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1. TERMINOLOGY AND NOTATION

Throughout this paper, unless otherwise specified, all functions will supposed to
be real valued defined on a (possibly infinite) interval I.

We use the usual Borel classification of sets (see Kuratowski [4], page 250).

The class of Borel o functions is denoted as %, while the class of Baire o functions
as @,. As is well-known, for « finite we have &, = 4,, but &, = %, for « infinite.
(For facts concerning Borel and Baire functions see KURATOWSKI [4], page 280,
resp. 306.) 2 stands for the class of Darboux functions. For two classes o/ and & of
functions let &2 denote the class & N &, e.g. D4B,.

All limits of sequences of functions are pointwise limits. If & is a class of functions
then /1 (resp. /|) denotes the set of all functions which are limits of increasing
(resp. decreasing) sequences of functions in . Finally we write &1 for (&/1)] and
similarly with <7 |1.

2. INTRODUCTION

Itis known that each f € &, with a > 1 s the limit ol a sequence {f,}, of functions

such that each f, is in 9®,_, if a is a non-limit ordinal, and f, € U 2@, otherwise
B<a

(see [3], [5], [1]. [6], and [7]). In the present paper a somewhat sharper result is

given: For each ordinal o = 1, there is a lattice 2, of Darboux functions in Baire

classes preceeding « such that @, is the pointwise closure of 2, (see Theorem 2 below;

the case @ = 2 is a simple consequence of Preiss’ result [7]).

The following theorems have been stated in [2] by Ceder and Weiss:
Theorem A. 21] = 2|1 is the class of all functions.
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Theorem B. Let o = 1. Then
o, = (®,110) A (8,_,11)
for a a non-limit ordinal and
@, > (U (@M 0 (U (21
p<a B<a
when o is a limit ordinal.

The autors claimed that &, = (U (241))l » (U (@l))1 when « is a limit ordinal.
p<ea B

<a
Their proof is invalid and the question of equality remains open.

In connection with these results the following problem is posed in [2] by CEDER
and Weiss: What is the class 2%,/ N 24,11? From a result [7] of D. PrEIss it
follows that 24,1| N 924,11 = #,. In the present paper it is shown that, in harmony
with the above cited Theorem B a similar result holds for each class @, where « is
a non-limit ordinal > 0 (see Theorem 3 below).

In the above cited paper [2] Ceder and Weiss give a characterization of the
classes 21 and 2|. In the present paper a similar characterization of the classes
(24,)t and (29,)| with « > 1 is given (see Theorem 1 below).

3. APPROXIMATION THEOREMS

We begin with two lemmas.

Lemma 1. Let {(1,, A,)}- be a sequence of ordered pairs such that each I, is an
open interval and A, a Borel set, and let for each n, the set I, n A, be uncountable.
Then there is a non-empty nowhere dense perfect set P = I, n A, such that for
each n, the set I, n A, — P is uncountable.

Proof. Since I; n A, is an uncountable Borel set, it contains a non-empty nowhere
dense perfect subset B (see Kuratowski [4], page 387). Define for each n > 1, the
set C, in this way: If the set B n I, n A4, is at most countable, let C, = 0. Otherwise
B n I, n A, as uncountable Borel set contains a non-empty perfect subset and hence
a non-empty perfect subset which is nowhere dense in B. Denote this non-empty

[}

perfect set by C,. Since |J C, is of the first category in B and B is closed, the set
© n=1

B — U C, is non-empty. Moreover, it is an uncountable (B has no isolated points)
n=1

Borel set. Hence there exists a non-empty nowhere dense perfect subset, say P,

@

contained in B — U C,. It is easy to verify that for each n, the set I, n 4, — P is
n=1

uncountable, g.e.d.
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Lemma 2. Let {(I,, A,)}s>, be a sequence of ordered pairs such that I, is an open
interval and A, a Borel set and assume for each n, that the set I, N A, is uncountable.
Then there are disjoint non-empty nowhere dense perfect sets {P,}..; such that
P, < I,n A, for each n.

Proof. By Lemma 1, there exists a non-empty nowhere dense perfect set P; such
that P; < I, n A, and each set I, n A, — P, = I, n (A4, — P,) is uncountable. In
general, by induction let Py, P,, ..., P, be disjoint non-empty nowhere dense perfect

k

sets such that P, < I; n A4;, i =1,2,...,k, and for each n, I, n (4, — U P)) is
k i=1
uncountable. By applying the Lemma 1 to the sets {(I,, 4, — U P;)}s%x+1 obtain
i=1
a non-empty nowhere dense perfect set P, ,. It is easy to verify that Py, < I,y N
k+1

N Ay 4, that for each n, I, n (4, — U P;) is uncountable and that Py, P, ..., Py,
are disjoint. =1
Now we are able to prove the following

Theorem 1. For each ordinal o0 > 1,
(29,)1 = (21) 0 (1) and (29,)l = (2]) 0 (P,]).

Proof. To prove the theorem it suffices to show that (21) n (®,1) = (29,)1.
(The proof for (2|) n (®,]) = (29,]) is similar.) We can without loss of generality
assume that all functions in the sequel are defined on an open interval I. Let fe
€(21) n (®.1). Let {(I,, J,)}5%, be an enumeration of all pairs (I, J,) of intervals
I,, J, with rational end-points, where I,, are open intervals which are contained in I,
and J, are intervals of the form (r,7') (= {x;r < x < r'}), and such that I, n
A f~*(J,) is uncountable. Apply the Lemma 2 to obtain a sequence {P,},%, of disjoint
non-empty nowhere dense perfect sets such that for each n, P, = I, 0 f ~'(J,).

If r, is the left-side end-point of the interval J,, let g, be a continuous function
defined on P, which maps P, onto the closed interval <(min (—n,r, — n), r,>.
Since f is in @,1, there exists an increasing sequence {f;},= of Baire « functions such
that f = lim f,. Define functions {f}}:> ; as follows:

n=* oo

gm(x) if xeP, and m2=n,

i) = flx) if x¢ GP,,,.

Finally, for each n, let
Solx) = max (f{(x). f5(x), ... /n(x)) -

It is easy to see that {£,}:° | is an increasing sequence of functions such that lim f, = f.

n— o
As is well-known, the set @, is the set of all Borel « functions if « is finite, and &,
is the set of all Borel « + 1 functions if « is infinite (see [4], page 299). Hence to
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show that f, € @, it suffices to show that for each real 4, [/, < 2] and [f} > A] are ‘
of the additive Borel class § where f = « if « is finite and f = « + 1 otherwise. The
fact that [ f; < 4] is of the additive Borel class § follows from the equality

<= (i< 0= UP)U(Ulg< ).

=n i=n

and from the fact that the first set on the right-hand side of this equality is of the
additive Borel class f while the second set is of the type F,. The argument is similar
for [f* > ].

Finally, each f, is in 2. To see it assume that x < y and (say) f,(x) < & < f,(»),
where ¢ is a real number (in the case f,(x) > f,(») the proof is similar). Since ¢ <
< fiy) £ f(y) we have ye[f > &]. Since f is in @7 the set [f > ] is bilaterally
c-dense in itself (see [2], Corollary 2 of Th. 3). Hence

1) card ([f > &l n(x,y) = ¢

(here ¢ denotes the cardinality of the continuum). Let I be a natural number such
that —I < & From (1) it follows that there is a member (P, J,) in the sequence
{(Ix, Jx)}iz14+n such that I, = (x, y) and J, = (&, + o0). Now from the definition of g,
we have g,(z) = ¢ for some z € P, = I, and hence for some z € (x, y). Since g > n
it follows from the definition of the function f, that f,(z) = g,(z) = &. Thus we have
shown that f is the limit of an increasing sequence of functions in 29,, q.e.d.

The next Theorem 2 is an extension of results found in [3], [5], [1], [6], and [7].

Theorem 2. For each ordinal o > 0 there is a lattice Q, of functions defined on an
interval I such that Q, = U 2®;, and &, is the pointwise closure of Q,.

B<a

Proof. The case « = 1 is trivial. D. Preiss [7] has shown that each function in &,
is the pointwise limit of a sequence of approximately continuous functions. But the
set of approximately continuous functions is a lattice and every approximately con-
tinuous function is a Darboux function. Hence from Preiss’ result [7] follows the
case o = 2.

It remains to prove the theorem for o > 2. Let {I,},%, be an enumeration of all
open subintervals of I with rational end-points. In Lemma 2 put J, = (— o0, + )
for each n, to obtain a sequence {P,}, of disjoint non-empty nowhere dense perfect
sets such that P, = I,. Let g, be a continuous function defined on P, which maps this
set onto the closed interval {(—n, n). For each n, let ¥, be an operation on the set

U @, of functions in Baire classes preceding o such that for each fe U @, V,(f) is
B<a ! B<a

a function defined as follows:

gm(x) if xisin P, with m = n,

f(x) otherwise .

LN = {
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Each V,(f) is in U @;. To see it assume that f is in some %, with f < « if « is a finite

B<a
ordinal and B < « otherwise. We assert that V,(f) is in Bpayp.2) < U ®,. Indeed,
let A be a real number. Consider the set

(%) > A= 0fo:> 40U > -UP).

@ 0
The set U [g; > 4] is clearly of the type F,. The set ([f > A] — U P;) is adifference
i=n i=n

of two sets, the first of the additive Borel class f, and the second of the type F,.
It is easily checked that the difference is in the additive max (B, 2). Hence [V,(f) > 4]
as the union of two sets, the first of the type F, and the second of the additive Borel
class max (B, 2) is itself of the additive Borel class max (B, 2). For [V,(f) < 1] the
argument is similar and hence we conclude that V,(f) e Benaxp,2y < U Py

y<a

To prove that each V,(f) is also in 2 it suffices to show that V,(f) takes on each
real value on each non-empty open interval J. Let p be a positive integer. J contains
some rational open interval I, with » > n + p hence J contains the set P,; from the
definition of ¥, it follows that V,(f) (x) = g,(x) for x € P, = J, hence V,(f) takes on
each value y e (—r, r) © {(—p, p) on the interval J.

Since the set |J &; is a lattice of functions it follows that for each n, the set

B<a

V( U (15‘,) is a lattice of Darboux functions i 1n U ®;: Clearly V( U <Dﬁ) eV, 1( U <15,,)
for each n. Hence Q, = U V( V) dil,) isa lattlce of Darboux functxon sand Q, = U Dy.

n=1 f<a B<a
Finally, let h € @,. There exists a sequence {h,}; of functions in {J &, such that
lim h, = h. It is easy to see that lim V,(h,) = h, g.e.d. b<a
n-» o  ad ]

Next theorem gives a somewhat sharper result than the above cited Theorems A
and B.

Theorem 3. For each non-limit ordinal « > 0

= (29,-1)1l 0 (22,-,)I1.

Proof. From the above cited Theorem B it follows that &, > (29,-,)t| N
N (29,-,)|1. Thus suppose f to be in @,. By Th. 2 there is a lattice @, of Darboux
Baire o — 1 functions such that @, is the pointwise closure of Q,. Let {f,};= be
a sequence of functions in Q, converging to f. Put

gn = max (fmfn«!-ls '”vfn+k) 5 hn,k = min (f"’f"+1’ ""f"+k) ?

and

=SUp (fo fus1o---)» hy = inf (fu s 15 )
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It is easy to see that the functions g,x and h,, are in 9®,_,, that each g, is in
(29,-,)1 and each h, is in (2, )|, and that functions g, decrease pointwise to f
and functions h, increase pointwise to f, q.e.d.

Remark. If & > 2, then the Theorems 2 and 3 can be stated for functions with
a more general domain, e.g. for functions defined on a complete separable metric
space which is dense in itself. In the proof of Theorem 2 it suffices to replace the
rational open intervals {1,},2; by an open basis {G,} s~ ;, and similarly as in the proof
of Lemmas 1 and 2 apply the Alexandroff-Hausdorff theorem (see [4], p. 355) which
states that each uncountable Borel set contains a set P which is topologically equiv-
alent to the Cantor set C. Thus the following theorems can be proved:

Theorem 4. Let X be a complete separable metric space which is dense in itself
and let o > 2 be an ordinal; there is a lattice Q, of real-valued functions defined

on X such that Q, = \J @, each f € Q, takes on each real value on each non-empty
B<a

open subset of X, and @, is the pointwise closure of Q,.

Theorem 5. Let X be a complete separable metric space which is dense in itself
and let o > 2 be a non-limit ordinal; if @(bﬂ denote the set of all real-valued
functions defined on X, in Baire class B, which take on each real value on each
non-empty open subset of X then

&, = (,,9 97:15,,)71”9 AN
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