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Let S be a semigroup with zero 0. If 4 is a non-empty subset of S we define the left
annihilator /(4) and the right annihilator r(4) of 4 by

[(A) = {x|xeS, xA =0}, r(d)={x|xeS, 4x =0}.

It is easy to see that r(4) and I(A) are right and left ideals of S respectively.
The following properties can be easily proved:

a) A < r[l(4)], 4 < I[r(4)].

b) A = B implies r(B) = r(4) and I(B) = I(A).

c) If A,, a € A, is a collection of subsets of S, then I(UA4,) = NI(4,), (UA4,) =
— ﬂ"(Aa)~ [ [ [

A semigroup is called dual if for every left ideal L of S we have I[r(L)] = Land
for every right ideal R of S we have r[I(R)] = R.

To exclude trivialities we shall suppose throughout of the whole paper S # 0.

Ten years ago I developed a structure theory for dual semigroups under the
assumption of some minimal conditions. (See [5].) In the meantime NUMAKURA [4]
proved that in the case of dual semigroups without nilpotent ideals some of these
minimal conditions can be omited.

It is the first purpose of this paper to show that the majority of the results of [5]
even in the case that S contains nilpotent ideals holds without any minimal condition.
As a matter of fact it turns out that the condition for S to be dual implies itself some
rather strong minimal conditions. For instance, any left ideal of a dual semigroup S
contains a 0-minimal left ideal of S. Also any dual serriigroup S contains non-zero
idempotents.

The second purpose of this paper is to give a number of new results, in particular,
some decomposition theorems which enable to reduce the study of a dual semigroup
to some special types of dual semigroups.
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Though the results of this paper denote a considerable step forward in the study
of dual semigroups it remains open (even in the commutative case) the problem to
find a suitable type of their representation or otherwise expressed to find methods
how to construct all dual semigroups.

For completely O-simple dual semigroups this problem has been solved in [5].
Since the structure of any dual semigroup has (at least formally) some resemblence
with the structure of completely 0-simple dual semigroups the problem mentioned
seems not to be quite hopeless.

I was led to these investigations by seeking (for a rather long time) for some
countreexamples which finally turned out to be impossible.

The methods of treatment and proofs given in this paper differ rather essentially
from those given in [4] and [5]. The problems treated are in a loose connection with
a recent paper of HOTZEL [2].

Besides of the first two Lemmas (which are exp11c1tly proved in [5]) the paper is
independent of the results of [5].

The terminology used is the usual one (see [1]).

1. THE EXISTENCE OF O-MINIMAL IDEALS

Lemma 1,1. In a dual semigroup S we have:

a) l(ﬂR) = U I(R,), r(ﬂL) = Ur(L) L,, R, being left and right ideals respec-
tively. *

b) I(S) = #(S) = 0.

¢) If Lis a 0-minimal left ideal of S, then r(L) is a maximal right ideal of S.

d) If m is a O-minimal two-sided ideal of S, then r(m) and I(m) are maximal
two-sided ideals of S.

Note that r(m) and I(m) need not coincide (see Example 5,1 below).

Lemma 1,2. If S is dual, then ae Sa, ae aS for every ae S. In particular,
S?=S8.

Note explicitly that in a dual semigroup Sa = 0 implies a = 0.

We first exclude a trivial case in order to simplify some proofs in the following.

Lemma 1,3. A dual semigroup S in which aS = S for every a€ S, a £ 0, is
a group with zero.

Proof. The supposition implies that S contains only the trivial right ideals O
and S itself. Therefore for the left ideal Sa we have either r(Sa) = S or r(Sa) = 0.
The first possibility implies Sa = 0, a contradiction with a % 0. Hence r(Sa) =0
and Sa = S. S is a semigroup in which ax = b and ya = b have a solution in S for
any a, be S, a £ 0. It is well known that such a semigroup is a group with zero.

Conversely it is obvious that a group with zero is a dual semigroup.
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Theorem 1,4. In a dual semigroup S every non-zero right ideal of S contains
a 0-minimal right ideal of S.

Proof. Let R # 0 be a right ideal of Sand 0  a€ R. We have 0 = aeaS < R.
If R = S we may and we shall suppose that a € S is chosen so that aS # S. [For if
aS = S for every ae S, a #+ 0, Lemma 1,3 implies that S is itself a 0-minimal right
ideal of S and there is nothing more to prove.]

Lemma 1,2 implies that there is an y € S such that a = ya. Since yaS = aS, y is
a left unit for every element € aS and we certainly have y ¢ [(aS). Further since aS = S,
we have [(aS) * 0.

Denote by L, the largest left ideal of S which does not contain y. Clearly I(aS) =
< Lo and L, # S. This implies 7(L,) = aS < R and r(L,) % 0.

We prove that r(L,) is a O-minimal right ideal of S. Suppose for an indirect proof
that there is a right ideal R, of S such that 0 % R; ¢ r(L,). The duality implies
L, ¢ I(R,) & S. Since I(R,) is larger than L,, we have y € I(R,), and I(R) R, = 0
implies yR; = 0. On the other side R; < aS implies yR; = R,. This contradiction
proves our Theorem.

Analogously we can prove that any non-zero left ideal of S contains a 0-minimal
left ideal of S.

Corollary 1,5. In a dual semigroup every right ideal R of S, R # S, is contained
in a maximal right ideal of S.

Proof. Consider the left ideal I(R). By Theorem 1,4 it contains a 0-minimal left
ideal Ly, 0 + L, = I(R). By duality r(L,) is a maximal right ideal of S and R <
c r(Lo) g S

Theorem 1,6. In a dual semigroup S every O-minimal left ideal of S is contained
in a 0-minimal two-sided ideal of S.

Proof. Let L, be a 0-minimal left ideal of S. By Lemma 1,2 we have L, = L,S.
We prove that My, = L,S is a 0-minimal two-sided ideal of S.

Note that for any a € S the set Lya is either zero or a 0-minimal left ideal of S.
The two-sided ideal M, = L,S can be written as a union of O-minimal left ideals

My = L,S = Lo{r(Ly) U Z} = Ly,Z = L{i[Loz,] ,

where Z = {z, |« € A} is the complement of r(L,) in S.

Since L, = M, there is a z, € Z such that Lyz, = L,.
Let M = 0 be a two-sided ideal of S and M = M,. We first prove that L, = M.
Suppose for an indirect proof that L, is not contained in M, so that M = U [Lyz,],
. aeAy
where {z,|we A} does not contain z,. Since MS < M, we have U [Lz,S] <
acdy

< U [Lz,]. For any a e A, the right ideal z,S cannot contain z, (since Lyz, is not
acAi

463



contained in M). Now r(L,) is a maximal right ideal of S and z, is not contained in
r(Lo)- With respect to the maximality of r(L,) we have z,S U r(Lo) = S. This gives
an apparent contradiction, since z, is contained neither in z,S nor in r(L,). We have
proved L, « M.

Now L, « M < LyS implies L,S =« MS < L,S? = L,S. With respect to M =
= MS we have M = L,S = M,, so that M, is the 0-minimal two-sided ideal of S
containing L,. This proves our Theorem.

Corollary 1,7. In a dual semigroup S every two-sided ideal of S contains (at least
one) 0-minimal two-sided ideal of S.

Corollary 1,8. In a dual semigroup S every maximal left ideal of S contains
a maximal two-sided ideal of S.

Proof. Let L; be a maximal left ideal of S. By Theorem 1,6 the 0-minimal right
ideal r(L,) is contained in the O-minimal two-sided ideal M = Sr(L,). We have
r(L;) € M < S. Hence 0 = r(M) = L,. By Lemma 1,1 r(M) is a maximal two-sided
ideal of S.

2. A LEMMA ON MAXIMAL IDEALS

In the following we shall use some facts concerning semigroups containing maximal
ideals. The following Lemma 2,1 has been proved in [6]. It is also contained in a some-
what other form in a recent paper of P. A. GRILLET [3]

Lemma 2,1. Let {M, | a € A} be the set of all different maximal ideals of a semi-
group S. Suppose that card A = 2 and denote P, =S — M, and M* = (\ M,.
We then have: aed

a) P,n P, =0 fora + p.
b) S =[UP,]u M*.
acd
c) We have P, = M, for v + a.
d) If J is a two-sided ideal of S and J n P, + 0, then P, = J.
e) For o + B we have P,P; = M*, so that M* is not empty.

Remark. For card 4 = 1 the Lemma is trivial.

We adjoin some remarks to this Lemma. If a € S, we denote by J(a) = {a, Sa,
as$, SaS} the principal two-sided ideal generated by a. By J, we denote the set of all
generators of J(a), ie. J, = {x | xe S, J(x) = J(a)}. The set J, is called the J-class
containing a.
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Lemma 2,2. With the notations of Lemma 2,1 we have:

a) Every P, is an J-class.
b) If a€ P,, then J(a) 0 Py = 0 for every « + p.

Proof. a) If a € P,, we shall write P, = P, and M, = M,. Since M, is a maximal
two-sided ideal we have M, U J(a) = S. Hence P, = J(a). For any b e P, we have
J(b) = J(a). Now b € P, implies also M, L J(b) = S, hence P, = J(b) and J(a) =
< J(b). Therefore J(a) = J(b). It follows that P, is contained in an J-class. This
J-class is not contained in the ideal M,, hence it is disjoint with M,, so that P, is
itself an J-class.

b) We have seen that P, = J(a). Suppose that there is a P, + P, with P, n J(a) +
+ 0, hence (with respect to Lemma 2,1) P, < J(a). Let c € P;. This implies J(c) =
< J(a). Since ¢ ¢ M, we have M, U J(c) = S. Clearly a ¢ M, since a € My would
imply c e J(c) = J(a) = M,, contrary to the assumption. Hence a € J(c), therefore
J(a) = J(c). We have J(a) = J(c), whence P, = P,. This contradiction proves
Lemma 2,2.

Consider now the difference semigroup (Rees factor semigroup) S/M* and the
homomorphism S — S/M*. Denote by 0* the image of M*. It follows immediately
from Lemma 2,1 and Lemma 2,2 that S/M* can be written as a mutually annihilating
union of semigroups which are 0-simple or null of order two:

(1) S[M* = P,, where P,= P,u {0*}.

aed

3. THE EXISTENCE OF IDEMPOTENTS AND THE MAIN
DECOMPOSITION THEOREM

We now return to the case that S is dual. Our final aim in this and the next section
is to prove that in this case every P, in the decomposition (1) is a completely 0-simple
dual semigroup. To this end we first prove some theorems concerning the structure
of dual semigroups, in particular, Theorem 3,10.

We have seen that if S is dual, S contains maximal two-sided ideals. In this case it
is immediately clear that M* (the intersection of all maximal two-sided ideals) is
non-empty since it contains 0. Note also that for a dual semigroup J(a) = {a, Sa,
as, SaS} = Sas.

Lemma 3,1. If S is dual, then M* does not contain a non-zero idempotent.

Proof. Suppose for an indirect proof that there is an idempotent e + 0, ee M*.
By Theorem 1,4 the left ideal Se contains a O-minimal left ideal L,. The set r(Lo) is
a maximal right ideal of S and by Corollary 1,5 it contains a maximal two-sided
ideal M, of S. We have LM, = L, r(L,) = 0, and since M* = M,, we have in
particular Lye = 0. But e is a right unit for every element € Se, hence Lye = L. This
contradiction proves our statement.
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The existence of idempotents outside of M* is proved in the next Lemma.

Lemma 3,2. Let S be a dual semigroup. Then to any a€ S, a + 0, there exists an
idempotent e € S such that a € Se and an idempotent f € S such that a € fS.

Proof. It is sufficient to prove the first statement. The second one follows analo-
gously.

Since a € a8, there is an element z € S such that a = az. Since Sa = Saz we have
Sa = Sz and z is a right unit for every b € Sa.

Let L, be a O-minimal left ideal of S contained in Sa, L, = Sa = Sz. Clearly
Loz = L,. The maximal right ideal r(L,) does not contain z.

We prove that for any be S — r(L,) we have bS = zS. Since b e bS, z € zS we
have (with respect to the maximality of r(L,)) zS U r(Ly) = S and bS U r(Lo) = S.
Hence b e zS and z € bS. Therefore bS < zS? = zS, zS < bS? = bS, and finally
bS = zS.

Now since z € Sz, there is an element y € S such that z = yz. We have y ¢ r(L,),
since Loy = 0 would imply Loz = (L, y) z = 0, a contradiction. By the statement just
proved we have therefore yS = zS. Now y(zS) = z§ implies that y is a left unit for
every element €zS. Hence y is also a left unit for every element € yS. Since ye yS, we
have y .y = y. We have proved that S contains an idempotent y # 0.

Now yS = zS implies also the existence of a v € S such that y = zv. Hence z =
= yz = zvz. This implies that e = vz is an idempotent. We have e € Sz and therefore
Se = Sz. Since ze = z, we also have Sz = Se. Hence Sz = Se. The inclusion a €
€ Sa = Sz = Se concludes the proof of Lemma 3,2.

In the following if a € P, we shall often write P, = P,.

We now sharpen the last result:

Lemma 3,3. Let S be dual. If a € P,, then there is an idempotent e € P, such that
a € Se and an idempotent f € P, such that a € fS.

Proof. It is sufficient to show that the idempotent e (the existence of which has
been proved in Lemma 3,2) is contained in P,. By Lemma 3,1 e is not contained in M*.
Suppose that e € P,. We then have

aeSec {[UP,JuM*tec[UP,]P,uM*.
Aed Aed
Since P,P, = M* for any P, + P,, we obtain
ae P} U M* < [J(b)]* U M* = [SbS]* U M* < SbS U M*.

Since SbS contains P, and no other P, (see Lemma 2,2), we have a € SbS < P, U M*,
whence P, = P,and e€ P,.

Corollary 3,4. In a dual semigroup every P, (A€ A) contains at least one idem-
potent.
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Lemma 3,5. If S is dual and 0 + e = ¢* e S, then Se contains a unique non-zero
idempotent (namely e itself).

Proof. Suppose for an indirect proof that there is a non-zero idempotent e; = e,
e, € Se. Then e;e = e, and Se; < Se. Let L, be a 0-minimal left ideal of S contained
in Se;, L, = Se; = Se. The maximal right ideal r(L,) does not contain e, and e.
Therefore e;S U r(Ly) = S. This implies ece,S and e;e = e. Hence e = e,
contrary to the assumption.

Remark. Analogously we can prove that eS contains a unique non-zero idem-
potent.

The next Lemma shows that the O-minimal left ideal L, contained in Se is uniquely
determined.

Lemma 3,6. Let S be a dual semigroup and e + 0 an idempotent €S. Then Se
contains a unique O-minimal left ideal of S.

Proof. The existence of a 0-minimal left ideal has been proved in Theorem 1,4.
Suppose that L, and L, are two different 0-minimal left ideals contained in Se.
Then Lie = L, Lye = L, and e¢ r(L,), e ¢ r(L,). The maximal right ideals r(L,),
r(L,) are different, hence r(L;) U r(L,) = S. This constitutes an apparent contradic-
tion since e is contained neither in #(L,) nor in r(L,).

Remark. An analogous result holds for the right ideal eS.

Lemma 3,6 and Lemma 3,2 imply: .

Corollary 3,7. If S is dual and a % 0, then Sa contains a unique 0-minimal left
ideal of S.

Theorem 3,8. If S is dual and ey, e, two non-zero different idempotents €S, then
Se; N Se, = 0.

Proof. Suppose that there is an ae S, a £ 0, such that a e Se; n Se,. Since
a € Sa, we have Sa = 0. Denote by L, the 0-minimal left ideal contained in Sa. The
relation Ly = Sa < Se; n Se, implies Lye; = Ly, Loe, = Lo, so that e, ¢ (L)
and e, ¢ r(L,). With respect to the maximality of r(L,) we have e,S U r(L,) = S.
This implies e, € e,S, a contradiction to Lemma 3,6. Hence Se; n Se, = 0.

We finally sharpen Lemma 3,3:

Theorem 3,9. If S is dual, then to any a€ S, a # 0, there exists a unique idem-
potent e and a unique idempotent f such that a = ae and a = fa.

Proof. It is sufficient to prove the first statement. By Lemma 3,2 to any a # 0
there is an idempotent e such that a € Se, hence ae = a. Suppose that there are two
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idempotents e # ¢ such that 0 + a = ge = ge’. We then have a = ae — Se,
a = ae’ c Se’. Hence a € Se n Se'. This contradicts Theorem 3,8.
In the following we denote by E the set of all non-zero idempotents €S. Further E

denotes the set of all non-zero idempotents eP,, so that E = |J E,.
aed

Two subsets A, B of S will be called quasidisjoint if A n B = 0.
By summarising the above results we have:

a

Theorem 3,10. (The main decomposition theorem.) Any dual semigroup can be
written as a union of pairwise quasidisjoint principal left ideals generated by
idempotents:

S=USe, Se;nSe, =0 for e *e,.
ecE
Each of the summands contains a unique idempotent and a unique 0-minimal left
ideal of S. This decomposition is uniquely determined.

There is also an analogous decomposition into principal right ideals generated by
idempotents.

In [5] we have proved that in a completely 0-simple dual semigroup the product
of any two different idempotents is 0. This result is a crucial one for the possibility to
describe all completely 0-simple dual semigroups. The next Theorem shows that this
property has any dual semigroup and this will be here of greatest importance for the
possibility to describe the structure of the semigroups P,.

Theorem 3,11. If S is dual and e * f two different idempotents €S, then ef =
= fe = 0.

Proof. Since Se nSf = 0, we have r(Se) U r(Sf) = S. Now e does not belong
to r(Se), hence e € r(Sf), i.e. Sf. e = 0. This implies fe = 0. Analogously f e r(Se),
hence Sef = 0 and ef = 0, concluding the proof of our Theorem.

The case when S contains a unique non-zero idempotent is settled by the following
Lemma.

Lemma 3,12. If S is dual and it contains a unique non-zero idempotent e, then
S = M* U P,, where P, is a group.

Proof. By Theorem 3,10 we have S = Se = eS, so that e is a unit element of S.
The semigroup Se has a unique O-minimal left ideal L,. Hence L, is the 0-minimal
two-sided ideal of S and coincide with the (unique) O-minimal right ideal of S. There
is therefore a unique maximal left ideal which is equal to the maximal right ideal and
both coincide with M*.

Let a be any element €P,. The inclusion a € Sa implies that Sa is larger than M*,
hence Sa = S. Analogously aS = S. To any couple a, b € P, there are x, y € S such
that ax = b and ya = b. Both x and y are contained in P,, since, e.g., x € M* would
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imply b = ax e M*, contrary to the assumption. The solvability of these equations
proves that P, is a group.

It is of some interest for further purposes to give an example of a dual semigroup
having a unique P, which is not a group.

Example 3,1. Let S = {0, e,y, €2, €51, €22, G4y, G5, A3y, a3,} be the semigroup
having the following multiplication table:

'_ﬁ,[ 0 e, e ey e i1 dyp Ay Ay
0 00 0 0 0 0 0 0 0
e |0 ey e, O 0 a;;, a;, 0 0
e |00 0 e;; €, 0 0 Ay A4y
€1 |0 ey e O 0 a, 4az;; O 0
€, |0 0 0 €1 €3 O 0 az; Az
a,; |0 a, a;, O 0 0 0 0 0
a, |0 0 0 a;; a;, 0 0 0 (U
a,, |0 ay; a,, O 0 0 0 0 0
a,, |0 0 0 a,; a, 0 0 0 0
Denote

Ly, = {0"111"121}, R, = {0,0“,6112},

L = {0’ ayy, A3y, €11, ezx} s R, = {0, €11, €12, 17, a,z} s

Ly = {0, ayz, ‘122} > R, = {0, asy, azz} s

’ ’
L = {0, Q12,0335 €12, ezz} s R} = {0’ azy, A32, €31, ezz} .

The lattices of left and right ideals are given below:

[
<
D

/
/\
N/

—

~
-
— 0

UR,

~

\
/\
\

o
o

It is easy to verify that S is a dual semigroup. There exists a unique P,, namely P, =
= {e,y, €12, €21, €25}, hence a unique maximal two-sided ideal M* = {0, a,y, a,,,
a,y, a,,} which is at the same time the 0-minimal two-sided ideal of S. The principal
left ideals generated by idempotents are L, = Se;;, L{ = Se,, and we have S =
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= L, u L}. The principal right ideals generated by idempotents are R, = e,S,
R} = e,,S and we have S = R, U R].
We also strengthen Theorem 3,11:

Theorem 3,12. If S is dual and P, # Pg, then P,Py = 0.

Proof. By Lemma 3,3 P, = SE,, P; = E;S. Since E,E; = 0, we have PaPﬂ I
< SE,E;S = 0.

We finally prove:

Lemma 3,13. Let S be dual and e€ S. Then
r(Se) = {\;fSlfeE, f+e}, leS)= {l;Sf|feE, f*e}.

Proof. It is sufficient to prove the first statement. If f % e, we have Se. fS =0,
so that r(Se) certainly contains the set {UfS |f€E, f + e}. LetuceSandue r(Se).
Then Seu = 0. This implies eu = 0. Since e is a left unit of eS, we have eu = u, i.e.
u = 0. None of the non-zero elements €eS is contained in r(eS). This proves our
statement.

4. THE STRUCTURE OF THE DIFFERENCE SEMIGROUP

In accordance with [1] we shall say that the semigroup S having a zero element is
a O-direct union of semigroups S;,ie H,if S=US;and S;nS;=85,.5;,=0
for i = j. ieH

Clearly each S; is a two-sided ideal of S so that we can speak about the 0-direct
union of ideals. Note also that any left (right) ideal of S; is a left (right) ideal of S.

We shall need the following Lemma:

Lemma 4,1. Let S = U S; be a 0-direct union of ideals S;. Then S is dual if and
ieH
only if each summand S; is dual.

Proof. In the following we denote the left and right annihilators in S by I(. . .) and
r(...), the annihilators in S; by I(...) and r{...). Further let us denote S’ =
={US;|jeH,j+i}

a) Suppose that S is dual. Let R be a right ideal of ;.

Clearly I(R) = I(R) U S*. This implies
) r(R)] = r[1{R)] n r(S).
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Now, since I(R) = S,, we have r[I[(R)] = r[I{(R)] U S, so that (2) implies
R = {r[l{R)] U S} n 1(S"),
R = {r,[l,(R)] N V(Si)} U {Sl A I(S')} )

Since r[I(R)] = S; = r(S?), the first summand to the right is r,[/,(R)]. The second
summand is 0, since S' N 7(SY) = S*and S A R = 0. Hence R = r[I(R)]. Analo-
gously we prove that L = I,[r/(L)] for any left ideal Lof S;. We have proved that S,
is dual.

b) Suppose conversely that each S; is dual. Let L be any left ideal of S. Denote
L;=S;nL,sothat L= L, We have
ieH
rL)=r[UL]=n0NrL)=N[r{L)v S].
ieH ieH ieH
The last intersection is exactly U r{L;). For r(L;) is contained in each term ry(L;) U
ieH
U S7. On the other side if x € R(L) does not belong to U r(L;) it must be contained
ieH
in N S¢, but this intersection is 0.
ieH
Hence we have r(L) = U r(L;), and this implies
icH

L] = iQ,l["'(L")] = in {Llr{L)] v 5% = ig {Liv s},

By the same argument as above we conclude that the last intersection is exactly
U L; = L. Hence I[[r(L)] = L. Analogously we can prove that r[I(R)] = R for any
ieH

right ideal R of S. Hence S is dual.

Remark. We now prove that I(S;) = r(S;) = S and (S") = r(S?) = S,;. Clearly
S* = r(S;). Suppose that S* =+ r(S;). We then have m = r(S;)n S, 0. Now
S; r(S;) = 0 implies S;m = 0. Since S; is dual, we have m = 0, a contradiction.
Hence S = r(S;) and by duality I(S’) = S;. Analogously we can prove the two
remaining relations.

We now return to the decomposition (1) and suppose that S is dual. We have seen
that each of the sets P, (« € 4) contains at least one idempotent.

If P, contains a unique idempotent, say e, we have with respect to Lemma 3,2
P, = Se, P, c eS, hence P, = Se n eS. The O-simple semigroup P, contains a two-
sided unit element. Such a semigroup is known to be a group with zero. Hence P,
is dual. '

Suppose next that card E, = 2. Then for any two idempotents e, * e, contained
in P, we have e, . e, = 0*. Hence any non-zero idempotent €P, is primitive. This
implies that P, is a completely O-simple semigroup.

It remains to show that P, is dual.
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Any left ideal Lof P, can be written in the form L = |J P, . e, where H is a subset

ecH
of E,. We denote the left and right annihilators in P, by I(...) and #(...). If E, —
~ H # 0, then #(L) contains |J fP, and cannot contain f . P, with f€ H [since

feEa—H
L.fP, = (U P,e). fP, contains f and it is therefore #0]. Hence (L) = U fP,.
ecH SeEx—H
By an analogous argument I[F(L)] = I[ U fP,] is clearly equal to U P,f. Hence
feEq—H feH

I[#(L)] = L. If E, = H, L = P,, we have #(L) = 0* [since for any fe E, we then
have Lf = P,f + 0]. This implies I[#(P,)] = I(0*) = P,.
Analogously we can prove that F[I(R)] = R holds for every right ideal R of P,
We have proved:

Theorem 4,2. Let S be a dual semigroup and M* the intersection of all maximal
two-sided ideals of S. Then the difference semigroup S|M* is either a completely
0-simple dual semigroup or a O-direct union of such semigroups.

In formulae:

S[M* =UP,, P,nP,=P,.P,=0*,
acA

where each P(x € A) is a completely 0-simple dual semigroup.

Remark. Note that this result has been obtained without requiring any of the
usual types of minimal conditions for left (right or two-sided) ideals.

It is intuitively clear that the O-minimal right ideals of the semigroup P, are
intimately connected with the maximal right ideals of S and — a fortiori — with the
0-minimal left ideals of S. We shall now clarify this connection.

In the following we denote by L, the 0-minimal left ideal of S contained in Se.
By Z, we denote the complement of r(L,) in S, so that S = Z, u r(L,) and Z, n
N r(Ly) = 0.

Clearly, Z, depends only on e. Since Lye = Ly, we have e € Z,. Since (by Lemma

3,13) 1(L,) © U fS, we have Z, c eS, hence eZ, = Z,.
S#*e
The following Lemma is implicitly contained in the proof of Theorem 3,2.

Lemma 4,3. For any b e Z,, we have bS = eS.

Proof. Since e ¢ r(Lo) and b ¢ r(Lo) we have eS U r(Ly) = S and bS U (Lo) = S.
Hence b € eS, e € bS, whence immediately bS = eS.

Lemma 4,4. For any e € E we have e (L)) = M*.

Proof. Note first that for any Py & P, we have eS n p

= (. Thi lows im-
mediately from Lemma 2,2 since s = 0. This follows "1m

eSr\PBcSeSﬁPB=J(e)nP _‘0
B Y.
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To prove our statement it is therefore sufficient to show that we have also P, n
ner(Ly) =0

Suppose for an indirect proof that there is an a # 0 such that a e P, n e r(Lo).
ae P, implies J(a) = SaS = SeS. Further aeer(L,) implies aS < er(Ly) S =
< er(Ly). Hence ee SeS = S(aS) = Ser(Ly). There exist therefore elements x
and u, x € S, u € (L) such that e = x(eu). Since e is an idempotent, we have

(3) e = (exe) (eu) .

Write S = P, u M,, P, an M, = 0 (where M, is the maximal two-sided ideal of S
which does not contain e). We cannot have exee M, since this would imply ee
€M, . (eu) = M,, contrary to the definition of M,.

We have exe € P,. Since P, = S[M, is completely O-simple, exe belongs to a group
G, containing e as unit element [see, e. g., [1], Vol. I, pp. 77—78]. Hence there is
a ve G, such that v. exe = e. Multiplying (3) by v we get ve = e(eu) hence eu =
= ve = e. The right ideal er(L,) contains eu = v. A right ideal containing an element
of a group contains the whole group, so that e e er(Lo). This gives a contradiction,
since Lye = L,, while Lye r(L,) = Lo r(Ly) = 0. The proof of Lemma 4,3 is com-

pleted.
In the following we denote by E, the set of all idempotents contained in P,.

Lemma 4,5. For any e € E we have:

a) eS = Z, U er(Ly), and the summands are disjoint:

b) Z, = eSn P,

C) Pe = U Zf;

feEe

d) fP, = Z; v {0}, for any f€ E,.

Proof. a) S = r(Ly) U Z, implies eS = e r(Ly) U Z,. We have e r(Lo) = r(Lo),
since Lge r(Lo) = Lo r(Lo) = 0. Therefore e r(Ly) N Z, = r(Ly) n Z, = 0, so that
the summands are disjoint.

b) Taking in a) the intersection with P, we have eS n P, = Z, n P,. To prove our
statement it is sufficient to show that Z, = P,. By Lemma 4,3 we have bS = eS for
any b e Z,. Hence SbS = SeS. This shows that be P,, i.e. Z, < P,.

c) Since P, = U fS, we have P, = U [Zf U f r(Ly)]- By Lemma 4.4 Ufr(LO) <

feEq JeE
< M*, hence P, = U Z,. On the other 51de we have [by b)] Z, < P, for anyfe E.,
SeEe
hence U Z, = P,. This proves our statement.
SeEe
d) For any idempotent f we have fZ, = Z,. This implies

eP,=e{UZ;} =e{Z, o[ UfZ/]} = Z, U {0}.
SeEe JeEq
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Consider now the completely 0*-simple semigroup P, = P, U {0*} and denote
Z} = Z,u {0*}. The 0*-minimal right ideal of P, containing e is the set eP,. With
respect to eP, = Z, U {0} we clearly have eP, = Z, U {0*} = Z}and P, = | eP, =
- U Z* ecE.

ecE.

Summarily we have proved:

Theorem 4,6. Let e be an idempotent €P, and L, the 0-minimal left ideal con-
tained in Se. Denote by Z, the complement of r(L,) in S. Then the 0*-minimal right
ideals of the completely 0*-simple semigroups P, are exactly the sets Z, with the
zero 0% adjoined.

5. THE PRODUCT OF LEFT IDEALS

The decompositions from Theorem 3,10, namely

4) S=USe=USS

ecE JeE

imply a “finer” decomposition, namely

() S= U [Senss].

e, feE

We have clearly fSe = fS n Se. To prove that fSe = fS n Se take any element
acfS n Se. Then e is the unique right unit of @ and f the unique left unit of a, so
that a = ae, a = fa and a = fae. Hence a € fSe, which proves our statement.

The decomposition (5) can be therefore written in the form

© S= U fse,

e,feS

where (with respect to Theorem 3,9) the summands are quasidisjoint.
If e % f, we have (fSe)® = fS(e.f) Se = 0.
Ife, f€ E, we have eSf = ¢[ U P, u M*] f = (eP, U eM*) f = eP,f U eM*f.
aed
a) If ee P,, fe Py and P, # Py, then eP,f < eP,P; = 0 so that eSf « eM*f
< M*,

b) If both e and f are contained in the same P, = P,, we prove that eSf n P, =+ 0.
First

eSf = eP,f U eM*f < eSeSf U M* < SeS U M* = J(e) U M*.
By Lemma 2,2 J(e) n P, = 0 for every P, + P,, so that eSf does not meet any
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P; * P,. To prove eSf n P, # ( it is therefore sufficient to prove that eSf cannot be
contained in M*. Suppose for an indirect proof that this were the case. eSf = M*
implies (eSf) (fSe) = M*. Since SfS = SeS, we would have e(SeS)e = M*,
hence e e M*, a contradiction with Lemma 3,1.

Summarily:

Lemma 5,1. If S is dual, S can be written in the form S = \J eSf, where the sum-
mands are quasidisjoint. e.SeE

If e % f, we have (eSf)* = 0.
If ee P,, fe Pgand P, + Py, then eSf ¢ M*.
If e, f are contained in the same P,, we have eSf N P, # 0.

We are now able to prove one statement concerning the product of two left (right)
ideals generated by idempotents.

Theorem 5,2. If S is dual and the idempotents e, f belong to the same P,, then
eSfS = eS and SeSf = Sf.

Proof. We prove the first statement. Clearly
(7 eS.fS < eS.

Write eS = Z, U e r(L,), where L, is the O-minimal left ideal contained in Se.
By Lemma 4,4 e r(L,) = M*. By Lemma 5,1 the right ideal eSf.S (which contains
eSf) is not contained in M*. Hence eSfS N Z, = 0. Let x be any element eeSfS N Z..
We have certainly x #+ 0. By Lemma 4,3 xS = eS. Further xS < eSfS? = eSfS,
therefore eS < eSfS. This together with (7) implies eSfS = eS.

The pertinent question arises: What can be said about the product SeSf if e€ P,,
fePgand P, + Py By Lemma 5,1 we have in this case SeSf = SM* = M* (more
precisely SeSf = M* n Sf). It would be nice if it were SeSf = 0. But this need not
be true as the following example shows.

Example 5,1. Let S = {0, ¢, e, a3, a2} be the semigroup with the following
multiplication table:

|0 e, e, a; a,

000 0 0 0
e, |0 e 0 a4 O
e, 10 0 e 0 O
ale 0 a, 0 O
a {0 a, 0 0 O

475



By inspection of the lattices of left and right ideals as given below we immediately
see that S is dual.

/

} {0 U,,a,,c‘ 0 a‘h

|
|

(0,a,) (0,a,) (0,a,)

{0,a,a,.6/

VAN
/

\\
/N
/\/\

0.q,c¢, (0,a,8,) (0,a,e,

(0,a,.6
l (0a,a,)

/AN

(0,a,,q,

(0,a,)

\
\

0 0

Now the left ideals generated by idempoteﬁts are L, = (0, a5, €;), L, = (0, ay, e,).
We have

LL,=(0,a)+0, L,L, =(0,a,)+0.

(Both ideals L,, L, are incidentally two-sided ideals.)

If m is a O-minimal two-sided ideal, then r(m) and I(m) are maximal two-sided
ideals. Our example shows that r(m) and I(m) need not be equal. For, e.g., m =
= (0, a,) is a 0-minimal two-sided ideal and I(m) = (0, a;, a,, e,) while r(m) =
= (0, ay, a, e,).

Note also that examples 4,1 and 5,1 show that two essentially dlﬁ'erent dual semi-
groups may have isomorphic lattices of ideals.

Remark. It is quite natural to consider a further decomposition which arises
from the decompositions of Theorem 3,10, namely:

S=3S —[USe][UfS]-—USeS UJ(e) U SP,S.
ecE aed
Here each summand contains a unique P, (x € A).

Unfortunately the summands here are not necessarily quasidisjoint and even the
product J(e) J(f) can be different from 0. [Recall that J(e) J(f) = J(e) n J(f)-]
This can be again shown on Example 5,1. Here we have Se,S = {0, ai, a,, el},
Se,S = {0, ay, a,, e,}, and

Se,S.Se,S ={0,a,} =0, Se,S.SeS=1{0,a,}+0.

Nevertheless in some cases decompositions into quasidisjoint two-sided idealsare
possible. This will be studied in the next section.
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6. DECOMPOSITIONS INTO TWO-SIDED IDEALS

In this section we shall first deal with the 0-minimal two-sided ideals of a dual
semigroup.

If {M, | « € A} is the set of all different maximal two-sided ideals, then {r(M,) | a €
€ A} is the set of all O-minimal two-sided ideals. Also, the set {I(M,)|xe A}, as
a whole, is identical with {r(M,) | a € A}.

r(M,) is characterised by the property P, r(M,) = r(M,). For, S H(M,) = (P, U
v M,) (M,) = r(M,), while for P, + P, we have P, (M,) = M, r(M,) = 0.

Analogously I(M,) satisfies I(M,) P, = I(M,), while I(M,) P, = 0 for any P, + P,.

We have +(M,) = S+M,) = SP,r(M,) = SP,S = SeS for any ee P,. Analo-
gously I(M,) = SeS for any e€ P,.

Summarising we have:

Lemma 6,1. To any P, (¢x € A) there is a unique O-minimal two-sided ideal n,
characterised by the property P,n, % 0 and a unique O-minimal two-sided ideal m,
characterised by the property m,P, + 0.

A more precise description of n, and m, will be given in Lemma 6,5.

For a fixed idempotent e & 0 consider the two-sided ideal SeS.

If SeS itself is a 0-minimal two-sided ideal, then SeS N M* = 0. For SeS n M* +
#+ 0 would imply SeS < M* and M* does not contain idempotents =0.

If SeS is not minimal, then since SeS = SP,S does not meet any P, #+ P,, we neces-
sarily have SeS n M* + 0 and the 0-minimal two-sided ideal contained in SeS is
contained in M*.

Let us consider the first case. Since SeS N M* = 0, in the mapping S — S/M* the
elements of SeS are in a one-to-one correspondence with the elements P, (where,
in particular, 0 «> 0* and the other elements retain in essential their identity). This
implies that SeS is a completely 0-simple dual semigroup.

If SeS and Sf S are two different 0-minimal two-sided ideals we have SeS N SfS =
= 0, hence SeS . SfS = 0.

Denote by E) the set of all idempotents €S which generate a 0-minimal two-
sided ideal and denote S = {J SeS (supposing of course that E™) is non-empty).

ecE(1)

If S is non-empty, it is either a completely O-simple dual semigroup or a 0-di-
rect union of such semigroups. Hence S™ is itself dual.

Denote by E® the set of all remaining idempotents, E® = E —E ). For every
e e E® (supposing that E is non-empty) we have SeS n M* =+ 0. Denote S =
= U SeS, so that S = S® y S@ and S A S = 0. By Lemma 4,1 S® is dual.

ecE(2)

We have proved:

Theorem 6,2. Any dual semigroup admits a decomposition of the form

S=8S1y8s?®», SHs@ _ g~ S =0,
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where the summands have the following properties:

a) SW is either empty or it is a completely 0-simple dual semigroup or 0O-direct
union of completely 0-simple dual semigroups.

b) S is either empty or it is a dual semigroup in which every two-sided ideal
has a non-zero intersection with M*.

This implies immediately:

Theorem 6,3. A dual semigroup S is a O-direct union of completely 0-simple
semigroups if and only if M* = 0.

Remark. Note that it follows from our considerations that SeS is 0-minimal if
and only if SeS N r(SeS) = 0.

To prove an other decomposition theorem (formulated below as Theorem 6,8) we
first give a new characterisation of the set of all 0-minimal two-sided ideals of S.

The decomposition of Theorem 3,10 can be written also in the form S = {J SE,.
aed

Let e € E, and let L, be the 0-minimal left ideal of S contained in Se. We know that
L,S is a 0-minimal two-sided ideal of S. Write (as in Lemma 4,5) S = Z, U r(L,)
and eS = Z, U e r(L,). We then have

LoS = LyeS = Ly[er(Ly) v Z,] = LyZ, = U Loa .

acZe

Since for every a € Z, we have Lya # 0, every Lya is a 0-minimal left ideal of S.
Since Z, « P, = P,, we have Z, <« U Sf and L,S = LyZ, <« U L,Sf <= U Sf =

JeEq JeEe SeEq
= SE,. Hence L,S is contained in SE,. )
We next prove that L,S contains all 0-minimal left ideals contained in SE, = U Sf.
JeEq

Let fe E,. We prove that Z, n Sf + 0. By Lemma 5,1 eSf n P, = 0. Now eSf =
=eSn Sf, hence eSfNP,=eSNnSfnP,=Sfn[eSnP,]=SfnZ, There-
fore Z, n Sf # 0. There exists an a € Z, such that a € Sf. For this element a we have
0 % Lya = L,Sf < Sf, hence L,S n Sf = 0. This implies that Z,S is the union of

all 0-minimal left ideals contained in U Sf.
feEq
We have proved: |

Lemma 6,4. Let e be any idempotent €E, and L, the 0-minimal left ideal of S
contained in Se. Then the 0-minimal two-sided ideal L,S is contained in SE,
and L,S is exactly the union of all 0-minimal left ideals contained in SE,.

Explicitly: If we decompose S in the form
S =SE,vSE;uSE,u...,

then each of the summands SE; contains a unique 0-minimal two-sided ideal, say m,,
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and {m,[Ae A} is exactly the set of all 0-minimal two-sided ideals of S. m, satisfies
mgP, + 0, while m,P; = 0 for every Py # P,.
S can be decomposed also in the form

S=ESUESVESuU...

and analogously as above each E;S has a unique 0-minimal two-sided ideal n, of S.
The sets {m, | A€ A} and {n, | 4 & A} coincide. We have:

Lemma 6,5. The 0-minimal two-sided ideal m, introduced in Lemma 6,1 is the
unique 0-minimal two-sided ideal contained in SE,. Analogously n, is the unique
0-minimal two-sided ideal of S contained in E,S.

Remark. We use Example 5,1 to show that m, need not be equal to n,. In this
example we have the following two decompositions:

S = Se, U Se, = {0, a,,e,} U {0, ay, e},
S=e¢SueS=1{0a,e}u{0,a,e}.

Here m, = {0, a5}, m, = {0, a,} and n, = {0, a,}, n, = {0, a,}, so that n, + m,.

Since SE, and E,S are contained in SeS (e € E,) the two-sided ideal SeS can contain
two (or more) 0-minimal two-sided ideals of S. In this connection the following
Lemma clarifies the situation.

Lemma 6,6. Let S be dual and ec E,. Then SeS contains a unique 0-minimal
two-sided ideal if and only if SE, = E,S.

Proof. a) Suppose that SeS contains a unique 0-minimal two-sided ideal m of S.
Since SE, < SE,S = SeS, we have by Lemma 6,4 m < SE,. If fe E — E,, we have
SeS N Sf = 0. For otherwise there would exist a 0-minimal left ideal L, of S such
that L, = Sf and L; = SeS. By Lemma 6,4 and our supposition L; « m = SE,.
But L; = SE, n Sf contradicts Theorem 3,8. Now SE,S n Sf = 0 for every fe
€ E — E, implies that SE,S <= SE,. Since SE, = SE,S, we have SE,S = SE,, i.e.
SeS = SE,. By an analogous argument we prove that SeS = E,S. Hence SE, = E,S.

b) Conversely if E,S = SE,, we have SE,S = SE,. Since SE, contains a unique
0-minimal two-sided ideal of S, the same holds for SeS = SE,S.

Lemma 6,7. Let S be dual. Suppose that SeS = SE,S contains a unique 0-minimal
two-sided ideal of S. Suppose that E — E, & @. Then S can be written as a 0-direct
union of two dual semigroups:

S = S U SOV SOFO) _ 5O 5O _

where S©© — SeS and S©® = | SE,S.

Ep+E,
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Proof. If E; + E,, we have by Lemma 6,6
SE,S . SE,S = (SE,S) E;S = SE,E;S = 0.

If fe E — E,, then SfS cannot meet a left ideal Se, (e, € E,). For otherwise there
were a left ideal Ly + 0, Ly, = SfS n Se,. Now L, = Se, implies Lye, = L,, while
Lo = SfS implies Lye, = SfSe, = Sf(SE,) = Sf(E,S) = 0, a contradiction. Hence
SE, n SE;S = 0 for E; # E, and since SE, = SE,S, we have SE,S n SE;S = 0.
Finally SE,S n S©® = 0.

Since S© N S© = 0 and @ U S©° = S, the union is O-direct and Lemma 4,1
implies that both S and S©°® are dual.

Let now be F the set of all idempotents e for which SeS contains a unique 0-minimal
two-sided ideal of S. Suppose that F is non-empty. Using repeateadly Lemma 6.7

we can write S as a O-direct union S = T@ U TC®9, Here T = |J SE,S itself is
Ey,cF

a 0O-direct union of dual semigroups each of which contains a unique O-minimal

two-sided ideal. T®® = |J SeS has the property that if it is non-empty each
ecE—F
summand has at least two different O-minimal two-sided ideals of S. We state this

result as a Theorem.

Theorem 6,8. Any dual semigroup admits a decomposition of the form
S=TO®yTOO, TO TO - TO ~TO) = ¢,

where the summands have the following properties:

a) T is either empty or it is a dual semigroup containing a un{que 0-minimal
two-sided ideal or it is a O-direct union of such semigroups.

b) T is either empty or a dual semigroup in which every two-sided ideal
generated by an idempotent contains at least two 0-minimal two-sided ideals of S.

Remark. This decomposition is clearly a refinement of the decomposition given
in Theorem 6,2. For, T contains all two-sided ideals which are completely 0-simple
and may contain also some further summands (each of which contains a unique
0-minimal two-sided ideal).

It follows immediately from the foregoing considerations:

Theorem 6,9. A dual semigroup is a O-direct union of dual semigroups each of
which contains a unique O-minimal two-sided ideal if and only if for any two
idempotents e, f € E we have either SeS = SfS or SeS' n SfS = 0.

Remark 1. The situation mentioned in Theorem 6,9 takes place, in particular, for
every commutative dual semigroup.

Remark 2. We use Example 5,1 to show that that T(°% can be non-empty. In this
example we have Se;S = {0, a,, a,, e,}, Se,S = {0, ay, a,, e,}, so that both principal
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ideals Se,S, Se,S contain exactly two O-minimal two-sided ideals, namely {0, a,},
{0, a,}. (Here T is empty.)

Remark 3. As remarked in the introduction the structure of a completely 0-simple
dual semigroup S has been fully described in [5] where a matrix representation of S
by means of matrices over a group with zero has been given. As a next step it would
be desirable to find some kind of representation of dual semigroups containing
a unique 0-minimal two-sided ideal. Even this (rather special) problem is far from to
be easy. Roughly speaking this is due to the fact that we have to deal with ideals
contained in M* and the obvious difficulties with nilpotent ideals arise. We shall
illustrate this on some further examples in the next section.

7. SOME FURTHER EXAMPLES

In this section we give some examples of commutative dual semigroups which are
useful to get some idea about various possibilities which can occur.

If S is commutative each of the sets P, is a group. Each Se, e€ E is a two-sided
ideal containing e as a unit element. Theorem 3,10 (or Theorem 6,9) implies that S
can be written as a O-direct union of dual semigroups each of which contains a unique
idempotent:

S=USe, Se.Sf=SenSf=0 (e=*f).
ecE

Hence to get some further informations about the structure of such semigroups it
is sufficient to study commutative dual semigroups containing a unit element e.
S can be then written in the form S = M* U P,, where M* is the unique maximal
ideal and P, is a group with e as unit element.

Even this case can be simplified. Suppose that a, be S, a + 0, b & 0. Then either
aP, = bP,or aP, n bP, = 0. [For if x € aP, N bP,, there are two elements u, v e P,
such that x = ua = vh. Denote by u~! the inverse of u in P,. We have a = u~'vb
and P,a = (u”'v) P,b = P,b.] Hence we can write S = |J aP,. Consider the semi-

aeS

group S, the elements of which are the classes aP,(a € S). The mapping a — aP, is
clearly a homomorphism of S onto S;. Since an ideal of S containing an element € aP,
contains the whole set aP,, we see that the lattice of ideals of S is isomorphic to the
lattice of ideals of S,. If S is dual, S, is dual. Hence there is no much loss of generality
if we restrict our considerations to semigroups in which P, reduces to the trivial
group {e}.

Remark. There is also a converse proceeding which enables to construct from such
a dual semigroup a “larger” one by enlarging the group without changing the lattice
of ideals. Analogous proceeding is also possible in the non-commutative case. We
shall not deal with these constructions here.
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Example 7,1. Denote by S a semigroup having a zero element 0, a unit element e
and one further generating element p with the defining relation p" = 0. Explicitly:
S = {0, ¢, p, p?, ..., p"~'} with an obvious multiplication.

The maximal ideal is M* = {0, p, p?, ..., p"~'}. The O-minimal ideal is {0, p"~'}.
The ideals form a chain

0c{0,p '} c{0,p L, p ?}c...cM*cS.
This is in some sense the simplest type of a dual semigroup of the kind required.

Example 7,2. The ideals of a commutative dual semigroup with a unit element
need not form necessarily a chain. The semigroup S = {0, b, ¢, a;, a,} with the
multiplication table and lattice of ideals as given below is dual.

0O e b a; a,
00 0O O
e |0 e b a; a,
b|{0b 00 0 10,6,a,)
a; |0 a, 0 b O
as 0 a, 0 0 b

Example 7,3. Consider now the semigroup S = {0, ¢, b, ay, a,, as, ...} having
countably infinite elements, where the multiplication is defined as fgllows: e is the
unit element, b2 = 0, a7 = b (for k = 1,2,3,...)and a;.a, = O for i # k.

’ 0 e b a;, a, ag
000 0O O O
e |0 e b a, a, a,
b|0b 00 0 O
a0 a. 0 b 0 O
a |0 a, 00 b O
a; |0 a; 0 0 O b

The 0-minimal ideal is n = {0, b}, the maximal ideal is M* = S — {e}. All princi-
pal ideals, besides of n and S, are of the form m, = {0, b, a,} and any ideal N = S,
N = n, is a union of such principal ideals. Denote by K a set of positive integers and

by K’ the complement of K in {1,2,3,...}. If N = {0, b, U a;} is an ideal of S,
ieK
then r(N) = {0, b, U a;} and clearly Ir(N) = N so that S is dual.
ieK’
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Consider, e.g., the increasing chain of ideals
0c<{0,b} = {0,b,a,} = {0,b,ay,a,} =...c M¥* <= S.
The corresponding annihilators form a decreasing chain
S>> M*> M*—{a,} >M*—{a;,a,}>...on>0.

This is indicated on the graph:

M
M-fai} :
:0,b, a,’
M-{a, af! T o
:' 0,6a,)
n
0

Since there is an infinity of “smallest” ideals covering n (namely any my) it is clear
that there is an infinity of such couples of corresponding chains. Moreover beginning
with any member of any chain we can construct an infinity of different chains.

The lattice of ideals may be considered as rather complicated though the semigroup
itself is very simple in the following sense: We have M*3 = 0 (since it is easy to see
that the product of any three elements e is 0).

It is clear that this example can be modified by writing instead of {a,, a,, as, ...}
aset of any cardinality and defining the multiplication in an obvious way.
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