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A LINEAR AND WEAKLY NONLINEAR EQUATION
OF A BEAM: THE BOUNDARY-VALUE PROBLEM FOR FREE
EXTREMITIES AND ITS PERIODIC SOLUTIONS

NapEZDA KRYLOVA, OTTO VEIVODA, Praha
(Received March, 3, 1969)

The aim of this paper is to investigate the existence of a classical solution to the
mixed problem (.#) given by the equations

(0.1)  uplt, X) + tprrn(t, x) = g(t, x) + &f (1, x, u(t, x), u(t, x), ug(t, x), ult, x), €
(02) u(t,0) =u(t,n) = u(1,0) =u,(t,n) =0
(0.3)  u(0,x) = o(x), ul0,x)= t//(x>

on the one hand, and on the other hand, the existence of a w-periodic solution to the
problem (2,,) given by (0.1), (0.2) with f w-periodic in t. Of course, we shall start
with the study of the corresponding linear limit cases for ¢ = 0.

To find a periodic solution we make use of the Poincaré method whose general
characterization we have outlined in [1], and for the use of which we have all
prepared by the solution of the problem (.#). Let us remark, however, that if only
the existence of periodic solutions is requested, a more direct and even a more
advantageous method consists in looking for a periodic solution in the form of an
Fourier expansion in ¢. (The advantage is that no conditions on the behaviour of g
and f for x =0 and x = = are imposed. This approach is followed in papers
prepared by M. Sova and M. KOPACKOVA.)

For the existence of a solution to the problem (#,) with @ = 2rn or o =
= 2np/q (n, p, q naturals) we have derived necessary and sufficient conditions in
the linear case and necessary or sufficient conditions in the weakly nonlinear case.
For w = 2na, o irrational, it is possible to find only certain sufficient conditions in
both cases. '

In the last time, a special case of the problem (.%,,), namely that with o = 2,
g(t, x) = 0 and’f = f(t, x, u(t, x)), where roughly speaking f behaves monotonically
with respect to u, was studied. (See [2], [3], [4]). Here, under some additional
assumptions, the existence of at least a generalized solution can be proved.
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The presented paper consists of the following paragraphs:
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. Another form of conditions for the existence of periodic solutions, p. 549.
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. Several simple examples, p. 561.

N AN AW

§1. SOME FUNCTIONAL SPACES

Let us introduce some functional spaces which we shall use in the sequel.

Let us denote #°§ the subspace of functions h(x) from the Sobolev space #73(0, r)
for which ’
h29(0) = h®Y(n) = 0

for 21 < m, I nonnegative integer, with the norm
[l = [ o a.
0 .

(By the well known embedding theorem, the functions h? for j < m may be con-
sidered as continuous on {0, #z) and thus their values at a point x € {0, n) are
defined.) ;

Further, let us denote #g the space of functions h(x)e £,(0, ) which have
a Fourier series of the form

0 PO
Y hjsinjx with Y j2"h? < +o0.
i=1 it
We define the norm in 75 as

(1) Il = (5 £03)

Lemma 1.1. The spaces #y and #y are identical.

Proof. Choosing m = 2k + 1, writing h‘2+1) 54 5 cogine-series and taking into
account that

J p(2k+ ”(x) cos jx dx = (_ l)k jzk+1 J’uh(x) sin jx dx

° 0
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we easily find that #3*** = H#3**'. On the other hand, the equality

n— oj=1 n—x Jo

i J»x ihjsinjf-ip(z"ﬂ)(f)dé=(—1)2k““m (__l)k ZIZIH-Ih cos j&. (P(é)dé

holding for all ¢ € €3°(0, 7), yields #5*"! = #73**1(0, n). The inclusion HYH
< #%*1 follows from the fact that the continuous representative of h3Y (1 =
=0,1,. .., k) is given by the uniformly convergent series

¥ (=1)" h;j* sin jx = A?V(x)
j=1
for which A*"(0) = A®"(n) = 0. For m = 2k the proof is quite similar.

Remark 1.1. In the sequel, in virtue of this lemma, we make no difference between
2 and 57 and denote both simply #°g.

Remark 1.2. Further we shall make no difference between functions belonging
to o defined on <0, =) and their 2z- periodic, odd extentions onto (-— 00, + oo)

Let h™ be the space of such sequences {h;} 7, that Z Jj*™h} < + 0, with the norm
given in (1.1).
Lemma 1.2. The spaces #g and §)™ are isomorfic and isometric.

The proof follows immediately from Lemma 1.1.
Let ¢™(<0, T); 5#7) denote the space of functions v: {0, T) » #™ with k
continuous derivatives and with the norm

[ollcorco, rysopom = Z max [[o(1)] ¢qm -
te¢0,T>
Let % be the space
U =COJ; H3) V(I H3) €D #), J=<0,T)
with the norm
““"fw = ”“"%’(mu;xm + “u“?“’(-’;#o’) + ““"fem(l:#ol)-

Further, let us denote % the space of functions u : {0, T) - & 2(0, ) which have
the Fourier series

@
Yu(t) sin kx
1
where (1), u;(f) and uj(t) are continuous on <0, T and the series

(12) ik” ul(f) ikﬁ w(r), Zkz uy(r)
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converge uniformly in <0, T, with the norm

(1) ol = max (Z50u9) o+ (max (F5w)) -

€(0,T> 10, TY\2 1
. 1/2 e 1/2
+ max (= Yk®u(r) +( max (=Yk*up(t)) +
1e¢0, 7> \2 1 1e¢0, 7> \2 1

_ 1/2 . 1/2
+ max (5 Yk? u}f(t)) + max (5 Y k? u;"z(t)> )
1 1

1€¢0,T> 16¢0,T
Lemma 1.3. The spaces % and % are identical.

Proof. Let i € %, with the Fourier series Y #,(f) sin kx. According to Lemma 1.1.
k=1

this series represents a function u(t) € # for each t € <0, T). In virtue of the uniform
convergence of series in (1.1) it may be proved immediately that this function u € %.
Hence, % = %. On the other hand, let ue®%. Then, again by Lemma 1.1.,

for each t €0, T), u(f) e #5 may be represented by a series ) u,(t) sin kx. Then,
1

using the Schwartz lemma and the definition of the space %, it may be verified, that
for every k = 1,2, ... the functions u,() are elements of the space %<0, T) and

0 0
that u'(t), u"(t), respectively, is represented by the series Y u;(f) sin kx, Y uj(t) sin kx,
1 1

respectively. The Dini theorem on the uniform convergence of a series with continuous
non-negative terms yields the uniform convergence of the series (1.2) and thus,
% < %. The identity of both norms is evident. Similarly as in the case of spaces
o, #¢, we shall not make any difference between the spaces % and %,
By the standard method the following lemma may be proved:

Lemma 1.4. The space % is a Banach space.

Analogously as above, let us define the space u of sequences {u(f)};,, where
u,(t) € %<0, T), fulfilling (1.2), with the norm (1.3). Then the following lemma
holds.

Lemma 1.5. The spaces % and u are isomorfic and isometric.

Remark 1.3. The function u : {0, T) - &, may be considered as a function
u = u(t, x) of two variables t € <0, T) and x € <0, =) while, for a fixed t <0, T),
u(t, .) is a representative of the element u(t) € &,. From the context it will be usually
clear in what sense a given function is considered.

Remark 1.4. Any function u € % considered as a function of the variables ¢t and x
is equivalent to a function u = u(t, x) continuous together with its derivatives
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Uyex(t, x) and u,(1, x) on <0, T) x <0, 7). The proof is based on the following fact:
let v e (<0, T); #), then v has a representative continuous on <0, T) x <0, ).
Indeed, by the Sobolev embedding theorem, for each t € €0, T, the element u(t) e
€ 5 has a representative u(f, x) continuous in x on 0, ) and ]u(t, x)| <
< Cllu(?)] 40 (C > 0). Then

Ju(t, ) = u(z, &) < |u(t, x) — u(t, &)] + Ju(t, &) — u(x, &)] <
< Ju(t, x) = u(t, &)] + cfu(t) = u(®)]pe »

from where our assertion follows.

§2. THE LINEAR MIXED PROBLEM (4°)

In the rectangle 0 < t < T, 0 £ x < = let the mixed problem (.#°) be given by
the equations

(2.1) (1, X) + Upalt, x) = g(t, %),
(2.2) u(t,0) = u(t, n) = u,,(1,0) = u,(t,n) =0
(2.3) u(0,x) = ¢(x), uf0,x) = y(x)

and let us investigate under which conditions it has a solution u € U.
Since the boundary-value problem

X" — 21X =0, X(0) = X(n) = X"(0) = X"(x) = 0

has eigenfunctions sin nx corresponding to eigenvalues n*, we easily find using the
Fourier method that a formal solution to the problem (.#°) has the form

0

. u(t, x) = @, cos n“t + — sin n“t +
2.4 2 wn : 2

n=1 nz

t
+ %Josin n*(t — 1) g,(7) dr] sin nx ,
where @,, ¥, 9,(t) are Fourier coefficients of functions ¢(x), ¥(x), g(t, x), respectively.

Theorem 2.1. Let the problem (#°) be given. Let the following assumptions be
Sulfilled:

(i) g € €(<0, T); #7)
(ii) @ € #35, ¥ e H#3.

Then the problem (.#°) has a unique solution u € %.
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Proof. Let us prove that under our assumptions the function u, given by (2.4), is
an element of the space %. The norm of u fulfils

Jullay <3 max (g Zlk‘o [(pk cos k%t + Vi sin k*t +

te{0,T) k EE
1 t 2\ 1/2
+ o j 04() sin K3(1 — <) d-r] ) +
0

+2 max (= Y k®| —gk? sin k2t + b cos k2t +
1e¢0,Ty \2 k=1

+ f "gu(2) cos Kt — 1) dt]z)m +

]

+ max (= Y k*| —ok* cos k*t — y.k? sin k*t —
te¢0,T> \2 k=1

t 2\1/2
- kzj g(®) sin k3(t — 7)d + gk(r)] )
0
whereform using the Schwartz inequality and the Levi theorem [ju]ly < C(|| @[5 +
+ [Vl + l9llecco.rrimon)

Further, let ve % be a solution to the problem (.#°) with g(¢t, x) = 0, ¢(x) = 0,
¥(x) = 0. Then,

T t T t
0 =J jv,[v,, + Vyprre] d7 dx = %j J‘ g—[vf + v, ] drdx =
t

0JO 0JO

IIA

- % J’ [02(1, x) + 02t x)] dx, 0<t<T,
1]

which, according to (2.2), yields o(t, x) = 0 on <0, T) x (0, n), and this proves the
uniqueness of the found solution.

Looking for a periodic solution, it is sometimes more advantageous to have the
sought solution in a more closed form then that of an infinite series. So, let us try to
express the solution in the form of an integral. From the literature it is known that

a solution to the Cauchy problem (2.1), (2.3) (—o < x < +o0) with g(t,x) =0
can be written in the form

ﬁ Jtr :(cos A% + sin 22) o(x — 2(\/1) 1) dA —
1

V(@)

J+ m(cos A% —sin A2) P(x — 2(/1) ) d4,
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(¥ being the second primitive function to ) provided that (q){ and Iu,//! decrease suf-
ficiently rapidly to O for Ix{ — + oo0. The boundary conditions (2.2) suggest to extend
the functions ¢,  and g as odd and 2z-periodic onto (— o0, + ). As the integrals
of the higher derivatives of the expressions with thus extended functions under the
integral sign do not exist in the usual sense we have to make use of some generalized
notion of the integral. We shall take that of Abel’s integral defined by

- b

f(x)dx = lim J.exp (—6x?) f(x)dx,

(a.b) 320+ Jg
—ow<La<bg +w.

Theorem 2.1'. Let the problem (.#°) be given. Let the assumptions of Theorem 2.1

be fulfilled. Then the unique solution u € % to the problem (.///°) can be written in
the form

2.5) u(t,x) = ﬁ { J‘ (iw’+w)(cos 7 4 sin 22) o(x — 2(J/1) 1) dA —

- J‘ (cos A2 — sin %) ¥(x — 2( /1) 1) dA —
(

—o0,+ )

‘ -
- J' f (cos 22 — sin 22) G(9, x — 2((t — 9)) 2) d2 ds}
0 J(—0,+x®)
where

(26) v(x) - j ) ﬁw(n) ande - X .[ f jw(n) an e,

[

x (& x 2n (&
G(t,x) = j‘ J. g(t, n) dn d& — > j J' g(t,n) dndé.
0 0 0 1]

Remark 2.1. The fourth derivative with respect to x and the second derivative
with respect to t of the integrals occuring in (2.5) equal to the integrals of the
derivatives in question of the expressions under the integral sign.

Remark 2.2. The second primitive functions ¥, G are chosen to be 2n-periodic
and odd in x. ‘

Proof of Theorem 2.1'. First, let us note, that if the functions ¢, Y and g are
from 5, #§ and €(<0, T); #3), respectively, then their extensions onto —oo <
< x < +oo are such that ¢"", " and (9%/0x?) g(t, x) (t € €0, T)) are absolutely
continuous on every closed bounded interval, 2n-periodic and odd and they are given
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by their Fourier series. Utilizing

+2
(2.7) J’ exp (—04%) (cos A + sin 4%) cos 2k(\/t) AdA =

=(Ji§2:5)mp(-k“é)§¢@+«Aﬁ+4»i\«—a+J®2%n».

82 +1
k*t
6 +1

. Cos

# 3  + D)F 6+ e+ ) sn

82 +1

and inserting for ¢, ¥ and g their Fourier series into (2.5), we get by rather lengthy
but standard calculations that the expressions (2.5) and (2.4) are identical. Analo-
gously, for the derivatives mentioned in the Remark 2.1.

§3. PERIODIC SOLUTIONS IN THE LINEAR CASE

3.1. General situation. Let w be a real positive number. In all this paragraph we
suppose the function g to satisfy the assumption (i) from Theorem 2.1 with T = » and

(3.1.1) g(t: x) = g(t + @, x)

for te(— o0, + ), x €0, ).
We ask if there exists a solution of (2.1), (2.2) satisfying the periodicity condition

(3.1.2) u(t, x) = u(t + o, x).
The last condition is evidently equivalent to

(3.1.3) u(0,x) — u(w,x) =0
u 0, x) — ufw, x) =0
for x €0, 7).

This problem defined by (2.1), (2.2), (3.1.3) will be denoted (23).

Using the Poincaré method, we shall investigate if the initial functions ¢, Y may
be chosen in such a way that the corresponding solution of the problem (.l{°) is
a solution of the problem (£3), too.

It turns out useful to distinguish three different cases:

(A) @ = 2=n, n natural,
(B) @ = 2np|q, p, q natural, relatively prime, ¢ + 1,

(C) ® = 2na, a irrational.
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3.2. The case (A). From (2.4) follows immediately

Theorem 3.2.1. Let the problem (23,,) be given. Let the function g e €(<0, 2nn);
#3) and let it be 2nn-periodic in t.

Then a solution exists if and only if

2an
(3.2.1y) I cos k?t. gi(t)dt = 0
(1]
. 2nn
(3.2.1,) J. sin k?t. g, (t)dt =0,
0
fork =1,2,...

If these conditions are fulfilled, every solution of the problem (5”2,",) is given
by (2.4) or (2.5) where ¢ and y are arbitrary functions satisfying the assumption
(ii) from Theorem 2.1.

Considering the solution of (.#°) in the form (2.5) and taking into account that the
first two terms in (2.5) are identical with the two terms in (2.4) (which means they
are 2nn-periodic in ) we get instantaneously that a solution of (gig,,,) exists if and
only if

2nn -
(32.2,) @y(x) = J J (cos 42 — sin 27).
(V] (—o0,+ o)

. G(9, x — 2(J(2nn — 9)) A)dAd9 = 0
L]

(32.2,) @,(x) = J‘ZMJN' (cos A% — sin A?) (2mn — 9)7 V2.
W] (—o0,+®)
LG8, x — 2(y/(2mn — 9)) 2)dAd8 = 0.

(The interchange of order of integration with respect to A and the derivation with
respect to ¢ is allowed according to Remark 2.1.) The condition (3.2.2,) is equivalent
to &,(0) = #3(0) = 0, ®}(x) = 0 for x € €0, =), or

r2nn >

(3.23) (cos 2% — sin 2%) G(9, 2(\/(2nn — 9)) A)dAd$ =0
JO J(—o,+w)
f2rn (>
(3.2.4) (cos 2% — sin 12) G(9, 2(/(2mn — 9)) ) dAds =0
¢0 J(—ow,+®)
(f2nn (>
(3:2.5) (cos A% — sin 2%) g(9, x — 2(/(2nn — 8)) 1) dAd8 =0.
JO J(—w,+®)
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The condition (3.2.3) may be omitted since this integral equals 0 according to
G(t, x) = —G(t, —x). Condition (3.2.4) may be omitted since it is a consequence of
(3-2.3), (3.2.5) and of the 2nn-periodicity of the function &,(x). Integrating by parts
with respect to A in (3.2.2,) we get

2nn .
(3.26) J' f (cos 22 + sin 22) g(9, x — 2(y/(2nn — 9)) 2)d2d9 = 0.
0 (—o,+w)

Adding and subtracting conditions (3.2.5) and (3.2.6), we obtain

Theorem 3.2.1'. The assertion of Theorem 3.2.1 remains valid if we replace the
conditions (3.2.1) by the following ones

2nn g
(3.2.7) j J cos A%. g(9, x — 2(\/(2nn — 9)) ) dAd9 =0
o J-

0,+00)

2nn
j J‘ sin 2% g(9, x — 2(\/(2nn — 9)) A)did9 =0.
0 (—o0,+ )

3.3. The case (B). First let us prove the following

Lemma 3.3.1. Let = 27 p|q, p, q natural, relatively prime,q + 1,4 = qy,- 4%,
41y Square-free.

Then

(i) sin (nk? p/q) = 0, k natural if and only if k = . qy) - 4.3y, n natural,

(i) there exists a constant ¢ > 0 so that |sin (mk? p/q)|"1 < ¢ for' all natural
k+n.quy-9@,n=12,... ®

Proof. First we prove the assertion (i). Let us suppose sin (nk® p/q) = 0. This
implies the existence of an natural I such that k?p = Iq. As Iq is divisible by p and p, q
are relatively prime, there must exist an natural [ such that [ = Ip, then k% = Ig.
Expressing k = kit ... ki, g = g?™*™ . g?™*", where ky,...,k, q;,-..,q, are
primes, iy, ..., i, My, ..., Mg Ny, ..., ng nonnegative integers, n; =0 or 1 and
putting gy = g% ... 45, 42y = 47" ... g5°, we see that g, divides k and setting
k = k. g, k natural, we easily find that g,, divides k, which proves the necessity
of the condition formulated in (1) Sufficiency is obvious.

Now let us prove (ii). Let I be such a natural that |nk?® p[q — In| < 4n. Then

[sin (nk? p|q)|~! = (|nk? plq — Ix| : |sin (zk? plq — Ix)|). (an™") . [k*p — Ig| ™.

The product of the first two factors is bounded by 4q and |[k*p — Ig| = 1 by (i),
which completes the proof.

We shall denote #(q) the set of all naturals which may be written as n . g, . q(2),
n natural. #(g) denotes the complement of #(g) in the set of all natural numbers.

544



Inserting the solution of (.#°) given by (2.4) into (3.1.3) and equating the cofactors
of sin kx, we find the following systems of equations for @y, V.

(33.1)  @ucos k2w — 1) + . k™% sin K0 + k“ZJ sin k*(w — 7). gy(r) dt = 0

0o

— @ sin k*w + Yk~ *(cos k*w — 1) + k"zj cos k¥ (w — 1) . gi(r)dr = 0.

0
The determinant D, of the k-th system of equations is
D, = 4k~ ?sin* (}k*w) = 4k 2 . sin? (nk? p/q) .
For k € %(q) we have

1 [cos(Kwf2) [, e,
3.3.2 =—|——2L7 1 cosk’t. dt + | sin k*t. dt |,
(39 o= [Sin ) [(eontoe o) ae + [in s 09 ¢

1 [cos(k’w[2) (. @
= sin k*t . g(t)dr — | cos k?t. g,(7) dt|.
Vi 2 [sin (K*wf2) Jo 91 .[ 0 at)

We easily find that in virtue of the assertion (ii) from Lemma 3.3.1. the series

(3.3.3) u¥(t,x) = Y ((pk .cos kt + !g sin kzt) sin kx ,
ke (q) k
where ¢y, Y, are defined by (3.3.2), is an element of %.

Further let k be an element of &(q). Then D, = 0 and all coefficients of the cor-
responding system (3.3.1) equal 0 too. Hence, the necessary and sufficient conditions
that (3.3.1) have a solution are

(3.3.4) J' cos k’t. gi(r)dt =0

V]

f sin k*t. gy (1) dt = 0.
0

Theorem 3.3.1. Let the problem (#3, ,,,) be given. Let the function g € 4(<0, T;
#?3) and let it be 2 p[q-periodic in t. Then a solution to (3, ,,) exists if and only
if the conditions (3.3.4) for all ke #(q) are fulfilled. If they are fulfilled, then
every solution u e U to (#3, ,,,) has the form .

u(t,x) = Y. (@.cos k*t + z'f sin k2t | sin kx + u*(t, x),
ke#(a) k?

where u* is defined by (3.3.3) and ¢, ¥, (k € #(q)) are such that Tk'°p? < + oo,

TkOYE < 4 o0.
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For particular values p and g it holds

Theorem 3.3.2. Let the problem (#2) with & = 2n(2r — 1)/(2s), r, s natural be
given. Let the function g € (<0, w); #3) and let it be w-periodic in t and satisfy
the condition

g(t,x) =g(t,m — x), xe{0, 7).

Then a solution to this problem always exists and if we require u(t, x) = u(t, t—x),
it is determined uniquely.

Proof. Clearly, for g = 2s, g, - 42, is even. Hence ¥(g) contains only even
naturals. Further it is easily verified that a Fourier series belonging to a 2n-periodic
function g(x) satisfying g(x) = g(n -x) contains only odd harmonics and thus

(1, x) =k§1g2k_1(t) . sin’(2k - 1)x.

Hence all conditions (3.3.4) are satisfied a fortiori. It is easily found that the function
u*(t, x) from (3.3.3), where it suffices to summ up over the odd indexes only, fulfils
the relation u*(t, x) = u*(t, n—x). Finally réquiring u(t, x) = u(t, t—x), the arbi-
trary part v(t, x) of the solution must fulfil the same relation; but on the other hand
this function being odd in x and 2n/q(y) . q(;y-periodic, while gy . g2y = 25*, it
holds

o(t,x) =v(t,m — x) =o(t, = — x) = —v(t, x + 7),
o(t, x) = v(t, x + s*.(2n[2s*)) = o(t, x + ), )

which yields

(3.35) ot x) =Y ((pk _cos k2 + V¥ sin kzt) .sinkx =0.

ke&(q) kz

Returning to the general case let us rewrite conditions (3.3.4) in a different form.
Inserting u(t + jw, x) for j =0,1,2,...,q — 1 into (3.1.2) and adding we obtain

u(qo, x) — u(0,x) =0, u,(éw, x) — u 0,x) =0.

This shows that a solution to (#3, ,,,) only exists if the conditions

(3.3.6,) j * j T cos At g(9,x — 2((qw — 9) 2)dAds =0

o (—o,+®)

wg [~
(33.6,) j j sin 12 (9, x — 2(y/(qo — 9)) 1) dAd8 = 0
(4] (—o0,+ )
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are fulfilled. (We have performed here the same arrangements as in case (A) to
come from G to g.) The conditions may be slightly modified to

q4 (o -
(37) Y I J cos 22 . g(9, x — 2(/(jo — 9)) 2)d2d9 = 0,
i=1J0 J(-w,+ )

(37) ¥ j ’ J T in 22 g8 x — 2J(jo — 9)) ) dAdd = 0.
i=1 Jo J(~w,+w) .

Inserting into (3.3.6) and (3.3.7) for its Fourier series we easily get that these condi-
tions are equivalent to (3.3.4) and thus they are not only necessary but also sufficient.
To be able to state easier the reading of the next theorem, let us introduce some

notations. Let us denote Jf'(;‘,q(m =1,2,...) the subspace of #§ which contains
functions having the period 27/q(s) - 42y, i-€. those functions h(x)e #5 whose
Fourier expansion has the form

h(x) = Y, hy.sinkx.

ke ()

Let us denote (#75 ,)* the orthogonal complement of #75 , in Hg, i.e. those functions
h € #3, whose Fourier expansion has the form

h(x) = Y, I .sinkx.

ke#(q)

Let (3.3.7) be fulfilled and let ¢ € #3 ,, ¥ € #; ,. Defining @, ¥ as

— (%) + —— [ cos 2—sinzq—lq—_‘i-
(3:3.8)  o(x) = ¢(x) + D) L f(_w,+m)( A yl )j; p

LG9, x — 2(J/(joo — 9)) 2)dA d9
=) + [ cos A* sinzq-lq—_—j-
‘””“”()W(zn)fof(-w,m,( By

.9(9, x — 2(/(jo — 9)) 1) dAd9,

it may be verified by a straightforward calculation that u(t, x) defined by (2.5),
where ¢, ¥ are given by (3.3.8) is a solution 2n p[g-periodic in t. Hence, the following
theorem holds:

Theorem 3.3.1'. Theorem 3.3.1. remains valid if the conditions (3.3.4) are replaced
by (3.3.6) or (3.3.7). If they are satisfied, the solution of the problem (23, ,,,) is
defined by (2.5) where @ and y are given by (3.3.8), while p € #5 , and € H#}] .

3.4. The case (C). Clearly the problem (£3,,) has a solution only if the systems
(3.3.1) forw = 2nafor k = 1, 2, ... have convenient solutions. In this case the systems
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(3.3.1), (since D, = 4k™?.sin (k’na) + 0) have always a solution, namely

G4 o=k [;%i((l‘.;%% .[ cos kPt . gu(t) dt + J :sin K2 gu(c) dt]

Uy = —12— [‘:’:% BJ' sin k27 . g(1) dt — j :cos kz . gi(7) dr].

But these solutions are convenient only if the expression (2.4) with ¢y, ¥, determined
by (3.4.1) belongs to #. This can be proved only under some special assumptions on
the number-theoretical character of « and on the smoothness of function g.

Theorem 3.4.1. Let the problem (#9,,) be given. Let numbers ¢ >0, ¢ = 3
(natural) exist such that

(3.4.2) !

o — —| =
k*| ~ ke

4

for 1, k natural. Further let g € 6(<0, 2na); .#”“) and let it be 2na-periodic in t.
Then there exists a unique solution u € % to the problem (23,,), defined by (2.4)
with @, Yy, k = 1,2,3, ..., determined by (3.4.1).

Proof. The third term in (2.4) belongs surely to %. Hence it suffices to show the
same for the first two terms. The continuity of ¢, . cos k*t, ¥, . sin k?t and of their first
and second derivatives is clear. The uniform convergence of the corresponding
series will be guaranteed if we show that

o) 0
YKk .9l <+, Yk Yl< 4.
k=1

k=1
We have
. Ko|™? Ko . (kKo
sin — —— —In|:|sin{— — In
2 2
2 -1 -1 2
L_z éfLa_i 5lk0‘2 where k—(g—lnléy—[
2 2 nk? k? 2c 2 |2
so that

jod 2 e~ + ) [ o) o
and therefore ’
Exmeises Fwenn [latopecs
<. f "’(kflkzwm. (@) dr < + 00,
0 k=

and similarly for £k}2, which completes the proof.
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Remark 3.4.1. Especially in the nonlinear case it is interesting to know how
many « fulfil the inequality (3.4.2) for different values g. Let us recall the following
facts. Given a natural number k > 1 the set of numbers a e <0, 1) fulfilling the
inequality
!
k2

1

3.43 U
(3:43) k3 lgrk

o —

for the appropriate natural I, has the measure 2/k .1g? k at most. Since the series
Z(1/k . 1g? k) is convergent the set of all « fulfilling (3.4.3) for infinitely many natural
1, k has the measure 0.

(On the other hand there exist irrational numbers o such that e.g. the inequality
Iac - l.k‘zl < 27¥ has infinitely many solutions.) From this follows that there
exists a set of irrational numbers from (0, 1) having the measure 1, such that to each
its element « there exists a constant ¢ such that (3.4.2) is satisfied with ¢ = 4 (cf.
Theorem 6.4.1.).

§4. ANOTHER FORM OF CONDITIONS FOR THE EXISTENCE
OF PERIODIC SOLUTIONS

4.1. General situation. Let the problem (22) be given by the equations (assuming
g € 4(<0, w); #3))

(4.1.1) L(u) = g + Uyerr = g(t, X)

(4.1.2) u(t,0) = u(t,n) = u,(t,0) = u,(t,7) =0
(4.1.3,) u(w, x) —u(0,x) =0

(4.1.3,) ufw,x) — u0,x) =0.

Using standard methods we find that the problem (£%*) formally adjoint to the
homogeneous problem (£2) is given by

(4.1.4) Vg + Ugpnx = 0

(4.1.5) u(1,0) = v(t, 1) = 0, (1, 0) = v,,(t, 7) = 0
(4.1.6,) v(w,x) —v(0,x) =0

(4.1.6,) v(w, x) = v,(0, x) = 0.

(so that the given problem is selfadjoint). Hence for u and v belonging to # and satis
fying (4.1.2), (4.1.3) it holds

(4.1.7) J' f (uLv — vLu)dx dt =0,
oJo
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consequently if u € % is a solution of (20) and v € % is a solution of (#2¥), then

(4.18) Kﬂ'v(:, %) g(t,x)dxdt = 0.

From here the following theorem follows immediately.

Theorem 4.1.1. The problem (#2) has a solution u e only if the function g
satisfies the relation (4.1.8) for every solution ve % of (P?2F).

Hereafter we investigate separately the different cases of w as in paragraph 3.

4.2. The case (A). Let us show the sufficiency of the condition (4.1.8). By Theorem
3.2.1 every solution v of (#5x) may be written as

(@21) W9 = o )( J ;w | eos s ) ofx = 20 7 02 -

- J’ (cos 22 — sin 12) ¥(x — 2({1) 7) dA)
(—o0,+®)

where ¢, ¥ belong to s#3. Inserting (4.2.1) with ¥ = 0 into (4.1.8) and performing

some arrangements (whose justification can be shown by standard methods) we

obtain (putting S(4) = cos A* + sin 4%)

[[00f[" st - xmassca-

0

Il

+ o0 (2n+1)n y-mn)/2y8 ’
D (j o) j J S(2) . g(5. v + 2(/9) 2) d4 d9 dy +

n=-o —y/2y%

+ J o) J J“(y—n)/zJ“S(A) L 9(8, y + 2(9) 4) dA1d9 dy) _

-y/2J9

- J : (Fz_w Lq,(x) J' THETIEES0) . g(8 x + 2((9) 4) da dx) ds +

—(x+2nn)/29

4 J:( - L(,,(x) J ST S0). a8, x + 2(9) 4) da dx) 49 =

(x=(2n—1)m)/2J9

- L (foq,(x) _f( S(2) . g(9, x + 2(y/9) ) dAdx +

—w,(—x+n)/2/9)

T

+ | o(x) .J‘—‘ S(4) . g(S, x + 2(\/9) 2) da dx) d3 =
(

V] (—x+m)/2J8,+ )

- J ’ J' :(,,(x) _ I (—:w’+w)s(/1) Cg(h x + 2(9) 2) d2 dx d9

0
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which: yields

0= J' :(p(x) . ( J ’ '[ T (cos 22 + sin 22) (9, x + 2(y9) ) di dS) dx

0 J(~—,+x)

and in similar manner (putting ¢ = 0) we get

0= J :‘I’(x) . ( J : j " (cos 22 — sin 72) g(9, x + 2(y/9) 4) di ds) dx .

0, + ©)

As the last two relations are fulfilled for all ¢, ¥ € #5 and the space J# is dense
in &Z,, we get that the cofactors of ¢ and ¥ must be equal to 0 almost everywhere,
but it means according to their continuity for all x, i.e.

j J‘ (cos 2% + sin 22) g(9, x + 2(/9) ) dAd3 =0

0 J(—o,+mo)

J‘QJH (cos 22 — sin 2%) g(9, x + 2(\/9) 4) dAdI =0

0+ w)

which by Theorem 3.2.1' represents sufficient conditions for the existence of a solution
to (9"2’,,,,). This together with Theorem 4.1.1 yields

Theorem 4.2.1. Let the problem (23,,) be given. Let g € 4(0, 2nn); #3) and be
2nn-periodic in t.

Then the problem (23,,) has a solution if and only if g satisfies the condition
(4.1.8) for every solution v to the problem (P2y,).

Remark. To show various approaches we made use of the form (2.5) for the solu-
tion to (23x,), but we would have come more quickly to the same result having applied
the formula (2.4) (as we shall do in the next section).

4.3. The case (B). Let us show the sufficiency of the condition (4.1.8). Hence let
us suppose g fulfils (4.1.8) with v = cos k?t.sin kx or sin k¢ . sin kx, for k =
=1,2,...,1e.

0= J J cos k*t.sin kx . g(t, x) dx dt = g J gi(7) . cos k*rdt
0JO ]

(0] T (-]
0 =J J sin k2t . sin kx . g(1, x) dx dt = gj gi(7) . sin k?r dz .

0JO 0

Thus by Theorem 3.3.1 and Theorem 4.1.1 we have

Theorem 4.3.1. Let the problem (29, ,,) be given. Let ge %(<0, 2n p[q); #3)
and let it be 2n p|q-periodic in t. Then the problem (23, ,,) has a solution if and
only if g satisfies the condition (4.1.8) for every solution v to the problem (92"2’,’: ,,/.,)-
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4.4. The case (C). Assume « satisfies (3.4.2) for some ¢ = 3. Then by Theorem 3.4.1
the unique solution to (234,) is 0 and hence, in this case, the condition (4.1.8) does
not impose any further limitations on g. But it may be shown (cf. a paper prepared
by B. NovAk) that some conditions on the smoothness of g (in connection with the
number-theoretical character of a) are not only sufficient but also neccesary. This

means that in case (9‘0 ) the formal adjoint problem is not a useful tool for its study.

2na

§5. THE WEAKLY NONLINEAR MIXED PROBLEM (.#)

5.1. Preliminaries and some auxiliary lemmas. We introduce here two lemmas
from [5] (where their proofs are sketched on pp. 355, 356) which we need in the
sequel.

Lemma 5.1.1. Let the equation
(5.1.1) P(u,r)(e) = —u + L(r) + ¢ R(u) (e) = 0

be given, where P(u,r)(¢) maps the direct product % x & into U (%, R being
B-spaces) for every value of the numerical parameter ¢ from & = {0, &), &, > 0.
Let Le [# — %]. Let R(u) (¢) be continuous in u and & and have a G-derivative
R,(u) (&) continuous in u and ¢ for any u € % and € &.
Then to every ¥ € R there exist numbers & and ¢*, 6 > 0, 0 < ¢* < g, such that
the equation (5.1.1) has a unique solution U(r)(e)e % for each re B(F;5) and
£€ {0, &*). This solution has a G-derivative U)(r) (&) continuous in r fznd e.

Here and everywhere below B(c; 5) denotes the ball with the centre ¢ and the
radius 6 and [.@1 — 4,] denotes the space of all continuous linear mappings from %,
into 4%,.

Lemma 5.1.2. Let the equation
(5.1.2) G(r)(e) =0
be given, where G(r) (¢) maps a B-space R, into B-space R, for all ee & = {0, &),
& > 0. Let the following assumptions be fulfilled:
(i) The equation
(5.1.3) G(ro) (0) = 0
has a solution ry = ry € &,.

(ii) The operator G(r) (e) is continuous in r and & and has a G-derivative G)(r) (&)
continuous in r and ¢ for re B(ry; 8) (6 > O being a suitably chosen number)
and ¢€é.
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(iti) There exists
H =[G/(r5) (0] " e[#, ~ ] .

Then there exists €* > 0 such that the equation (5.1.2) has for 0 < ¢ < &* a uni-
que solution r = r*(¢) e #,, continuous in & such that r¥(0) = rg.

For reader’s convenience we shall state here together diverse assumptions on f
utilized in the last two paragraphs. For the sake of simplicity we write sometimes
Ug, Uy, Uy, U5 instead of u, u,, u,,, u,, respectively.

(o,) In the set 2, = <0, T) x <0, ) x (—o0, +0)* x <0, & the function
S(t, x, ug, uy, uy, us, €) has continuous partial derivatives of the form

6i1+fz+i3+i4+l's

(5.1.4) ——
0x't Qug Ouy® Ouy Ouy

5
for0<i; £3,0<i,24(k=2,3,45), Yi,<4and
k=1

(5.1.5) P A N SRS B i)

du,” ox*’ ou?’ dxou; Ou,du,

equal O forj, k =0,2,3,1€<0, T),x = 0,7, ug = u, = uy =0, u; €(—o0, +0),
€0, gy). .

(#,) In the set 2, =<0, T) x <0, 7y x (=00, +)? x <0, &) the function
f (t, X, Ugs Uy, s) has continuous partial derivatives of the form

ai1+iz+|‘3
ox™ dulz ou'™
3
for0<i, £4,0<i,<5(k=23), Yi<5and
k=1
o oy oy o o

ou,’ ox?’ ou?’ oxou, oul

/s

equat 0 for +e (0, T), x = 0,7, uy = 0, u; €(— o0, + ), £€ <0, &).
(#3) In the set 2; = <0, T> x <0, ) x (—o00, +0) x <0, &) the function
S(t, x, uo, ¢) has continuous partial derivatives of the form

gitio

ox’ oule

for0<j<50=<i,<6,j+ i, <6and

aj""iof

7 A
ox? oug

fs

equal 0 for te €0, T), x €0, 7, up =0, 6€<0, 8 and j + ig =2,4,j >0, i, = 0
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(#) The function ¢ belongs to #3 and the function ¥ belongs to #75.

In the sequel we shal often understand under f the function extended by the
relations

(5.1.6) ‘f(t, X, Ug, Uy, U, Usy €) = —f(t, —X, —Ug, Uy, —Uy, — U3, &) =

= f(t, x + 27, uq, uy, U, U3, €)

from 2, onto 2 which contains all points from <0, T) x (—o0, +)> x <0, g5
except for points with x = jm (j =0, 1, +2,...) A |uo| + [ua| + lu3| > 0. The
extended function is continuous in 2] together with its derivatives mentioned in
(5.1.4) and all expressions from (5.1.5) equal O for t€ {0, T), x = jrn (j =0, +1,
+2,..), up =u, =u3 =0, u; e(—00, +), £6€<0, g). Similarly for function
satisfying the assumption (&7,) or (&7;). Below, the following notations will be used

(5-1.7)  f(u) () (t, x) = f(1, x, u(t, x), u(t, x), u (2, x), ut, x), €)
(5.18) Fu)(s) (1. x) = j j ) 0) () dn e = j " j 1) () (6 m) dn

X
V]
The following lemma may be easily verified:

Lemma 5.1.3. The operator R(u) (¢) defined by
(5.1.9) R(u) (8) (t, x) _ |
= \/(12n) J" J‘“’ (cos 42 — sin 4?) F(u) (&) (% x — 2(\/(t'— 9)) A) dAd$

0J(—o,+x®)

from % into % is continuous in u and ¢ and has the G-derivative R}(u) (&) continuous
in u and ¢ as well.

5.2. The problem (.#). Let the problem /.#) be given by

(521) U + Uyyyy = € 'f(t’ Xy Uy Uy Uyx, Uy, 8) s
(522) u(t,0) = u,(t,0) = u(t, n) = u.,(t,n) =0,
(5.2.3) u(0,x) = o(x), u,0,x) = yY(x)

for x € €0, ), t €0, T, ¢ € €0, &y, with f satisfying (o,).
We find easily by paragraph 2 that every solution u € % to (.,Il) must satisfy

(5.2.4) —u(t, x) + L(o, ¥) (t, x) + e R(u) (¢) (1, x) =0,
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where

L(g, ¥) (1, x) = /(12 ) (cos 22 + sin 42) @(x — 2(\/1) 4) dA —
V@1) J -4
1 -

- 7 (_w,+w)(cos A2 — sin 42) P(x — 2(/1) A) dA.

¥ is defined by (2.6) and R(u) (¢) is defined by (5.1.9). On the other hand, every
solution u € % of (5.2.4) is a solution to (.#). Using lemmas (5.1.1) and (5.1.3) we
obtain immediately

Theorem 5.2.1. Let the problem (#) be given. Let f satisfy the assumption (/).

Then to every couple # = (§, ) € H#5 x 3 there exist numbers § and g*,5 > 0,
0 < &* < g, such that the problem (.#) has a unique solution U(p, ) (¢) € % for
each r = (¢, y) € B(F; 8) and ¢ e 0, £*). This solution is continuous in r and & and
has a G-derivative U)(r) (&) continuous in r and e.

Remark. In the formulation of the problem (.#) we have now omitted the func-
tion g on the right hand side in (5.2.1), since putting u = u, + v, where u, is the solu-
tion to the problem (.#°) we get for v the problem (.#) of the form introduced above.

§6. PERIODIC SOLUTIONS IN THE WEAKLY NONLINEAR CASE

6.1. General situation. Let » > 0 be given. Let the problem (£,,) be given by

(611) Uy T Uyyxy = ﬁf(t, Xy Uy Uyy Uy Uy, 8)
(612 u(t, 0) = u (1, 0) = u(t, m) = ugy(t, 1) = 0
(6.1.3) u(0, x) — u(w, x) = u(0,x) — ufw, x) =0

In all the paragraph we suppose that the function f satisfies minimally the assump-
tion (&/,) and that it is w-periodic in , i.e.

(6.1.4) f(t + o, x, uq, uy, uy, uz, €) = f(t, x, ug, Uy, Uz, U3, &)

for (t, x, ug, uy, Uy, Uz, £) € 2,.

Remark 6.1.1. The more general problem with g(t,.x) + &f(t, x, uq, uy, u,, us, €)
with g sufficiently smooth and w-periodic in ¢ may be reduced easily to the precceding
one. If the limit case (for ¢ = 0) does not admit any w-periodic solution, then evidently
neither the given problem admits any. In the opposite case if the limit problem has.
a solution u(?, X), performing the substitution u = uo + v we get for v the problem

(Zo)-
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By Theorem 5.2.1 to every couple (¢, ) e #5 x #§ there exist numbers &
and ¢, 6 >0, 0 < ¢ < ¢, such that the associated problem (.#) has a unique
solution U(e, ¥) (¢) € # for each (¢, ¥) e B((¢, ¥); §) and 0 < ¢ < ¢,, having the
property stated in Theorem 5.2.1 and satisfying the identity

615) U@ ¥)(©) (%) = Lip, ) (1. ) + sR(U(p, ) (5) &) (1, )

Now inserting U(¢, ¥/) (¢), expressed by the right-hand side in (6.1.5), into (6.1.3)
we get neccessary and sufficient conditions which ¢ and y must satisfy that a solution
to (2,,) may exist. Analogously as in paragraph 3 we shall distinguish three different
cases according to the character of the number w.

6.2. The case (A). Performing the same considerations and arrangements as in
section 3.2 we find that (2,,,) has a solution u € % if and only if the equations (the
so called determining or bifurcation equations)

(6.2.1) Gi(o¥) (&) (x) =
= J’ZnnJ“’ cos 2. f(U(p, ¥)) () (¢) (9, x — 2(\/(2nn — 9)) ) dAd9 =0
(

Gy(o, ¥) (¢) (x)
= rm j" )sin 2 f(U(, ¥) (2)) () (9, x — 2(/(2nn — 8)) 1) dAdY =0
o (—,+®o

have a solution (¢, ¥) € #3 x #2. To get from this some conditions applicable to
concrete problems we can make use, for instance, of Lemma 5.1.2. Putting ¢ = 0
in (6.2.1) we obtain immediately the necessary conditions for ro = (9o, ¥o):

(6.2.2) Gy(ro) (0) (x) =

= cos A% f(L(@o, Vo)) (0) (9, x — 2(\/(2mn — 9)) A)dAd3 =0,

JO J(—w,+o)
Gy(ro) (0) (x) =

sin A2 f(L(¢o> ¥o)) (0) (9, x — 2(y/(2tn — 9)) 1) dAd$ = 0.

JO J(—o,+two)

r2nn -

i

Assuming that (6.2.2) have a convenient solution (¢g, ¥g) = rg let us look for some
sufficient conditions by investigating the existence of an inverse operator H =
=[G)(r3) (0)]"* (G = (G, G,)). Since the smootheness properties of the space
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into which G(r) (¢) maps 5#§ x #3 depend on the type of the function f and since
(6:23) Gi(r) (@) (F) (x) =
_ j 0 L_ o8 U0 )9 (U0 0 9) (0. x = 2 (2mn = 8) 7 4249

651 () () () =
- j o j sin 22 (U(r) (2)) (6) (UL (2) () (9. x — 2(/(2nn — 9)) 2) dA d9

(—o,+ o)

where

3
7] = a -
fulu) (e) (@) (1, x) =Y. 6—f (t, x, uo(t, x), uy(t, x), u(t, x), us(t, x), €) . @ t, x).
i=o0 Ou;
we have to distinguish several cases according to the type of the function f.
Below, & or & denote always a subspace of the corresponding space <.

Theorem 6.2.1. Let the problem (2,,,) be given. Let the function f be 2nn-periodic
in t and let it satisfy (s¢,) with T = 2nn and |6f/6u2| + |6f/6u3| % 0.
Then the problem (92,,,,) has a solution u € % only if

(i) the equations (6.2.2) have a solution ry = (@5, Y5) € #5 x #;.

If, moreover,

(i) there exists
H = [G(r3) (0)] " e [ x #3 - #3 x #c],

where G(B5 x #3) = #3 x H#;, then there exists e* e (0, &,) such that for all
e€(0,&*) there exists a unique solution U(p*(e), y*(¢)) (¢) € %, with ¢*(e), ¥*(¢)
continuous in & and ¢*(0) = @5, Y*(0) = Y.

Proof. Let us verify that all assumptions of Lemma 5.1.2 are satisfied. Putting
Ry =Ry x Hy, R, = H3 x #} we see that the assumptions (i), (ii) of our
theorem ensure that the assumptions (i), (iii) of Lemma 5.1.2 are fulfilled. The
assumption (ii) is an immediate consequence of the assumption () and of Theorem
5.2.1. Hence the existence of (¢*(e), Y*()) € #’5 x 5 continuous in & for & € <0, &,),
0 < g, £ ¢, is guaranteed. Reducing &, if necessary, into the interval <0, e*),
0 < &* < ¢, to have (¢*(¢), y*(¢)) € B(rs; 8), & defined in Theorem 5.2.1, we have
the assertion of the theorem.

Proofs of the following theorems are quite analogous.

Theorem 6.2.2. Let the problem (2,,,) be given. Let the function f be 2nn-periodic
in t and let it satisfy (£,) with T = 2nn and |of [ou,| # 0.
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Then the problem (2,,,) has a solution u € % only if

(i) the equations (6.2.2) have a solution ry = (¢g, ¥§) € #5 x #3.
If, moreover,

(ii) there exists H = [G)(r3) (0)]* € [#4 x #§— #§ x #]], where G(.;?s
x H3) = B4 x #, then there exists e* € (0, &, such that for all e € (0, e*) there
exists a unique solution U(¢*(e), Y*(e)) (¢) € %, with ¢*(e), y*(¢) continuous in
e and ¢*(0) = o5, Y*(0) = Y5 :

Theorem 6.2.3. Let the problem (9’2,,,,) be given. Let the function f be 2nn¥periédic
in t and let it satisfy (o/3) with T = 2nn and l(’)f/ﬁuol % 0.

Then the problem (2,,,) has a solution u € % only if

(i) the equations (6.2.2) have a solution rg = (q)o, yo) e g x #3.
If, moreover,

(ii) there exists H = [G/(r§) (0)] ' e [#£5 x 5 — 5 x H#y), where G(H#5 x
x ) = #y x H, then there exists e* € (0, &,) such that for all e € (0, e*) there
exists a unique solution U(p*(e), y*(¢)) (¢) € % with ¢*(¢), y*(e) continuous in &
and ¢*(0) = @3, ¥*(0) = ¥

The fact that the spaces #7 are isometric and isomorfic with the spaces h™ may

be used to another formulation of necessary or sufficient conditions for the existence
of a solution to (2,,,). We show it e.g. under assumptions of Theorem 6.2.1.

Theorem 6.2.1'. Let the (2,,,) be given. Let the function f be 2nn-periodié int
and let it satisfy (/1) with T = 2zn and |0f [0u,| + |0f [0us| % O.

Then the problem (?2,:,,) has a solution u € % only if
(i) The equations

Gl({coj},{wj})(s)z{ j j F(U0.¥) () () (1, %) - cos K. smkxdxdr} -0

k=1

Gz({%},{w]})(e)z{ j j F(U(0, ) (&) () (1, %) - sin K2t . sin kxdxdz} -0

k=1
have for ¢ = 0 the solution ry = ({05 ;}, {(¥5.;}) €h® x B
If, moreover,
(i) there exists
H =[G(r5) (0] " €[H? x §> - §° x §’]
where G = (Gy, G,) and G(§° x B%) = §° x B3, then there exists ¢* €(0, ;) such
that for all e€ (0, e*) there exists a unique solution U(p*(e), Y*(¢)) () € % with

(@*(e), ¥*(e)) continuous in & and corresponding to ({p3(e)} =1 {w*(s)}jﬂ) such
that (PI(O) = (Do 2J? '1’7(0) '/’0 WJ*
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6.3. The case (B). Repeating the considerations and arrangements of section 3.3.
we find that the problem (2,,,,,) has a solution u € % if and only if the equations

(6.3.1) Gy1(0, V) (6) (x) =
= J"”“f )cos 2. f(U(e, %) (e) (e) (8, x — 2(\/(wg — 9)) 1) dAd9 =0
0 J(-ow,+

G0, ¥) (e) (x) =
= rq J* )sin 22 (U, ) (2) (e) (9, x — 2(/(wg — 9)) 2)dAd9 =0
0 J(-w,t®

(6.32) Gy, ¥) (&) (x) = —20(x) + N J; j(_w,+w)(cos 2% —sin A%).

:g q—q_—j F(U(0, ¥) (2)) () (8 x = 2(/(joo — 9)) 2) d2d8 = 0

Galo ) () () = =) = 25 f ’ J T (cos A2 4 sin 22) .
0 J(—o,+wo)

-jgf(U(w, ¥) () () (9, x — 2(/(joo — 9)) 2) dAd9 =0

have a solution (¢, ¥), ¢ =19 + 20, ¥ =1y + 2y, lpe s, 2pe(H],)
YWed,, We(Hs )

We want to apply again Lemma 5.1.2 and therefore we write down this system of
equations for ¢ = 0:

(6.3.3) G11(* @0, W) (0) (x) =
= r’«J’* cos A2 f(U(* 0o, W) (0)) (0) (3, x — 2(/(wg — 9)) ) dAd9 =0
(

0 —00,+®)
G12(* @0, W0) (0) (x) =
= f:q L_ . )Sin 22 (U 00, "¥o) (0)) (0) (9, x — 2(/(wg — 9)) A)dAd9 =0
(6.34) G21(P00, *¥0) (0) (x) = —2¢(x) = 0
G22(*@0, *¥0) (0) (x) = —2Y(x) = 0

Similarly as theorems in the preceding section it may be proved

Theorem 6.3.1. Let the problem (25, ,,) be given. Let the function f be 2x p|q-
periodic in t and let it satisfy one of the following assumptions
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o) the assumption (£ ) with T = 2 p|q and |of[ou,| + |ofou;| % 0,
B) the assumption (of,) with T = 2r p[q and f[ou, % O,
Y) the assumption (of4) with T = 2n p[q and 3f[ou, % 0.

Then the problem (#,, ,,,) has a solution only if

(i) the equations (6.3.3) have a solution
ro = (05, 'W3), 'ooeHo,, WoeHo,-
If, moreover, there exists (denoting G, = (G,,, G,,))

(i) o) H = [G1,(r3) (0)] " € [#5,, x #3,4—> #5,4 x H#5,4]
or B) H =[G} (r3) (0)] ' €[5, x #4,—> #5, x #3,]
or ¥) H =[G(r3) (0)] ' €[5, x #5,— #5, x #3,] respectively,

then there exists 8*6(0,£1> such that for all ae(O, e¥) there exists a unique
solution U(p*(e), y*(¢)) () e «, @*(¢), y*(e) continuous in & and ¢*(0) = ¢g,
¥*(0) = ys.

Now let us consider the particular case w = 27r(2r — 1)/2s, r, s natural numbers,
which has been studied several times by Soviet mathematicians for s = 1 and under
various assumptions on f ([6]—[10]). The theorem stated below generalizes all of
them. Let us suppose that the function f satisfies the relation

(6.3.5) f(t,m — X, ug, —uy, uy, us, €) = f(t, X, ug, uy, uy, s, €)

for (1, x, uo, uy, u,, uy, €) € 2,. We shall seek a solution in the subspace % which is
formed by functions from # fulfilling the relation

(6.3.6) u(t, m — x) = u(t, x) .

Obviously if f fulfils (6.3.5) and u € 4%, then f(u) (1, x) satisfies (6.3.6). Then by
the proof of Theorem 3.3.2 the conditions (6.3.1) are satisfied for every U(r) (¢) € %
and we see that we have to put '¢ = 0, 'y = 0 (cf. (3.3.1)). It may be verified that
also the second primitive function F(U) (&) defined by (5.1.8) has the property (6.3.6)
if f satisfies (6.3.5) and U € %. Thus the integral in (6.3.2,) maps (#3 ,)* x (#3 )"
into (#3 ,)* and the integral (6.3.2,) maps (#5 )" x (#3 )" into (#73 ,)*. Hence
by Lemma 5.1.2 (setting r = (¢, *) and #, = R, = (#5 )" x (#],)") we get

Theorem 6.3.2. Let the problem ('?an/q) be given with p =2r — 1, q =2s, r,s
natural. Let the function f be 2n p/q-periodic in t and let it satisfy the assumption
(s#,) with T = 2= p/q and (6.3.5).

Then there exists ¢* € (0, ¢, such that for all se(O, &*> there exists a unique
solution U(p*(e), Y*(e)) (¢) € % with @*(&), y*(e) continuous in ¢ and ¢*(0) =0,
¥*(0) = 0.
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Remark 6.3.1. Using to the resolution of the system (6.3.2) the method of suc-
cessive approximations, the conditions imposed on the smootheness of f could be
weakened.

6.4. The case (C). Having in mind the results of section 3.4 we see that in non-
linear case only those a can be considered for which the function f and hence in
nonlinear case f(u) (¢) (1, x) need not be smoother than %(<0, 2ray; #73) as otherwise
we cannot insert u € % into it. Thus only the cases ¢ = 3,4 may be considered.
Using now the representation of functions ¢, and u in the form of a Fourier
series and proceeding as in section 3.4 we get for {¢,} and {lﬁ,,} corresponding to the
periodic solution, the following system of equations:

(6.4.1)

6o 0) @) = o= 5 [SEO [ [ 1009 ) @0, sin s

.cos k?9dxd9 + J‘ j' F(U(@, ¥) (¢)) (e) (9, x) . sin kx . sin k?9 dx dS} =

Goa(@ ) () = Wi — -;[— [% J:D J:f(U(tp, ¥) (€)) (¢) (9, x) . sin kx .

(o]

.sin k*9dx d9 — J.

o

j "1(U(0, ) (2)) (8) (9, x) . sinkx . cos k29 dx ds] _

Setting r = ({¢}, {¥u})s 2y =2, =1° x b3, G =({G,,},{G,,}) and using
Lemma 5.1.2 we easily obtain

Theorem 6.4.1. Let the problem (2,,,) be given. Let f be 2na-periodic in t and let
it satisfy one of following two assumptions:

(a) f fulfils (o) and o fulfils (3.4.2) with ¢ = 3,
(b) f fulfils (of5) and « fulfils (3.4.2) with ¢ = 3, 4.

Then there exists ¢* € (0, &, such that for all e€(0, &*) there exists a unique
solution U(p*(e), y*(e)) (s)e@/ with @*(e), Y*(e) continuous in ¢ and @*(0) =0,
¥*(0) = 0.

§7. SEVERAL SIMPLE EXAMPLES

In this paragraph we formulate existence theorems to the problem (2,) for some
particular @ and particular perturbations f.

Theorem 7.1. Let problem (2,,) be given with

(7.1) () () (t, x) = h(t, x) + au + Pu, + &f (1, x, u, uy, Uy, Uy, €)
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where o + 0, h € €(<0, 2n); #3) and f, satisfies the assumption () with T = 2n
and h, f, are 2rn-periodic in t.

Then there exists ¢* > 0 such that for all ¢ € (0, e*) there exists a unique solution
U(p*(e), y*(¢)) (¢) € % with ¢*(e), ¥*(¢) continuous in ¢ and ¢*(0) = @5, Y*(0) =
= iy, where @3, Yy are defined by (7.3).

Proof. Clearly the function f satisfies the assumption (&/,) with n = 1. Inserting

o

U(e, ¥) (0) (¢, x) =k§1((pk cos k*t + Y k™2 sin k?t) sin kx

and making use of the formulae (2.7) the necessary conditions (6.2.2) in our case take
the form

(7.2) G(@os ¥0) (0) (x) =
—r (2> " aoox) + Wolx) + B(— i) + VAN + 1y (x)} = 0
Ga(@o, ¥o) (0) (x) =
- G)l/z{a(%(x) = Wo(x)) + Blet(x) + ¥5(x)) + ho(x)} =0
where

hy(x) = i (%)1/2 f: Liw'm)cos A2 h(9, x - 2(/(2r — 9)) 7)d2.d9

2

h(x) = 1(_)”2 j : f (im'+w)sin 22 h(S, x — 2(J(2r — 9)) 2)dAds.

T \T

By the Fredholm alternative this system has only one 2n-periodic solution. This solu-
tion has the form

(73,) @3(x) = cF . exp (ﬁ ) . sin (7?5 ) et exp (55 ) ~cos (73 ) '
+ c:.exp<:—/§ ).sin(i/y—zx) + ci.exp(—;—; ).cos(\—/%x) +

. ;35 f {h [v(x - ¢>] sin [v(x = f>] (HL(8) + HA(9) +

J2 J2
+ sinh [”("\/’2 5)] .cos [y(x\/_z 5)] (Hy(8) - Hz(é))} dé
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(7.3,) waﬂ=u:apQ%x>mm<§3Q_w;mpc%x>gnﬁﬁx)_
— c3exp (\—/—;— x) . cos (\7% x) + ¢} exp (f/% x).sin (3/’—2- x) +
EaK e el CURE

— cosh [V(" - a} sin [V(" - 5)] (H(8) - Hz(f))} ae

/ \/2
()

mm=iwm—um,mw=§MM+um

where

and ¢, r = 1,2, 3, 4, are determined so that ¢§, Y& are 2n-periodic in x. Clearly
¢g, V3 € #° because of H,, H, € #3. It may be verified easily that every uniquely
determined solution @, ¥ to (7.2) is odd in x and hence (according to 2n-periodicity
of g3, ¥3) @5, ¥ € #5. Thus the assumption (i) of Theorem 6.2.1 is fulfilled. The
existence of an inverse operator

H = [G(03, ¥35) (0] " e [#3 x H#5 — #5 x #]
may be shown in the same manner. This completes the proof.

Theorem 7.2. Let the problem (2,,) be given with f defined by (7.1), where o = 0,
B #+ 0 and h, f, satisfy the same assumptions as in Theorem 7.1.

Then there exists ¢* > 0 such that for all e € (0, £*) there exists a unique solution
U(@*(e), v*(e)) (¢) € % with o*(e), Y*(¢) continuous in & and 9*(0) = @5, Y*(0) = Y5,
where ¢y, Yo are defined by (7.5).

Proof. Now the necessary conditions (6.2.2) have the form

(7.4) B 9o(x) 3(hi(x) = hy(x)),
B¥o(x) = —3(hy(x) + hy(x)).

By the Fredholm alternative these two equations have a 2rn-periodic solution if and
only if

It

It

j?wa—um&=o,fhﬁwwﬁ»@=m
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But according to h,, h, € #3, these conditions are fulfilled, indeed. The unique
solutions of (7.4) belonging to #; reads

(7.5) 03(x) j f (hy(n) — o)) dn dé —

- f;,fo”fo(hl(n) — hy(n)) dn d

i) = - o2 j Jj(hl(n) ¥ h(n) dn dé +

+ 4—:} f:nf:(l1x(n) + hy(n)) dn d&.

The proof of existence of an inverse operator
H =[G (05, ¥5) (0)] " € [#7 x #5 - H] x 7]

is similar. This by Theorem 6.2.1 completes the proof.

Theorem 7.3. Let the problem (9’2,,) be given with
(7.6) S(u) (1, x) = h(t, x) + oau + &f,(1, x, u, €)

where o + 0, h e €(<0, 2n); #;) and f, satisfies the assumption (of5) with T = 2n
and h and f, are 2mn-periodic in t. .
Then there exists ¢* > 0 such that for all ¢ € (0, e*) there exists a unique solu-

tion U(p*(e), Y*(c)) (e)e % with @*(g), y*(¢) continuous in & and ¢*(0) = of,
Y*(0) = Y5, where o3, yg are defined by (7.7).

Proof. Clearly the function f satisfies the assumption (/5) with n = 1. The neces-
sary conditions (6.2.2) have now the unique solution

: —1 ~1
(7.7) (p:(x) = ™ (hy(x) + hy(x)) e Hy, ‘I’z(x) = 3“— (h,(x) — hy(x)) e H#5 .
The existence of an inverse operator

H = [G(¢5. ¥5)] " e [#5 x HG— HG x H5]
is proved readily and by Theorem 6.2.3. This completes the proof.
Theorem 7.4. Let the problem (2,,,3) be given with f given by (7.6) where « + 0,

h e 6(<0,2n[3); #3) and f, satisfies the assumption (o3) with T =2n(3 and h
and f, are 2n[3-periodic in t.
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Then there exists ¥ > 0 such that for all ¢ € (0, ¢*) there exists a unique solution
U(p*(e), y*(e)) () € % with @*(e), y*(e) continuous in & and @*(0) = @y, Y*(0) =
= Y5, where @3, Y§ are defined by (7.8).

Proof. Clearly the function f satisfies the assumption (&/3) with p =1, g = 3.
In our case the necessary conditions (6.3.3) read

Yo(x) + "W(x) + hy(x) =0, To(x) — "(x) + hy(x) =0

where

1/2 1/2 p2n
hy(x) =~ <ﬂ> J’ J cos A2, h(9, x — 2(/(2n — 9)) ) dA d9
TA\Tm 4] (—oo,+x)

1/2 1/2 M2=n g
hy(x) = - (—) J J‘ sin 2. h(9, x — 2(\/(2n — 9)) 1) dA d$
n 0 J(—o0,+x)

/e

and the solution is obviously given by

-1 —1
(7.8) 'o5(x) = By (hy(x) + hy(x))e #o, 'Wo(x) = 5y (hy(x) = hy(x)) e #3 .
Since for any g(1) € 4(— co, + o0) of period 27/3

2n 2n
J g(1) . cos kr dt =f g(t) .sinktdt =0

0 0

for every k # 31, k, I natural numbers, writing h(t, x) = Y. h(1) sin kx, we have
K=1

hy(x)

Il

1/2 1/2 M2n -
- (-) f f cos A2. 11(3, X — 2(\/(271 _ 9)) Z) d1d9 =
d 0 J(~x,+x)

T

el 2n
y [f h(9) . (cos k23 — sin k*9) dS:l . sin kx

1
T k=1 0

and analogously for h,(x) so that hy(x), h,(x) belong to 5#°§ , and hence also '@¥(x),
'Pi(x) belong to #3 . too. As Gy maps #5 , x Hg  into H' . x H§ ,the existence
of the inverse operator

H =[G,(00. ¥3) (0)] 7" € [#3 4 x #34— H3 4 x H3,4]

1ro

may be proved in the same way. By Theorem 6.3.1 this completes the proof.

Of course the theorems analogous to Theorems 7.1 and 7.2 could be also proved
for the problem (2,,,3).
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