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POLYNOMIALS IN TOPOLOGICAL ALGEBRAS

MILAN SEKANINA, Brno

(Received May 12, 1970)

Several members of Marczewski’s seminar in Wroclaw and Gritzer’s seminar
in Winnipeg were interested in the solution of the following problem. Let A = (4; F)
be an algebra (e.g. in the sense of [4]). p,(2) denotes the number of all essentially
n-ary polynomials over . The question is what can be said about the sequence
Po(), py(), ... (let us emphazise that, for card A > 1, identity is considered as an
essentially unary polynomial — in contradistinction to [3]). Papers [6], [7] dealt
with this problem under the condition that 2 was an ordered algebra (i.e. 4 is ordered
and all polynomials are isotone in every variable). In this note some observations
connected with the upper problem, as far as topological algebras are concerned, will
be described. A topology or a topological space is meant in the sense of [2]. Thus
(P, %) being a topological space, % is the set of all open sets in it. This set % will be
called a topology on the set P. Let % = (4; F) be an algebra and % a topology on A.
Let all functions f € F be continuous in the topology %. Then the pair (2, %) is called
a topological algebra. Principal question is:

Let (U, %) be a topological algebra. What can be said about the sequence po(2),
p1(), ..., when % has certain topological property (i.e. (4, %) is compact or con-
nected etc.)?

Having in mind difficulties of the general question for universal algebras one can
hardly settle the upper problem in this generality. In present investigations we shall
deal with two related topics.

. a) Following UrBANIK [8], #(U) = {n : p,(A) + 0}. What can be said about
&(A) in the case of a topological algebra?

b) How far algebras realizing one of the sequence studied in [3] (see below) can

be chosen among topological algebras with “rich” topological properties?

The result on b) will be applied to a) in the same way as in [7].

First of all, let us exhibit some topological property which has quite restrictive
influence on the structure of &(A). A topology % will be called a d-topology if it is
the right or left topology of some bidirected set (see [2]), i.e. if the following is true:
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1. % is a T,-topology.
2. Every point has the smallest neighborhood.

3. Let x, y be two points, 0,(0,) the smallest neighborhood of x (of y respectively).
There exist points v, z such that the following is valid for their smallest neighborhoods
0, 0,:

0,=0,n0,, 0,V0,cO0,.

The result from [6], 3.5 can now be formulated in the following proposition.

Proposition 1. Let (A = (4; F), %) be a topological algebra, where % is a d-
topology. Then & () is one of the following sets

{0,1,...n}, {1,2,..,n}, {1,3,4,5,..}, {0,1,2,3,...}, {1,2,3,4,..}.
Proof. Define the following partial order < in 4.
x=y=0,<0,.

Therefore, % is the left topology for (4, <). Let A" = A... A be the cardinal
power of (4, <) (see [1]), i.e. n-times
{agy,....a,) 2Lby, .., b,y iff a;<b; for i=1,..,n.
Denote the product topology for A" (induced in A" by %) as # . The topology #~

is a Ty-topology and O,, X ... x O, is the smallest neighbourhood of <a,, ..., a,)
in #". Let{ay, ..., a,», {by, ..., b,) be two points in A". Then

O X oo X 05,0 X ... X0, =0, <0y, =a;,<b; =
= <a1""’ an>_$_<bl"~~s bn>

So # is the left topology for <. By [2] chapter I, §4, problem 3, f being some n-ary
polynomial over 2 and hence f being a continuous mapping of (4", #") to (4, %), f is
isotone mapping of (4", <) in (4, <), in other words, U is an ordered algebra with
the order <. As % is a d-topology, < is bidirected.

By [6], 3.5, #() is one of the sets mentioned above.

Now, let us examine what can be said about connection of () and compact
connected topologies. The final result will be that there is no essential restriction on
the type of &(A) for compact connected topological algebras. We shall get more
detailed results concerning the sequence po(2), p;(2), ..: for such algebras.

In [3] the following theorem can be found.

Theorem. Let py, pys ..., P, --. be a sequence of cardinal numbers, satisfying
one of the following conditions:
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(i) po > 0.

(ii) pp =0, p, > 0 for all n = 1.
(iii) po = 0, 2n divides p,, and psp—1 > 0 for all n > 0.
(iv) po = 0, p; > 0 and n divides p, for all n > 0.

Then there exists an algebra A such that p,(AN) = p, + 1, p(A) = p, otherwise.

If we confine ourselves to Hausdorff topologies, the algebras constructed in [3],
can be topologized only by topologies, which are very near to discrete topologies.
E.g. for the algebra 2 belonging to the case (i) and containing at least one noniden-
tical, nonconstant polynomial the following is true: Let f, y be the smallest ordinals
with B = sup (p, + 1), 7 = sup (p, + 1). (¥, %) is a topological algebra (% being

nz2 nx1
a Hausdorff topology) if and only if
1. The points of |J 4; are isolated.
i<p
2. All the sets 4;, i < y, are simultaneously closed and open in %.

We see, such a topology % is neither compact nor connected.
On the other hand, we shall prove the following theorem.

Theorem 2. Let A be a compact interval of the real line different from one-point
set. Let po, D1» ... be a sequence of cardinal numbers less or equal to 2%° and fulfil-
ling one of the conditions (i), (ii), (iv). Then there exists a topological algebra A
defined on A such that

(W) =p, +1, p(A)=p, for n=*1.

Remark. Restriction p, < 2™ is natural as, 4 being a compact interval, there are

only 2%° continuous mappings of 4" in A.

Proof of Theorem. First one auxiliary construction. Let xi,...,x,€[4,1]
ce(0,3). Put d(xq, ..., x,) = emin [{|x;— x;| :i,j=1,..,mi*+ju{x,—1%:
ti=1,...,n}]. d. is continuous, d(xy, ..., X,) €[0,3), d(xy,...,x,) = 0 if and
only if x; = x; for some i, j, i & j or x; = } for some i.

Now, we shall construct algebras realizing the cases (i), (ii) (iv) mentioned above.

Case (i). Put A = [0, 1]. For c € [0, }) put g(x) = ¢ (so g is a constant function).

For ¢ € (0, 1) f2(xy, ..., X,) will be defined as follows.

Foleqs oo Xp) = d(xy, ..., %,) for xy,...,x,€[41].

fi(xq, ..., x,) = 0 otherwise .

f& are continuous, symmetrical, essentially n-ary and mutually different. One easily
sees that

gc(f;(xl’ tees xn)) = gc(gd(x)) =c,
SIPX1s s Xm)s Xomt 15 25 Xman—q) = FUga(x1), X252 %) = 0.
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By definition, after any identification of variables in fJ(x,, ..., x,) we get the func-

tion g,.
Let & be some subset of {g.:ce [0, })} U {f):ce(0,4),n=1,2 ..} con-
taining go. Then & is the set of all nontrivial polynomials over (4; ).
Case (ii).
Put A = [—1, 1]. Let us define g"(x,, ..., X,), f&(X1, ..., x,) for c € (0, 1) as follows.
g"(x4, .., x,) =0 for xq,...,x,€[0,1].
g"(xy, ..., x,) = min {x,, ..., x,} otherwise .
foxys oo x,) = d(xq, ..., x,) for x, .., x,e[4 1],
foxgs X)) =0 for xq,..,x,€[0,1], {x;,...%}n[0,1) +0,

(x4, oo X,) = min {xy, ..., x,} otherwise .

The functions g", f! are clearly continuous, symmetrical, essentially n-ary ‘and

mutually different. One can easily verify that g"(xy, Xy, X3, ..., X,) = f2(x1, X1, X35 - ..
v %) = G TNy, X3y eees X0)- G(GT(X 05 s Xon)s Xt 15 -eos Xman—1) = G(fT(x1s -
R xm)? Xm+1s =+ xm+n-1) = f:(gm(xh EEED) xm)’ Xm+1s «+es xm+n—-l) = f:(f:‘(xla

cees X)s Xt 1s - os Xmame1) = " (X gy ey Xpme1)-

Hence, if & is some subset of {ff:ce(0,4),n =1,2,...} then
= 1,2, ...} is the set of all nontrivial polynomials over (4; # U {g"

Case (iv). Put A = [—1, 1]. Define g(x), /2 (X1, ..., X,) as follows.

g(x) =0 for xe[0,1],
g(x) = x otherwise .

Fou{gh:n=
in =

1n2,..}).

Fori=1,2,..., n,ce(O,%)
f:,i(xh e Xp) = d(xy, - x,) for x;,...x,€ B, 1],
f:'i(xl’ ...,X”) =0 for X; € [O’ 1] > {xl’ LRET) xn} N [-'1, %) F q),
f:,i(xb .. X,) = x; otherwise .

All the functions just defined are continuous, mutually different, f7; is essentially
n-ary and symmetrical in Xy, ..., X;_y, Xi41, .- X, If the variables in f7; are
permuted and x; is replaced by x; in this permutation we get f¢ ; from f7 .. Further

9(9(x)) = 9(x)-
g(f2xgy ooo X2)) = g(x;) -
f:,l(g(xl)’ X35 one Xp) = g(xl) = f:,l(xl’ g(xzy)’ X3y wees Xp) -
SR X1y ooy Xon)s Xt 15 - 0s Xman—1) = 9(x3) -
FriCens f(X2s o os Xt 1)s Xmazs ooos Xman—1) = 9(X1) 4

Fra(xrs X1, X35 o0y Xa) = R 1(X 15 X2 X25 Xay o0 Xp) = g(x,) .
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Hence, # being a nonempty subset of {g} U {f7,:ce€(0,4),n = 1,2,...} then
{gyu{fl,: flie#, i=1,..,n} is the set of all nontrivial polynomials over
(4; #).

Corollary. Let M be a subset of the set of all nonnegative integers containing 1.
There exists a topological algebra A on a compact interval with () = M.

The case (iii) cannot be, in general, involved in Theorem 2 as the folllowing pro-
position is valid.

Proposition 3. Let (2, %) be a Hausdorff compact connected algebra with Pan(N) =
= 0 for all n. Then py,. () % 1 forn =1,2,3, ...

Proof. Let p(A) = 1 for certain odd k > 1. Let f(xy, ..., x;) be the essentially
k-ary polynomial over A. As p(A) = 1, f(xy, ..., x,) is symmetrical in its variables.
Put

C={f(ay,....a):ay,....,a,eA}.

C is compact, connected and closed in respect to f. Let f be the restriction of f to C.
Put € = (C; f). There is no constant polynomial in €. Namely, suppose that G(x, ...
... X,) is a polynomial symbol over € giving a constant polynomial. Put f instead f
in G(xy, ..., x,). We get a polynomial symbol G(xq, ..., x,) over 2. Then G(f(x,, ...

o> Xp)s -0 f (X1, ..., X,)) is @ polynomial symbol over 2 yielding a constant poly-
nomial. But po() = 0, a contradiction.

Let g(xy, ..., x,) be an essentially n-ary polynomial over € induced by a poly-
nomial symbol G(xy, ..., x,). Let G(xy, ..., x,) be the polynomial symbol over %A
gained from G(xj, ..., x,) by replacing f by f. g(x,, ..., x,) be the corresponding
polynomial over 2. This polynomial is clearly essentially n-ary (g is the restriction
of g to C). As there is no polynomial of even arity in 2, n is odd.

Let hi(x) be an unary polynomial over €. Let H(x) be a polynomial symbol yielding
h(x). H(x) yields H(x) by replacing f by f and H(x) defines h(x) over 2. By p,(%) = 1,
Po(2) = 0 it is A(f(y1s .- ¥)) = f(¥1s ---» ¥i). This implies h(c) = ¢ for ce C.

We see that € is a compact connected idempotent algebra with p,,(€) = 0 for all n.
Further, from symmetry of f, we get the symmetry of f and therefore f is essentialy
k-ary. By [8] Theorem 1 and Theorem 2 #(€) = {1, 3,5,...} and € is a reduct of
at least two-point Boolean group (C, +) with x + y + z as the fundamental opera-
tion.

As x + y + z is continuous in C, x + y=x + y + O is continuous, too. It is
x = —x therefore we can consider (C, +) as a compact connected commutative
group. We have 2x = 0 four all x € C. Hence each character of this group is the zero
mapping. But this contradicts the Duality theorem for compact groups ([5], Theorem
39), by which (C, +) is isomorphic to the group of characters of its group of characters.
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