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1. Introduction. The space of real symmetric binary bilinear forms is identified with R®
up to a group action. This allows the vector space structure of R to be used to define
moving frames compatible with the action induced by a change of basis. Then in-
variants of families of bilinear forms are found using the information contained in
the structure equations of the frame bundle. The construction of the frame bundle
parallels the construction in Euclidean space but it is not based on the group of rigid
motions.

The author is indebted to ROBERT GARDNER for conversations which were helpful
in the present work.

2. Notation and definitions. Let V, be a two-dimensional real vector space, ©2V,
the set of real symmetric bilinear forms on V,, S(2) the set of 2 x 2 real symmetric
matrices and Gl(n) the set of n x n real non-singular matrices. If B and B’ are bases
of ¥, such that B" = P - B with P € GI(2) and ¢, ¢p- are the corresponding matrices
of a form ¢ e ©%, then ¢z = 'P- @z - P. Thus when S(2) is studied in place
of ©?V, only those properties which are invariant under conjugation are of interest.
Now identify S(2) with R® via the map

r
f:58(2) > R®* where f:l::‘:]«» s

t

Elements of R* will be viewed as 3 x 1 column matrices throughout and if X, Y, Z €
€ R? then (XYZ) will denote the 3 x 3 matrix with X,Y and Z as columns. The
congruence relation on S(2) induces a group action on R3 by f(*P - A - P) = g(P) f(A)
where A € S(2) and if

xy x> 2xz z?
P =[ :| then g(P) =[xy xw + yz zw
zw 2 , 2
y 2yw w

Let G = {g(P): P e GI(2)}.
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If o =P @p - P then det ¢z = (det P)* det @y so the sign of a determinant
associated with ¢ is independent of the basis used. Since the determinant function is
a quadratic form there is a corresponding symmetric bilinear form & given by

(A, B) = 4(det (4 + B) — det A — det B)

which can be used to define an innerproduct on R, For X, Ye R? let 4, Be S(2) be
such that f(4) = X, f(B) = Y and set (X, Y), = 26(4, B). This inner product is
Lorentzian in that it has index 2 and signature 1 which accounts for the subscript L.
If X =%xy,%;,x3) and Y= y;, y5, y3) then (X,Y), = x,y5 + X351 — 2%,,.

Note that (X, X), = 2 det [i’ i{l .If g € G corresponds to P € GI(2) then
23 .

(9X,gY), =det('P-A-P —*"P-B-P) —det("P- A-P) — det('P- B P) =
= (det P)? (X, Y), = (det 9)**> (X, Y), .

So the sign of (, ), is invariant under the action of G.

Let L= {XeR?:(X,X), =0} and call an element of L an isotropic vector.
If X e Land X = “(x;, x,, x3) with x; > 0 or x5 > 0 then X is called a positive
isotropic vector. L= {!(x, y, z) : xz — y* = 0} so if x, y, z are viewed as Cartesian
coordinates then Lis an elliptic cone and the positive isotropic vectors correspond
to the points in one half of the cone. For a non-zero isotropic vector X the set
{Ye R®:(X,Y), = 0} is the tangent plane to Lcontaining the vector X.

It can easily be seen that R3 is partitioned into six orbits by G. They are the two
halves of the cone L, its vertex, the region outside L and the two regions inside L.
These give rise to the usual six canonical forms for the matrix of a bilinear form
namely

ool ool o] [o ]+ o) Lo ]

The inner product can be used to obtain a cross product on R*. For X,Ye R3?
let Xx,Y be the vector which satisfies

(Xx.Y,Z), = det (XYZ) forall ZeR*.
With X and Y as above
Xx Y= t(x1)’2 - X2)1 %‘(xl)’,a - xs}’l): X2Y3 — xs)’z)-
And if g € G then :
gXxgY = (det g)'/3 g(Xx.Y).

3. The G-frame space. Let F = {(e, e, e3) : {e, e,, e} is linearly independent
in R%} be the set of all frames at the origin in R®. By our convention on matrices
F = {(ey, €, €3) : (e,e,e3) € GI(3)}. Let Fg = {(ey, e, €3) : (e,e,¢5) € G}. Since G is
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a group and columns are sent into columns under matrix multiplication Fy; is closed
under the action of G. That is if (e,, e,, e3) € F¢ and g € G then (ge,, ge,, ges) € Fg.
An element of Fg; will be called a G-frame. The following theorem characterizes
a G-frame.

Theorem. (e, e,, e3) € F; if and only if

(1) e, and e; are linearly independent positive isotropic vectors
(2) (61, 82)L = (ez, e3)L = 0
(3) (ez, eZ)L + 2(@1, e3)L = 0

The proof consists of simple computations using the fact that a positive isotropic
vector has the form (a?, ab, b®) where a, b € Rand a® + b? # 0. The same procedure
can be used to prove the following theorem which gives a useful method for the
construction of G-frames.

Theorem. Let ey, e; be linearly independent positive isotropic vectors and e, =
-1/2
= 2(ey, e3); /? ey x,e5. Then (ey, e,, e3) € Fg.

The converse of this theorem can be obtained using the relation
(X, e3)L (Y, es)L (Z, e3)L

- \"1m2m3) X, e;) (Y, ex)L (Z,ex),
(€2, €2) (€1, €3)F EX, eI;L EY, elgL EZ> eng

(XY, Z), = det (eqe,e;)

which results from expanding det (XYZ) in coordinates with respect to the basis
(el’ €z, 63)'

To obtain the G-frame space let yx : R* - Ty(R?) be the canonical vector space
isomorphism between R* and the tangent space to R* at the point X. y4(Y) is the
tangent vector at ¢(0) to the curve ¢ : R — R® given by c(t) = X + tY for teR.
Let '}’X(FG) = {(7){(‘31) x(e2), 7x(es)) @ (e1 €2, €3) € Fg} and Fg(R%) = U {X} X
x px(Fg). The set Fg(R?) is the space of G-frames on R>.

4. The structure equations. A basis for the 1-forms defined on Fg(R?) is obtained
from the left invariant Mauer-Cartan forms defined on Aff (R®), the group of affine
motions in R*. Fg(R?) can be identified up to left translation, with a subgroup of
Aff (R®) so that the left invariant differential forms on Aff (R?) can be pulled back
to Fg(R?). This procedure gives twelve 1-forms o', w;;, 1 < i, j < 3, such that
if o = (o', ?, ©*) and Q = (w;;) then

ij>

. -1
“’I(x,yx(e)) =9 Xm(Xny(e))’
and

— -1
Ql<x,~;x(e» =9 dg|(x.‘lx(e))’

where e = (ey, e,, e;) and g = (e, e,e3).
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This can be written more simply as dX = ew and de = ef. By pulling the structure
equations of Aff (R?) back to Fg(R?) we obtain dwo = —Q, 0 and dQ = —Q, Q.
There are only four independent 1-forms in Q which are found most easily by using
the characterization of a G-frame and pulling (, ), up to yx(F¢) with yx. Since the
maps 7y tend to complicate the notation they will be dropped whenever possible.
Differentiating (e,, e;), = 0 yields 0 = (dey, e;), = (ey, €3), w3;. But (e, e3), =
= —2(ey, €)r * 050 w3, = 0. Similarly ey € Limplies that w3 = 0.
Differentiation of (ey, e,), = 0 gives

0

(dey, e + (€1, dey), = w;(e;, €2)r + wja(es, ej)L =
= wz:(ez, &)L + w32(e1’ e3)L = (wzs - 2‘1’21) (el’ e -

Therefore w,; = 2w,,. Similarly (e,, e3), = 0 gives w,, = 20,;.
The condition (e,, ;) + 2(ey, €3)L = 0 gives ,; — 2w,, + w33 = 0 so if we
set w,, = n then there is a form a such that w,;; = 7 + o, and w;; = © — a.
Thus
T+ a2w,; 0
Q=| Wy = @33
0 20w, n—a

And the structure equations for Fg(R?) are

dx = o'e; + o’e, + w3e,
de;, = (n+ a)e; + wye,
de, = 2wy3e; +  Te, + 20,105
de; = w36, + (1 — a) e;
do' = ol(1 + o) + 20%0,,

1
do? = ol + in  + 0wy,
do® = 202w, + o(n — )

dwy; = a,w;,

dw,; = w,;,0
da = 2(1)21/\(1)23
dr =0.

These equations were obtained by E. CARTAN [1] in a paper on differential equations.

5. Surfaces in R*. A surface in R® will be given as a pair (M2, h) where M? is a two-
dimensional manifold and h: M2 — R3 is an immersion. In Euclidean geometry
frames on a surface are chosen to be equivariant under rigid motions whereas here
they must be equivariant under the action of G. Thus before defining a moving frame
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on a surface it is necessary to select a collection of “admissable” frames at each point
which is equivariant under G. The following definition provides a criterion for
choosing such collections.

Definition. An equivariant framing of (M?, h) is a map h* satisfying

(1) B*: M? > {S: S = Fg(R?)}

(2) #(p) = {h(p)} * Pup(F) for pe M?

(3) If k:M?— R® is another immersion with k(p) = g h(p) for some ge G

then k*(p) = g h*(p). This means that if (h(p), yu()(€)) € h*(p) then g(h(p), ya(y(e)) =
= (g h(p), Ly» 7a(r)(€)) € k*(p) where L, : R* —» R* is given by L,(X) = gX.

Definition. Let U be an open subset of M? and h* an equivariant framing. A moving
G-frame is a map e : U — F(R®) such that for each point p e U, ¢(p) € h¥(p).

Every point of a surface (M2, h) can be put into one of three classes by the way in
which h(T,(M?)) intersects the isotropic cone y,,(L) in T,(R?). A point p will be
called hyperbolic, parabolic or elliptic according as to whether there are two, one
or zero linearly independent isotropic vectors in Tj,(R?). In the hyperbolic and
parabolic cases there is a natural way of choosing an equivariant framing.

6. The hyperbolic case. Suppose each point of (M?, h) is hyperbolic. For each
pe M? let

h(p) = {h(l’)} x {(e1, €2, €3) € yuep(F) : €1, €3 span ha(T(M?))} .

Then h* is an equivariant framing of (M2, h). So on a sufficiently small open set
U < M? a moving G-frame e can be defined by requiring that e,(p), es(p) be positive
isotropic vectors which span h,(T,(M?)) and then letting e,(p) = 2(es(p), es(p))z*/? .
. e5(p) x,. es(p), for each p e U. Now use e to pull the 1-forms back to U. These new
1-forms will be denoted by the same symbols since no confusion should occur.
For peU, dp = o'e; + w’e; 50 ®* = 0. Therefore 0 = do? = wlw,; + W’ w,;
and since w' and w? are independent there are three functions a, b, ¢ defined on U
such that
Wy = av' + bw®, w,; = bo' + cw?.

Theorem. Let a, b and ¢ be associated with a moving G-frame e as above. Then
the vanishing of b, b> — ac or ac is independent of the choice of moving G-frame e.
And if b # 0 then ac[b® is independent of e.

Proof. Note that

o' = (dX, es/(es, e, Wy = (4 de,, es/(ess es)r)L-
And

w® = (dX, es/(ey, &)L, Wy = (3 dey, ey/(ey, e)L)L -
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So if an admissable change of e, and e; is made leaving e, fixed then the forms w,3
and w,, are transformed by the same linear transformation that transforms ' and ®.
Thus the 2-forms w}@® and (o' + yw,;), (©* + yo,,), for y € R, are transformed
by multiplication by the determinant associated with the linear transformation. And
since

(0" + yws3), (@2 + ywyy) = (1 + 2by + (b* — ac) y*) 0l o?

the polynomial 1 + 2by + (b*> — ac) y? is invariant under admissable changes of e,
and e;. However, it is acted upon by an admissable change of e,. Such a change
takes the form 2se,, where s is a non-zero function. This changes the indeterminant y
by multiplication by s. Hence the vanishing of the coefficients b and b? — ac is
invariant and if b # 0 the ratio (b> — ac)[b? is invariant under admissable changes
of the moving G-frame.

Theorem. Suppose a = b = ¢ = 0 for a moving G-frame e defined on U then h(U)
is contained in a two-dimensional linear subspace.

Proof. We can assume (0, 0, 0) € h(U). The idea is to construct a linear map
which contains h(U) in its kernel.

For Ye R3 fixed define
{:U - R?
by
.Y
(o) = 2Py

(e2(p). ea(p))

{(p) is the projection of Y on e,(p). Note that y,(, has again been left out. Since
Wy = w3 =0
d(e2(p)) = maucp,er €2(p)

therefore d{(p) = 0 and { is constant on U. Now using any g € U we can define

n:R3>—> R3
by

e(q), X
y’(X) = _ML_. 92(4) .
(92(4), ez(‘]))L

Now for X = h(p), peU

an(h(p)) = 22 D)

= 2222 e)(q) = 0%|hipe €2(p) = 0.

(e2(q), ex(a))e

Hence 7 is constant on h(U) and since 7 is linear h(U) < ker 7. Since dim U = 2,
dim (ker ) > 2. But 5(e,) * 0 so dim (ker ) = 2 and h(U) is contained in a two-
dimensional linear subspace.

458



7. The parabolic case. Suppose each point of (M?, h) is parabolic then h¥(p) =
= {(e1, €25 3) € un(Fo) : €1 € hy(T,(M?))}, for pe M?, is an equivariant framing
of M?2. On a sufficiently small open set U define a moving G-frame e so that e(p)e
€ h¥(p), for p e U. Since e,(T,(M?)) is tangent to 7u»(L). €; and e, span T,(M?) and
dp = w'e, + w?e,. Therefore w® = 0. So 0 = do® = 2w w,, and there exists
a function k such that ,, = kw?. Although k is not invariantly determined we do

have the following theorem.

Theorem. The vanishing of k is independent of the choice of the moving G-frame.

Proof. Since

0? = (dX, ez/(ez, eZ)L)L » Wy = (dela 32/(92, eZ)L)L

and
o' = (an e3/(e1, eS)L)L

an admissable change of e, and e; holding e, fixed changes w,; and w? by the same
linear transformation. Thus o’ w? and ' w,; change by multiplication by a deter-
minant. And since o' w,; = ko' w? k is invariant under changes of e, and e;. But
an admissable change in e, takes the form re,, where r is a positive function, thus
a change to a new frame changes k to rk. Hence the vanishing of k is independent of
admissable choices of G-frames.

8. Pencils of symmetric bilinear forms. A plane n through the origin in R? cor-
responds to a pencil P of bilinear forms given by

P={up +vt:u, veR}

where ¢ and t are independent elements in ©2V,. Call n hyperbolic if it intersects L
in two lines, parabolic if it is tangent to L and elliptic if it contains no non-zero
isotropic vectors. Then the following classical theorem is easily proved.

Theorem. If n, and n, are planes of the same type through the origin in R® then

there is a g € G such that n, = gn,.
Or equivalently if P is a pencil of forms generated by two independent bilinear
forms then there exits a basis B of V, such that one of the following holds:

(1) Py = { g S:I tu, ve R} , the hyperbolic case,

(2) Py = { Z l(’)] ‘u, ve R} , the parabolic case,

(3) Py = { “ v:l ‘u, ve R} , the elliptic case.

v —u

459



References

[1] E. Cartan, “La Geometria da los Ecuaciones Diferenciales de Tracer Orden”, Rev. Mat.
Hispano-Amer. t. 4 (1941), 1—31.

[2] H. Flanders, “A Method of General Linear Frames in Riemannian Geometry I”, Pacific J.
Math. 3 (1953), 551—565.

[3]1 H. Flanders, “Development of an Extended Exterior Differential Calculus”, Trans. Amer.
Math. Soc. 75 (1953), 311—326.

[4] H. Flanders, “Differential Forms with Applications to the Physical Sciences”, Academic Press,
New York— London, 1963.

[5]1 R. Gardner, “Differential Geometric Methods in Partial Differential Equations”, Thesis,
University of California at Berkely, Unpublished, 1965.

[6]1 R. Gardner, “Invariants of Pfaffian Systems”, Trans. Amer. Math. Soc. 126 (1967), 514—533.

Author’s address: Flushing, New York 11367, U.S.A. (Queens College of the City University
of New York). .

460



		webmaster@dml.cz
	2020-07-02T22:14:45+0200
	CZ
	DML-CZ attests to the accuracy and integrity of this document




