Czechoslovak Mathematical Journal

G. S. Pandey
On the absolute Cesaro summability of the ultraspherical series

Czechoslovak Mathematical Journal, Vol. 21 (1971), No. 4, 525-534

Persistent URL: http://dml.cz/dmlcz/101054

Terms of use:

© Institute of Mathematics AS CR, 1971

Institute of Mathematics of the Czech Academy of Sciences provides access to digitized documents
strictly for personal use. Each copy of any part of this document must contain these Terms of use.

This document has been digitized, optimized for electronic delivery and
stamped with digital signature within the project DML-CZ: The Czech Digital
Mathematics Library http://dml.cz



http://dml.cz/dmlcz/101054
http://dml.cz

CZECHOSLOVAK MATHEMATICAL JOURNAL

of Czechoslovak Academy of Sciences
V. 21 (96), PRAHA 18. 11. 1971, No 4

ON THE ABSOLUTE CESARO SUMMABILITY
OF THE ULTRASPHERICAL SERIES

G. S. PANDEY, Ujjain
(Received February 27, 1966 in revised form March 18, 1971)

1. The ultraspherical series associated with a function f(6, ¢), defined for the range
00 =<mn0Z ¢ =< 2nonasphere S, is

- PP(cosy) f(0', ¢")do” 1
(1'1) f(e’ 4)) 2 ";0 (n + )“) J]; [sinz 0/ sinz (¢ i ¢r)]l/2—l 2

L A
say, where ‘
A>0,
cosy = cos 0 cos 8" + sin 0 sin 6’ cos (¢ — ¢'),
de’ = sin 0’ A6’ d¢’

and the ultraspherical polynomial Pfl’”(cos y) is defined by the following expansion
(1 = 2zcosy + 22)"* =Y z2"PP(cosy), 4>0.
n=0

The Laplace series is a particular case of the series (1.1) for the value 1 of the
parameter A and in view of the relation

lim le,‘)(cos 0) = gcos ng, n=1,
-0 A n

the ultraspherical series (1.1) reduces to the trigonometric series in the limit as 4 — 0.
Also, on account of the relation [5]

@ +4) (" \2a-1 p cos w=v
R;)—F@j (sin @)**~* P{P(cos ) d

- L0 D2 ptt(cos0) P(cos ),
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where
w = ¢ - ¢’a

the series (1.1) reduces to the ultraspherical series of the function

70, ¢) = f(cos 0) = f(x)

and the end points of the linear interval [—1, +1].

In a recent paper GUPTA [2] has discussed the absolute Abel summability of the
series (1.1) at a point on the surface of the sphere. His first theorem is an independent
result, while the second theorem includes both the theorems of BHATT [1] on the
summability |A| of Laplace series as a particular case for A = 4. In a subsequent
paper [3] Gupta and the author have studied the absolute Cesaro summability of the
ultraspherical series (1.1) at a point on the surface of the sphere. The object of this
paper is to establish some new results, in a different line, for the absolute Cesaro
summability of the ultraspherical series (1.1).

It is assumed throughout that the function
(12) (0, ¢") [sin? 0' sin? (¢ — ¢)]~ 12

is absolutely integrable (L) on the whole surface of the sphere S.

A generalised mean value of f(6, ¢) on the sphere has been defined by KoGBET-
LIANTZ [4] as follows

_TI@rg +4 10, ¢)ds’
(1.3) f(y) = @) 21r(sin ,y)z;. cy [sin? 0’ sin® (¢ — ¢,)]1/2_l s

where the integral is taken along the small circle whose centre is (6, ¢) on the sphere
and whose curvilinear radius is y.

We write
- r@) - 24-1
¢()’) = W—)f (7) sin Y
_ L[ e
%) = 1 [ee—orr o,
Do(x) = (%),
B) = T(p + 1) w7 B(), p20;
and

d
D) = —B,.4(x), ~1<p<0.
dx
The following theorems will be proved.
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Theorem 1. If ¢(y) is of bounded variation in the interval [, n], where

1
’1 = % ) A = >
n o+ 31+ 1
u being a large constant and
(1.4) (1) = O[*4"1] as -0,

0 < i<a<1, then the series (1.1) is absolutely summable (c,a + A) at the
point (0, ¢) of the sphere.
Theorem 2. If ¢(7) is of bounded variation in the range [, 1], where

u o
n=—, 4=———,
4 o+ 34 +1

=

u being a large constant and
d)a(t) = 0[t(2a+).+1)/2d] as t — 0,

0 < A < 1; a > A, then the series (1.1) is summable |c, o + /1| at the point (0, ¢)
on the sphere.

Theorem 3. If ¢(7) is of bounded variation in the interval [n, n] where
By 4

r’: A’ =

n x+32+1°
U being a large constant and

d)a(t) — 0[t(a+2/1+1)/2d—-l] '}’(t) as t—-0 s

then the series (1.1) is summable |c,« + 2| for 0 < 2 < a < 1, at the point (0, ¢)
on the sphere, provided y(t) is any one of the sequences:

{1/(log (1/5))**<}, ..., {1/(log (1/1)) ... (log ... log,_ (1]1)) (log ... log,(1/t))* *¢} ,
£e>0.

Even the particular cases of these theorems for Laplace series are belived to be
not known before. The theorems are independent of each other under different
ranges of « and A.

2. For the proofs of the theorems we need the following lemmas:

Lemma 1. If S}(y) denotes the n-th Cesdro mean of order k of the series
Y(n + 2) PP(cos y),
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then, for p = 0 and A > 0, we have
on****y 0<y=<nmn, k>0;
pfk ==
(2.1) {5 ()}

= nAtp=kI2=1/2
dy? 0(————), O<y=a<mn

,yl+k/2+1/2
The proof follows on the lines of Obrechkoff [6].
Lemma 2 [6]. For 0 < a < y < «, we have uniformly
(2:2) Siy) = o(n*7%) + o(n"?).
3. Proof of theorem 1. We have

f(8', ¢) PP(cos y) sin 0’ dO’ dgp”

nAd, = n(n + l) ) [Sinz 0’ sin? (4) _ ¢,)]1/2—l

= n(n + A)J #(y) PP(cos y) sin y dy =

J 60) [{ PO, )} - {u . pw(x)} — 1PP(cos y)] siny dy =
x=cosy X *=cosy
= Jn¢(y) [{(n +4+1) 4 P (cos y)} - {(cos P (n + 2) 4 P{P(cos y)} -
0 dy dy
-(A+1) 4 P (cos y) + Acosy 4 PP(cos y) — '
dy dy

— An + 2) P{P(cos y) siny + AP (cos y) sin y] dy.

Thus,

(3_1) t’hl(y) [J‘ d{s;If(}’)} ¢( ) dy — Jn ﬁid:@ cos y ¢(}’) dy —

0

-(A+1) rdti 1) o(v) dy + lJ‘ ax " 4() #(v) cos y dy —

- 1L s37(v) #(y) siny dy + 22 I

o

1" 4(y) ¢(y) sin y d?] A,lﬂ =

1

DTN
n

=l +1, +I,+ I, +I5 + I°].
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say, where 127 %(y), s3*4(y), 02**(y) and I2**(y) denote the n-th Cesaro mean of order
a + 4 of the sequences

{nd,}, {(n + 2) PP(cosv)}, {diy P{P(cos y)} and {P{"(cosy)}

respectively.

Hence, in order to prove the theorem, it is sufficient to show that
(3.2 YTt )| < .
n=1
Henceforward we shall denote

dr { sa +i ('}’)}
—o MV by sP(y).
dv? y (y)
We consider I, first.

33 1, =fs;9,(y) 6() dy = U" +f + H L+ 1a+1hs,

say. Now,

(G4 I, = J” SO0 $() dy =

= [,6) @) — f SD.0) @) dy = Iygg = T11.zs
o
say.

3.5 I =[® (1) — 0| n¥a-1. i B O(n~272)
( ° ) 1,1,1 — [ 1(’1) S"+1(”)] n ’1_(¢+3;.+1)/2 - (n

n 1/n n
(36) Iy, =f ®,(7) s$24(y) dy = [J. +j ]4’1()’) s2:(y)dy = L, + L,
0 0 1/n

say.

Now, we have

1/n 1/n
67 L= o[ [0l wre2ar] = of [T ay] = oferers.

o o

Also,

(3'8) Lz 0 [n J"l n(1+l—a)/2,y3/2d-l dy-J = O[n(l—a)/Z] .
1/n
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On integration by parts, we have
’ d
69 ha=[#0) O - [ 560606 =
n

= 0(n*~ dy = O(n*~®/?) .

¢l d
\ a;‘ﬁ()’)

Finally, using lemma 2, we get

(3'10) 11,3 = j 5(1)1(7) ¢(7) dy =
— [60) 50T — j (—% 6(3) szi(r) dy =

¢>(y),dy = 0(n*"%).

= 0(n*™") + o( ) + o(n*~*

Obviously the order estimates for I,, I3, 14,15 and I are included in the orders
evaluated for I,. Thus, combing the relations (3. 1) (3:2),(3:3), (34) (3.5), 3.7), (3. 8)
(3.9), and (3.10) we see that the theorem is proved.

4. Proof of theorem 2. Proceeding as in the last section in order to prove the
theorem, it is sufficient to show that
o0

n~!IL| < o

n=

under the hypothesis of the theorem.
We have

4.1) 11=j;21(y)¢(y)dy_[f J j]—111+112+113,

say. Let m be the integer such that « < m < « + 1. Hence

(4'2) I,y = J 3(1)1(7) d’(?) dy =

L5177t 3,0) 2000 + (<17 [[0.) s36) ¢ =

il + (__1)"1 iz >
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say. Now, using lemma 1, we have

[<I’,,.(v) sfl,l)l(y)]n = O[,y(a+/1+1)/2dnm+(l-a—l)/z] =
— O(nm+(),~a—l)/2) n(a+z+1)/2d .
Thus

(4.3) iy = O(nm-e-1) |

When o is not an integer, we have

n
i = j @) 500 dy =
0

=F(m—az) R

R J 'S06) dy ﬂ(y e o) du =
= F(ml__:_a—)ﬂd)a(u) du J:(y — u)m e D0) dy =

- f "®(u) F(n, u) du ,

0
by Fubini’s theorem, since @,(«) = O(u), m > a.
The orders of F(y, u) can be easily seen to be

O(n*** ™ 1) um= 4 O(um===1p24+m) ' for 2y < p;

F(n,u) =
(r, w) O(n(<1+l+1)/2u-a/2A) Cus 1 .
n

Thus, we get

1/n n
(4.4) i, = [‘[ +I :I<15,(u) F(n,u)du = iy | + iy,
1] 1/n

say.
1/n
(45) iz,l =0 [J. u(24+}.+1)/2dum—-an2),+m+l du] +
]
1/n
+ 0 [J~ u(21+1+1)/2dum—-a-1n2).+m du] —
V]

= 0[ﬂ21+¢ n‘(2z+l+1)/2d = O[n—a—l] ,

Il

Jm qja(u) F('l, u) du=o0 [n(a+l+1)/2 Jm y(atar iz
In

1/

n
Ly e+3i+ /2 du] =0 [n(aﬂﬂ)/zf ylati+1)/24 du:l —
1/n

= 0[ﬂ(z+}.+1)/2q(1+).+1)/2A+1] - O(n"")_
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I, ,, and I, ; can be disposed off in exactly the same way as in the last section and
we have

(4.6) I, 5, = O(n#~9/%),
and
(4.7) I, 3= 0(n*77).

When o = m, an integer, we have

(49) iy = f 8.,00) sE0() & = j j it s

say. Now

(4.9) iay = 0[J-l/"y(2,+,1+1)/2An2;.+a+1:| - O[n-a—l] .

o

Also
n n
(4_10) i2,2, =J ‘pa(')’) sf,”f;',”(v) dy = O[J ,y(a+}.+l)/24n(u+l+l)/2 dy] -
1/n i/n
= O[n(a+l+l)/2’l(u+l+l)/2A+l] = O(n—d) .
This complete the proof of the theorem.

5. Proof of theorem 3. For the proof of the theorem it is sufficient to show that
the series.

@
-1
Y7L
n=1
is convergent.
We now consider I,.

T n é T
(s.1) 11=j¢(w)ss:n(v)dy=f +f +f=J,+Jz+Ja,
0 0 n 4

say. On integration by parts, we have

(52) 7y = [60) s5230)] — j :ad;d’(v) 3110) dy = 0(w9).
Now
(53) I, = j " 50 s () dy = [aw) :::@)] J’ 8,(7) s24() dy =
=Jy1+Ji2,
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say. From Lemma 1, we observe that

[¢,(y) :—y siii(y)] _ o).

Hence
(5.4) Jig= O(n‘"“) .

Also, following Obrechkoff [6], we have

(55) Tz = f 2.0 8241 = j "0.u) [ j = 0" sE40) dy] du =

0 u

1/n n
= l:J. +j. ]d’,(u) F(p,u)du = Ji20 + Ji2.25
) i

0 n21+2nu—l"—(2}.+u+l)/24 y l =
n
=0 [n241+a+1n—(21+a+1)/24 y (l)] =
n

0[n~(a+ l)/ZA] R

say.

(56) Jyia

n " .
(5.7) J1,2’2 — J ¢a(“) F(r], u) du=o0 I:J’ n(a+A+1)/2u—(u+3A+1)/2 .
i/n i/n

Cu2Atat1)/24-1 y(u) du] —

= O[n(a+z+1)/2 j'" y@tat1/24-1 y(u) du = 0[‘)’(’1)] .
i/n
Also
(5.8) Jy = O(n4=or2).
In view of the relation (5,1), (5,2), ..., (5,8) the theorem is completely established.

The author would like to acknowledge his indebtedness to Dr. D. P. Gupta for his
valuable guidance during the preparation of this paper.
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