bohdan Zelinka
The group of autotopies of a digraph

Czechoslovak Mathematical Journal, Vol. 21 (1971), No. 4, 619-624

Persistent URL: http://dml.cz/dmlcz/101060

Terms of use:

© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101060
http://dml.cz

Czechoslovak Mathematical Journal, 21 (96) 1971, Praha

THE GROUP OF AUTOTOPIES OF A DIGRAPH

BOHDAN ZELINKA, Liberec

(Received April 2, 1970)

In [4] we have defined the concept of isotopy ot digraphs. It G,, G, are two digraphs
and there exist two one-tc-one mappings fy, f, of the vertex set V; of G, onto the
vertex set V, of G, such that the existence of the edge f;(u) f2(v) in G, is equivalent
with the existence of the edge wv in G, for any two vertices u, v of V;, we say that G,
and G, are isotopic to each other and we call the ordered pair of mappings | =
= {f1, f,> an isotopy of G, onto G,. If f; = f,, then f is called an isomorphism
of G, onto G,. If { = {f}, f,) is an isotopy of G, onto G, and g = {g;, g, is an
isotopy of G, onto Gj, then the product gf is the pair of mappings <{g,f;, g.f>); it
is evidently an isotopy of G, onto G,. The inverse isotopy f~* is the pair {f; %, £, '>;
it is an isotopy of G, onto G;. An isotopy of a digraph G onto itself is called an auto-
topy of the digraph G. The autotopies of a given digraph G form a group according
to the above defined operations. We shall denote it by ;. Now by B, BZ) we
denote the set of permutations of the vertex set ¥ of G which occur at the first or at
the second place respectively in some autotopy of G. By AL, AP we denote the set
of autotopies of G which have the the identity mapping e of V at the first or at the
second place respectively. The identity autotopy <e, e) will be denoted by e. Finally,
the group of all permutations of ¥ will be denoted by S (it is isomorphic to the sym-
metric group of order equal to the cardinality of V) and the group of all ordered
pairs of these permutations will be denoted by S§ (it is isomorphic to the direct
product of two groups which are both isomorphic to S¢). Evidently AS” and AP’
are subgroups of A, and Ay is a subgroup of SF). The sets B and B are sub-
groups of Sg.

Theorem 1. The group NG’ is a normal subgroup of g and the factor-group
Aq /AP is isomorphic to B .

Proof. Let fe AL, ge s We have | = (e, f2), 8 = {gy, g,), where e is the
identity mapping of ¥ and f3, 91, 9, are permutations of V. The mapping gfg ™" =
= {gieg7 . 921295 1) = <& 921297 ") € AL and therefore A’ is a normal sub-
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group of A All autotopies of the class g2¢ have g, at the first place. On the other
hand, if § = {gy,J,y is an autotopy of G, then we form the product g~ g =
= (e, g5 'd,). This product is in AY’, thus g = g(g~'g) € gAY . We have proved
that the class g2§" is formed exactly by all autotopies of G which have g, at the first
place. Thus to any element g, of BY we may assign a class gq$" such that g, is at
the first place in g; this correspondence is one-to-one. From the definition of mul-
tiplication of autotopies it follows that this correspondence is an isomorphism.

Theorem 1. The group AP is a normal subgroup of WA, and the factor-group
WA/ AP is isomorphic to B .

Proofis dual to the proof of Theorem 1.

Theorem 2. The group AL is isomorphic to a direct product of some groups
€y, ..., €, each of which is isomorphic to some symmetric group.

Proof. Let | = <e, f,> € BY) and let u e ¥, v e V. The existence of the edge uv is

equivalent to the existence of the edge e(u) f,(v) = ufz(v_)’. Thus u € I' "o if and only
if ueI'"* f,(v) and therefore I'"'v = I'* f,(v). (The symbols I' and I'"! are used
following [1].) Let &~ be such a relation on the set ¥ that ue¢ v if and only if I'"'u =
= I'"'». The relation ¢~ is evidently an equivalence, therefore there exists a parti-
tion &~ of Vinto equivalence classes of the relation ¢ . Nowlet g be a permutation
of ¥ such that g(v) ¢”v for any veV. If x e I' "o, there exist both the edges xv and

xg(v) if x ¢ I'"'v, there is also x ¢ I'"* g(v) and none of the edges xv and xg(v)
exists. Therefore (e, g) is an autotopy of G. We have shown that the group A% is
isomorphic with the group of permutations of ¥ which map any element onto an
element of the same class of §7. If §~ = {E,, ..., E,}, then this group is a direct
product of the groups €, ..., €, where €, for i = 1, ..., k is the group of all permuta-
tions of E;.

Theorem 2. The group NG is isomorphic to a direct product of some groups
€1, ..., €, each of which is isomorphic to some symmetric group.

Proof is dual to the proof of Theorem 2.

Theorem 3. If A, for some digraph G is Abelian, then to any vertex u of G there
exists at most one vertex v + u such that I'"*v = I'"'u and at most one vertex
w = u such that I'w = l'u.

Proof. A group is Abelian only if all of its subgroups are Abelian. Thus if
is Abelian, also AY and A are Abelian. As AL is a direct product of groups
isomorphic to symmetric groups, all of these groups must be Abelian. A symmetric
group is Abelian if and only if it is of order 1 or 2, thus any of the classes of &~ must
consist of one or two vertices; therefore to any vertex u of G there exists at most one
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vertex v # u such that I'"'v = I'"'u. Dually we can prove the second part of the
theorem.

Now we shall investigate digraphs with the property that u % v implies I'u & I'v,
I''u % I'"'vfor any two vertices u, v. In these graphs evidently AL = AP = {e}.

Theorem 4. Let G be a digraph in which u + v implies T'u % I'v, I 'u + ' 'v
for any two vertices u,v. Then B =~ BP =~ A, and there exists such an iso-
morphic mapping @ of B onto B that any autotopy of G has the form {f, ¢(f)),
where f € BG).

Proof. The assertion that B ~ BF = A follows immediately from Theorems
1 and 1’. Now let us have two autotopies f = {f}, f,» and g = (g,, g, such that
fi=gy. Then f7'g = {f{ g0 f192) =< f5'g:> e AP, As AP = {e}, we
must have j~!g = e, therefore | = g. We have proved that to any f, e B’ at most
one (and therefore exactly one) mapping f, € BE exists such that {f, f>) € Ug.
Analogously we can prove that to any f, € B at most one (and therefore exactly
one) mapping f, € BE exists such that (f;,f,> € Wg. We shall define ¢ as the
mapping of B onto B such that <{f, ¢(f)> € A for any f e BG; according to
what was proved above there exists exactly one such ¢ and it is one-to-one. If
{f, o(f)> and <g, ¢(g)> are two autotopies, then their product {fg, o(f) ¢(9) is
also an autotopy; according to the definition, @(f) ¢(g9) = ¢(fg)- The inverse map-
ping to {f, (f)> is {f ™', @(f)~'», it is evidently also an autotopy and therefore
o(f)™* = o(f ). Therefore g is an isomorphism of B onto B .

Corollary 1. If G is such a digraph that u # v implies T'u & I'v, "'u &£ ' 'v
for any two vertices u, v, then either all autotopies of G are automorphisms, or
there exists no automorphism of G except e.

The first case occurs, if ¢ is an identity mapping of B, else the second case
holds.

Now we shall consider the case when ¢ is induced by an inner automorphism of Sg.
(According to Theorem of Hélder [2] and a contribution to it by Schreier and
Ulam [3], all automorphisms of S are inner if the number of vertices of G is greater
than two and different from six.) This means that there exists a permutation A of V
such that ¢(f) = 27'fA for any fe BY.

Theorem 5. Let the assumption of Theorem 4 be satisfied and let there exist
a mapping A € S such that o(f) = A~*fA for any f e BS. Let {e, 1y be an isotopy
of G onto a digraph G’ with the same vertex set. Then any autotopy of G is an
automorphism of G’ and vice versa and G’ contains no autotopies except for auto-
morphisms.

Proof. For any two vertices u € V, v € V the existence of the edge wv in G is
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equivalent to the existence of the edge u A(u) in G'. Let f e BS . Then {f; o(f)>
is an autotopy of G and therefore the existence of uv in G is equivalent 'to the
existence of f(u) ¢(f) (;) in G. We have o(f) (v) = A7*f A(v). Thus f(u) o(f) (v) =
= f(u) A7*f A(v). Let us apply the isotopy e, A) to this edge. We obtain that the
existence of this edge in G is equivalent to the existence of the edge f (w) f Av) in G".
This implies that the existence of u A(v) in G’ is equivalent to the existence of f(u) fA(v)
in G’ and therefore f is an automorphism of G". Now let g = (g, g, be an autotopy
of G'. The existence of the edge ,)—cj)) in G’ is equivalent to the existence of the edge
g,(x) gz(y) in G'. But the existence if Xy and gl(x) gz(y) in G’ is equivalent to the
existence of the edges xA~ 1(y) and gl(x) A" gz(y) in G. Thus (g, A71g,A)> is an
autotopy of G. This implies A 1g,4 = A7 1g,],i.e. g, = g, and g is an automorphism
of G'.

Now we shall continue the study of the groups A and AP, By AL, AP we shall
denote the set of mappings which occur at the second or at the first place respectively
in autotopies of AL or A respectively. It is quite evident that AL = AP, PP ~
~ AP . Further let AF? be the product of the groups AL and AF (they are evidently
groups). This product is direct, because evidently any element of A is commutative
with any element of AP). The group AF’ is formed by all ordered pairs of mappings
in which the first element is in A and the second element is in AL,

Lemma 2. Let { = {fy,f,> € W and f; € UP. Then f, e S and fe AL

Proof. As f; € AP, we have | = (f}, e € UP). Let us make the product ff~! =
= (e, f,). This is an element of AY’ and thus f, € AL .

Lemma 2. Let f = {fy, f,) € N and f, € AG. Then f, e AP and.fe AY.

Proof is dual to the proof of Lemma 2.
Now we shall prove a theorem which is a generalization of Theorem 4.

Theorem 6. Let G be a digraph. Then A is a normal subgroup of B, FL is
a normal subgroup of BZ and BP|UP = BP AP = WG/A and there exists
an isomorphic mapping ¢ of BL|AF onto BP|AS such that any autotopy of G
has the form {fy, f,>, where f, € BY, f, € B, fLAL = o(f,UP) and all ordered
pairs of mappings satisfying this are autotopies of G.

Proof. Let f e AP, g, € B, This means that there exist autotopies | = (f, e),
g =gy, g) in QIG, where g, is an element of BY. We have gfg™! = {g:1fg; ", e) e
e AP, thus T1e 9P and 9P is a normal subgroup of B . Analogously we

G g1 fg 5

can prove that ¢ is a normal subgroup of BY. Now let | = {fy, f2) € A and
g = {4, gz> € A, We have f, e AP, g, € B, AP is a normal subgroup of 93(1’,
thus g,f19;7 ' e AP. Analogously g2f297 " € UG, Therefore gfg™! = <g,f197 "
921297 1> e AD and A is a normal subgroup of Ag. Now assume that we have
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two autotopies f = {f1, 2, @ = (g1, ¢,> such that f1, g, are elements of the same
class of B according to AP, i.e. £, AP = g, AP . Let us take the product fg~* =
={f197 % f295 1> As fi, f, belong to the same class of 8BS according to U,
we have f,g7 ' e A According to Lemmas 2 and 2’ we have f,g5 ' € 9", thus f,
and g, are elements of the same class of B according to UG . Analogously vice
versa. Thus to any class £, AP of BL according to A we can assign a class ¢(f; AL)
of B according to AL by a one-to-one manner o that any autotopy of G whose
first element is in £, A has the second element in o(f,AP’). Analogously as in the
proof of Theorem 4 we can prove that ¢ is an isomorphism. Now let g, € f, A,
92 € LAP = o(f,AP). Therefore there exists an autotopy of G whose first element
is in £, AP and second element is in f,A’; without any loss of generality we may
assume that this autotopy is {fy,f,>. Thus fi'g, e AP, f5 'g, € UL. The pair
g0 f5 192> e AP < Ag. Multiplying the. autotopies (fy,f2) and {f{'g,,
f21g,> we obtain (g, g,>. This pair of mappings is a product of two autotopies
of G and must be also an autotopy of G. Thus any ordered pair of mappings satisfying
the assumption is an autotopy of G. It remains to prove the assertion concerning
W/ AP, Let f = {fy,[,) € W and construct the class {AL. We have f,AF) =
= o(f,AP), thus any element of {AL has the first element in £, A’ and the second
in (f,AP). Evidently fAL’ is formed exactly by all such elements and we can define
the isomorphic mapping of B /AP onto /A such that Y(f,AF’) is the set of
all autotopies whose first element is in f, A& and whose second element is in ¢(f, AP).

At the end we shall investigate the relation ¢~ and the dual relation ¢* defined so
that ug*v for two vertices u, v of G if and only if I'u = I'v. Also the partition &7 is
defined analogously to &~

Theorem 7. Let A be a class of &% and B be a class of &~. Then either from any
vertex of A an edge goes into any vertex of B, or there is no edge going from a vertex
of A into a vertex of B.

Proof. Letue A, u' € A, ve B, v' € B. Let uv be an edge of G. We have I'u = I'’,
thus also veI'u’. This means ' eI 'v. As I'''v = I'" '/, we have v’ e "'
and w0 is an edge of G. We have proved that if from one vertex of 4 an edge goes
into a vertex of B, then from any vertex of 4 an edge goes into a vertex of B.

Theorem 8. Let Ae &*. To any class fUAP, where f e B, there exists a class
Be &* such that the image of any vertex of A in any of the mappings of fUAZ
is in B.

Proof. Let u e A. By B denote the class of &* which f(u) belongs to. Now let
g € fUAD; this means that g = hf, where h € AL, We have g(u) = hf(u). As h € A,
according to the proof of Theorem 2 h maps B onto itself and thus also g(u) € B.
If v € A, there exists a mapping h’ € AP such that v = h'(u). We have f(v) = f1'(w).
The mapping fh' is in fA, thus this vertex is also in B.
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Theorem 8'. Let Ae &~. To any class fUL), where f e BP), there exists a class
Be & such that the image of any vertex of A in any of the mappings of fUA’
is in B.

Proof is dual to the proof of Theorem 8.

Corollary 2. Let G(6*,&7) be the digraph whose vertices are classes of &%
and &~ in a digraph G such that from a class A of &% an edge goes into a class B
of &~ in G(6*, &7) if and only if in G from any vertex of A an edge goes into any
vertex of B. Let to any vertex of G(€%, &) a value equal to the cardinality of the
corresponding class be assigned. Then the group of automorphisms of this valuated

digraph (i.e. automorphisms which preserve the values of vertices) is isomorphic
to Ag /AP
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