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POSITIVE RATIONAL SEMIGROUPS AND COMMUTATIVE POWER
JOINED CANCELLATIVE SEMIGROUPS WITHOUT IDEMPOTENT

MOoRIO SAsSAKI, Morioka and TAKAYUKI TAMURA*), Davis
(Received October 12, 1969)

1. Introduction A commutative semigroup S is called archimedean if for every
ordered pair of elements a, b € S there is an element c € S and a positive integer m
such that a™ = bc. Following PETRICH [7] an 9-semigroup is a commutative archi-
medean cancellative semigroup without idempotent. An 9t-semigroup S is determined
by an abelian group G and a non-negative valued function I (called 3-function). The
following fundamental theorem on M-semigroups was originally obtained in 1957.

Theorem 1. Let G be an abelian group and N be the set of all non-negative integers.
Suppose a function I : G x G — N satisfies the following conditions:

(1.1) I(o, B) = I(B, @) for all o, B G.

(1.2) I(e, B) + I(aB,y) =1(, By) + I(B, y) for all o, B,y € G.

(1.3) I(e, &) = 1 ¢ being the identity element of G.

(1.4) For every a € G there is a positive integer m such that I(a™, o) > 0.

We define an operation on the set S = N x G = {(m,a) :meN, o€ G} by

(m,a)(n, B) = (m + n + I(a, B), «B) .

Then S, is an N-semigroup. If S is an N-semigroup, S is isomorphic to some S,
obtained in this manner.

The proof of Theorem 1 can be seen in [9], [10]. Also see p. 136, [3].

So is denoted by S, = (G;I). If S is an N-semigroup, then G, is associated with
an element a € S in such a way that S = (G,; 1), G, = S[g, where xg,y iff a"x = a"y
for some positive integers m, n. G, is called the structure group of S with respect to a.
The 9-function I, is also associated with a.

*) The research for this paper was supported in part by grant GP-5988 and GP-11964 from
the National Science Foundation to University of California; this paper was presented at the
meeting of the American Mathematical Society which was held in Eugene, Oregon, in August,
1969.
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A semigroup S is called power joined if for every a, b€ S there are positive
integers m and n such that a™ = b". The study of commutative power joined semi-
groups is basically important in the following sense: Every commutative semigroup
is the disjoint union of power joined subsemigroups and a commutative power
joined semigroup can not be decomposed into the disjoint union of more than one
subsemigroup. However we will not enter to the deep study here of this problem. The
following is due to CHRISLOCK [1, 2]. :

Lemma 2. An N-semigroup S is power joined (finitely generated) if and only
if G, is periodic (finite) for every a, equivalently for some a of S.

Throughout this paper a “positive integer semigroup’” means a subsemigroup of
the semigroup of all positive integers under addition, and a “positive rational semi-
group” is a subsemigroup of the semigroup of all positive rational numbers under
addition. By a subdirect product of semigroups A and B we mean a subsemigroup S
of the direct product of 4 and B where the projections of S into 4 and B are equal
to A and B respectively.

It is obvious that finitely generated M-semigroups are power joined. HIGGINS [4]
proved that an N-semigroup is finitely generated if and only if it is isomorphic onto
a subdirect product of a finite abelian group and a positive integer semigroup. In
this paper we generalize Higgins’ result as follows: A power joined -semigroup is
isomorphic onto a subdirect product of a periodic abelian group and a positive
rational semigroup. Positive rational semigroups are not only typical examples but
also play an important rdle in the theory of power joined R-semigroups. We wijll also
discuss the characterization of positive rational additive semigroups. .

2. Homomorphisms into R , . R, denotes the semigroup of all positive rational num-
bers under addition. In this section we will prove that every power joined R-semi-
group has a unique homomorphism into R, in some sense. Theorem 3 does not
assume cancellation.

Theorem 3. If S is a commutative power joined semigroup without idempotent,
then S is homomorphic onto a positive rational semigroup. Let ¢ and ¢, be homo-
niorphisms of S into R, then ¢(x) = r - @o(x), x € S, where r is a positive rdtidnal
number and r - @y(x) is the usual multiplication of r and @y(x). Then the semi-
groups ¢(S) and ¢y(S) are isomorphic.

Proof. First we prove the existence of homomorphisms. Let a € S be fixed. Since S
is power joined, for each x € S there are positive integers m, n such that
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Define a map ¢, of S into R, by

@o(x) = =

n

@, is well defined: g™ — x" gm" = x" implies x™" = x™" hence mn' = m’n because S
has no idempotent. Let ¢o(x) = m/n and ¢o(y) = I/k. Then a™**" = (xy)™ follows
from @™ = x" and a! = y*. Therefore we have @,(xy) = @o(x) + @o(y). Thus @ is
a homomorphism of S into R, . Let ¢ be an arbitrary homomorphism of S into R .
For each x € S, a™ = x" implies

n @o(x) = m @oa) and ng(x) = mg(a),

and then @(x) = r - @o(x) where r = @(a)[y(a) = @(a)since po(a) = 1. Itis obvious
that the semigroups ¢(S) and ¢o(S) are isomorphic.

Corollary 4. Let S and S’ be positive rational semigroups. If ¢ is a homomorphism
of S onto S’ then ¢ is an isomorphism and ¢(x) = r - x where r is a positive rational
number.

A semigroup S is called power cancellative if S satisfies the following condition
a"=b"=a=b n=223,...

For example positive rational semigroups are power cancellative. The following was
stated in [6] but we have it here as a consequence of Theorem 3.

Theorem 5. Let S be a non-trivial commutative power joined semigroup. S is
power cancellative if and only if S is isomorphic onto a positive rational semigroup.

Proof. The “if”’ part is obvious. To prove the “only if” part, suppose S is power
cancellative and S has an idempotent e. Since S is power joined, for every x € S,
there is a positive integer m such that

x" =e =¢e".

This implies x = e and hence S would be trivial S = {e}, a contradiction. Therefore S
has no idempotent. We can apply Theorem 3 to this case and there exists a homo-
morphism ¢, of S to a positive rational semigroup. Assume @q(x) = @o(y), that is,
a™ = x", a* = y' and ml = nk. By power cancellation, x™ = y™ implies x = y.
Therefore S is isomorphic into R, under ¢,.

As seen in Theorem 3, ¢(x) = () if and only if @o(x) = @¢(y). Accordingly the
congruences on S induced by the homomorphisms of S into R, are uniquely deter-
mined. In other words there is a unique nontrivial power cancellative factor semigroup
of a commutative power joined semigroup without idempotent.

Let Hom(S, R, ) denote the semigroup of all homomorphisms of a commutative
power joined semigroup S without idempotent into the semigroup R, of all positive
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rational numbers with addition. The operation in Hom(S, R.) is defined by

(¢ + ) (x) = o(x) + ¥(x).
It is easy to see
Hom(S,R,) = R, .

3. Positive Rational Semigroups. In this section we characterize positive rational
semigroups in some way and discuss how to construct these semigroups. We already
have a characterization of positive rational semigroups in Theorem 5: A non-trivial
semigroup is commutative power joined and power cancellative if and only if it is
isomorphic to a positive rational semigroup.

First we observe positive integer semigroups. It is easy to see the following propo-
sition:

Proposition 6. A non-trivial semigroup is a finitely generated, commutative power
joined, power cancellative semigroup if and only if it is isomorphic to a positive
integer semigroup.

A positive integer semigroup S has the base i.e. a unique minimal generating set
{ay,...,a,}, a; <a, <...<a, where n < a,. Denote S by S = [ay,...,a,]
Then [ay,...,a,] = [by, ..., b,] if and only if n = m and b,[a, = ... = b,/a,.
Thus S is determined in terms of the base. This fact is considered as a special case
of Corollary 4.

Consider a family {D;:i = 1,2, ...} of semigroups with isomorphisms ¢;; of D,
into Dj, i <j, such that for i £j <k, ¢ux) = ¢4;0;/(x) and ¢;(x) = x. The
semigroup D of the set union {J D; which, for every i, j and x such that i < j and

i=1
x € D,, identifies x with ¢;,(x) is called the direct limit of {D,:i = 1,2,...} with
respect to the isomorphism family F = {¢,;:i =1,2,..;j = 1,2,...; i £j} and
is denoted by D = lim (D;; F). When it is not necessary to specify ¢j;, D is called

N
a direct limit of {D; :i = 1,2,...}.

Theorem 7. A semigroup S is isomorphic to a positive rational semigroup if and
only if S is isomorphic to a direct limit of non-trivial finitely generated commutative
power joined, power cancellative semigroups.

Proof. Suppose S is isomorphic onto a positive rational semigroup. For con-
venience suppose that S itself is a positive rational semigroup. Let S; = S n [1/il]
where [1/i!] is the additive subsemigroup generated by 1/i!. S; is isomorphic onto
a positive integer semigroup. We define ¢;; by the inclusion of S; into S; in the
natural sense, that is,

N\ _(+D(E+2)...(G-1jx X
“’“(f!) (i + 1)! TR

i<j.
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Then S = lim (S;; ¢;;). Conversely, if S; (i = 1,2,...) is a non-trivial finitely
generated commutative power joined, power cancellative semigroup, then it is easy
to show that a direct limit of S; is power joined and power cancellative.

According to Corollary 4 the isomorphism ¢j; of S;into S; is determined by a posi-
tive rational number r;; such that ¢;(x) = r;; - x. A positive rational semigroup S
is determined by an ascending chain {S, : n = 1, 2, ...} of positive integer semigroups
and a sequence {s;:i = 1,2,...} of positive rational numbers. {S,} can be given
arbitrarily because of Proposition 8 below, and {s;} is chosen such that ¢, (x) =
= §;x is an isomorphism of S; into S;, ;.

Proposition 8. Any two positive integer semigroups can be embedded into each
other.

This is proved by using the following Lemma 9.

A positive integer semigroup U is called a segment if U consists of all the positive
integers greater than or equal to m for some positive integer m.

Lemma 9. The following assertions are equivalent.

(3.1) A positive integer semigroup S = [ay, ..., a,] contains a segment.

(3.2) The greatest common divisor of all elements of S is equal to 1.

(3.3) The greatest common divisor of ay, ..., a, is equal to 1.

Notice that every positive integer semigroup is isomorphic onto a positive integer

semigroup satisfying one of the conditions (3.1), (3,2) and (3.3).

4. Power joined -semigroups. Let S be a power joined N-semigroup, S = (G; I),
where G is a periodic abelian group.

Theorem 10. If a function § : G — R, is defined by

(4.1) (o) = (le(cx, o«'))[s
where s is the order of the element o of G, then @ satisfies the following conditions:

(4.2) @(e) =1 if ¢ is the identity element of G.

(4.3) @(«) + @(B) — @(«p) is a non-negative integer, and

(4.4) I(, B) = #(2) + &(B) — @(ap)-

Conversely, let ¢ be a function, G — R, which satisfies (4.2) and (4.3). If for &
we definel, G x G — N, by (4.4), then I satisfies (1.1) through (1.4) and (4.1).

Proof. The function @ defined by (4.1) is certainly a positive rational valued
function on G. @(«) is invariant even if s is replaced by its multiple because if n is

571



a multiple of s, then

(St = (2 S <) [n = (E sty

Hence we have
#(«) + #(B) — @(B) = ( i‘;l(a, «))s + (}: 1(B. )t — (z 1(aB, (xB)))/st

since o = B = ¢ implies () = &. BY the condition (1.2) of the 9-function I,
K ) + K, ) = o o . 15, ).
I(oc, a:l.;¢+1) +-I(at’ Bz+l) - I(a, Oti) + I(ai+1, ﬁi+1) s
I(, ) + 1(o'B, B) = I(ad, pivry 1(8', B) .

Adding the above three equalities, we oObtain

I(ap, «'B) = I(x, &) + I(B, B) + I(ai*1, gi+1) — [(w, B) — I(st', B)

and

iil(“/‘s (B)) =§1(1(a, o) + 1B, B) + I(od*1, §1+1) — I(a, f) — I(o, B)) =
= —stl(x, p) + téll(oz, 2) + SZ’: 18, B).

Consequently we have §(x) + @(B) — @(@B) = I(«, B). I(x B) is a non-negative
integer and @(¢) = I(e, €) = 1.

We will prove the converse. It is obvious that I is defined on G x G and is non-
negative integer valued.

I(2, B) = @(x) + (B) — @(«p) = 1(B, a),

I(o, B) + I(2B,7) = @(2) + @(B) — §(«p) + @(«B) + @(y) — G(apy) =
= @(2) + @(By) — @(apy) + () + @(y) — #(By) =
=1(a, By) + I(B,7),

I(e, ) = @(e) + (o) — @(ex) = @) = 1.

Since G is periodic, for any a € G there is a positive integer n sueh that o = ¢, hence
I(2,0") = 1 > 0. Thus we have proved that I satisfies (1.1) through (1.4). To prove

(4.1),

'Z;I(a, ai) =i§1(¢(a) + @(ai) - (ﬁ(a“’l)) =(s+ 1) (ﬁ(oc) _ [p‘(ot‘”l) = {5(0()

The proof of the theorem has been completed.
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By Theorem 10, a power joined 9-semigroup is determined by G and a function
# : G > R, which satisfies (4.2) and (4.3). We will call such a function a @-function.
According to (4.3) @ induces a homomorphism of G into the additive group of all
rational numbers mod 1.

Finitely generated 9N-semigroups [4] are obtained as a special case.

Corollary 11. If an N-semigroup S = (G; 1) is finitely generated, then G is finite
and
|G[ @) =Y I(a, &), ‘GI is the order of G .
&G

Proof. By Lemma 2 G is finite. The following is the decomposition of G induced
by the cyclic subgroup [a] generated by a e G.
G=[a]t,u...u[d]x,

where 1, = ¢, r = |G

[s,s = |[o]|- Hence we have

r s

L8 =3 Tlas) = £(3 0w e) + 167 1) - 1. ) =

j=1i= j=1i=1

=§1( ¥ 162, #) = [6] (31 25 = 6] - 5.

i=1

The following theorem will play an important role in the proof of Theorem 13.

Theorem 12. Let S = (G;I) be a power joined N-semigroup. Every homomor-
phism @, of S into R, is given by

(4.5) o((m, @) =r-(m + @(x))
where r is arbitrary positive rational number and () is defined by (4.1).

Proof. By Theorem 3 we need to prove only that ¢, is a homomorphism of S
into R,.

@y((m, @) (n, B)) = @,((m + n + I(a, B), 2B)) = m + n + I(a, B) + @(af) =
=m+ n + () + @(B) = ¢,((m, 2)) + ¢,((n, B)) by (4.4).
Theorem 13. 4 semigroup S is a power joined N-semigroup if and only if S is

isomorphic onto a subdirect product of a periodic abelian group and a positive
rational semigroup.

Proof. Let S = (G;I) be a power joined R-semigroup. By [1, 2] G is periodic.
Let { be the homomorphism of S onto G in the natural way: {((m, a)) = a. Let
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@ = @, defined by (4.5) in the case of r = 1. To prove that S is isomorphic onto
a subdirect product of G and ¢(S), all we have to do is to prove

((m, @) = C((n. B) and o(m, o)) = ¢l(n, H) imply (m.o) = (n. §).

From the first we have o = f, and then from the second,

m + (o) = n + 3(B)

which implies m = n, hence (m, «) = (n, B). This proves that if g, and g, are the con-
gruences on S induced by { and ¢ respectively, then o, N ¢, = ¢, ¢ being the equality
relation on S. Therefore S is isomorphic onto a subdirect product of Sle; (=G) and
Sle, (=9(5)).
Next we will prove the converse. Let S be a subdirect product of a periodic abelian
group G and a positive rational semigroup M. The elements of S are denoted by
((r,2)), re M, xeG. Let € G, and let

M, ={seM :((s, &) eS}.
Then

S={(r¢):reM, G}, M =§JM§,
€G
and

() -((ssm) = ((r + 5. &) -

We easily see that S is commutative, cancellative and has no idempotent. We will
prove S is power joined, and hence archimedean. Let ((r, &)), ((s, n))eS There
exist positive integers m, n, p, q such that

mr =ns, (P =n?=g¢, eistheidentity element of G

where we notice G is periodic and mr is the usual multiplication. Then we have

((r, )2 = ((mpar, &) = ((npas, &) = (s, m)"™ -

This completes the proof.
Let S be a power joined M-semigroup, S = (G;I). @ is defined by (4.1) and ¢ is
defined in the proof of Theorem 13. We define a mapping f: S - R, x G by

S(m, @) = ((m + (@), @) -

Let M = ¢(S). Then f is the isomorphism of S onto a subdirect product of M and G.
We notice that g, is the unique power cancellative congruence on S.

By Theorem 10 a power joined R-semigroup S is determined by a periodic abelian
group G and a positive rational valued function @ satisfying (4.2), (4.3). So S is
denoted by S = (G; gﬁ). By using Theorem 12 or 13 we can characterize positive
rational semigroups in terms of @.
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Proposition 14. A power joined N-semigroup (G; §) is isomorphic onto a positive
rational semigroup if and only if
(4.6) #(a) = @(B) (mod 1) implies o =f.

Proof. S is not trivial since it is an N-semigroup. According to Theorem 5 S is
isomorphic onto a positive rational semigroup if and only if S is power cancellative.
By the remark after Theorem 13, S is power cancellative if and only if g, = ¢, that is,

@ is one to one where ¢ = ¢, as mentioned in the proof of Theorem 13. By Theorem
12 our desired condition is that

(4.6") m + @(«) =n + @(B) implies (m, «) = (n, p).
It is easy to see that (4.6") is equivalent to (4.6).
As mentioned before, (4.3) tells us that @ induces a homomorphism @y of G

into R/(1), the additive semigroup of all rational numbers mod 1. Therefore the
condition (4.6) can be restated by

4.7 @1y is an isomorphism of G into R/(1).

5. Problems. There are several problems which are left unsolved in this paper.

(5.1) When a periodic abelian group G is given, find a general method to determine
concretely all § : G — R, satisfying (4.2) and (4.3).

(5.2) When a periodic abelian group G and a positive rational semigroup M are
given, determine all subdirect products of G and M.

(5.3) A power joined M-semigroup is called strong if its homomorphic image
into R, is isomorphic to a positive integer semigroup. Every power joined MR-
semigroup is isomorphic to a direct limit of strong power joined M-semigroups.
Characterize strong power joined M-semigroups. The examples of such semigroups
are (1) finitely generated N-semigroups, (2) N-semigroups having the property that
the orders of elements of a structure groups is bounded, (3) the direct product of
a periodic abelian group and a positive integer semigroup.

(5.4) The isomorphism problem of two power joined 9-semigroups seems to be
complicated.

(1) Let S; and S; be positive integer semigroups. Let S = lim (S;; ¢;;) and S’ =
= lim (S}; ¢};). Describe the isomorphism condition for S and S’ in terms of S, S;,
Pjis 90}1'-

(2) Find the isomorphism condition of S and S’ in the case where S; and S} are
strong power joined N-semigroups.

(3) Find the isomorphism condition in terms of the subdirect factors in the sense
of Theorem 13.

(4) Minimal power relation is an important concept in power joined semigroups.
Let a and b be elements of a power joined R-semigroup. The relation a™ = b™ is
called the minimal power relation between a and b if a™ = p™ and a™ = b" imply
my = m, ng S n.
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The minimal power relation always exists between a and b of S. If a™ = p™ is the
minimal power relation and if a™ = b" then m/m, = n|n, is an integer. If S is
power cancellative, m, and n, are relatively prime.

Let S be a non-trivial commutative power joined, power cancellative semigroup.
By Theorems 5, 7, S = lim (S, ¢,,,). We can pick at most countable set 4 = S

A={aya,..,a;..}

such that {a,, ..., a;} is a generating set of S;, which need not be minimal,and S is
generated by A4. Let

(MP) aPt = a3, apt =4, ..., atit =al, ...

be the minimal power relations between a, and a; (i # 1). As mentioned above m;,
and m; are relatively prime. Let S be the commutative power cancellative semigroup
generated by A subject to the relations ( MP), that is, there is no relation other than
those derived trom (MP) and by the power cancellation. Every commutative power
joined power cancellative semigroup S is obtained in this manner, in other words,
S is determined by a set 4 and a map @ of Ainto N x N.

®(a;) = (m;y, my), @(ay) = (1,1)
where m;; and m; are relatively prime.

Characterize commutative power joined power cancellative semigroups and power
joined M-semigroups in terms of the minimal power relations.
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