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INTRODUCTION

Let (A;);; be a family of algebras. A weak product of (4;),, is a subalgebra B of
the complete direct product 4 = Il A, satisfying the following conditions: (1) two
elements in B differ only in a finite number of components; and (2) if an element a € 4
differs only in a finite number of components from an element b € B, then a€ B
(cf. GrATZER [2]). In [6] there were investigated weak product decompositions of
universal algebras with pairwise permutable congruence relations. The aim of this
Note is to prove that any discrete lattice is a weak product of directly indecomposable
factors. This result is then applied for studying isomorphisms of unoriented graphs
of modular lattices; there is obtained a generalization of a theorem of [4].

In §1 there is defined the concept of a full subdirect product of lattices and it is
proved that any two full subdirect decompositions of a lattice L have a common
refinement. In §2 it is shown that any full subdirect decomposition of a discrete
lattice Lis a weak product decomposition of Land there is constructed the (uniquelly
determined) weak product decomposition of a discrete lattice Lin which all factors
are directly indecomposable. The isomorphisms of graphs of discrete modular
lattices are studied in §3.

The notions of the weak product and of the full subdirect product can be defined
for relational systems as well; in a forthcomming paper weak products of partially
ordered sets will be investigated.

1. FULL SUBDIRECT DECOMPOSITIONS

The symbols A, v or N, U denote lattice operations and set-theoretical opera-
tions, respectively. A \ B is the set of all elements of A4 that do not belong to B. If L
is a lattice, a, be L, a £ b, then the interval [a, b] is the set of all x € L with the
property a < x < b. The interval [a, b] is prime, if card [a, b] = 2. A lattice Lis
said to be discrete, if all bounded chains in Lare finite.

399



Let {S; : i eI} be a system of lattices. The complete direct product S = IIS(i €I)
is the set of all mappings f : I — UJS; such that f(i) e S; for each i € I with the partial
order defined component-wise (i.e., f < g if f(i) < g(i) for each ieI). When I =
= {1,..., n}, then Sisdenoted alsoby S = S; x ... x S,. f(i)is the i-th component
of the element f.

Assume that Lis a lattice and that there is an isomorphism ¢ of Linto S. Let x,
be a fixed element of L, i € I. Denote

Afxo) = {xe L: ¢o(x)(j) = @(xo) (j) foreach jel, j + i},
Af(xo) = {x € L: o(x) (i) = ¢(xo) (1)} -
Clearly A(x,) is a convex sublattice of L (the convexity means that for any x e L

and ay, a, € A(x,), a; < x< a, implies x € A(x)). Analogously, 47(x,) is a convex
sublattice of Land

(1) card [A4,(x,) N Af(x)] £ 1

for any x € L. The isomorphism ¢ is said to determine a full subdirect decomposition
of L, whenever the following conditions (a) and (b) are satisfied:

(a) for any i eI and any a’ € 4, there is x € Lsuch that ¢(x) (i) = a';

(b) for any i eI and any x, y € Lthere exists z € Lsuch that

o(2) (i) = o(x) (i),
o(z) (j) = ¢(y) (j) forany jel, j+i.
In the whole §1 we assume that ¢ satisfies (a) and (b). Obviously the element z

satisfying (b) belongs to the set AF(x) N A/y) and conversely, if z belongs to this set,
then z fulfils (b). Hence, according to (1), the condition (b) is equivalent to

(b’) card [A(x,) N AF(x)] = 1 for any iel, x,€ L and any x € L.

The elements of the one-element sets 4,(xo) N A7(x) and A,(x) N A¥(x,) will be
denoted by x(4,(x,)) and x(47(x,)), respectively. It is easy to verify that the fol-
lowing assertion holds true:

L1 Letiel. If x € A(xo) (x € Af(xo), j * i), then x(4(x0)) = x (x(A4xo) = xo)-
If x,ye L, x £y, then x(A{x,)) £ y(A{x,)). The mapping ¥ : L > I14(x,) = §’
defined by y(x) (i) = x(A(x,)) is an isomorphism of Linto S'.

For the sake of brevity denote A,(x,) = A}.

Suppose that there is given another isomorphism ¢’ of Linto IIB, (k € K) deter-
mining a full subdirect decomposition of L. By analogical denotations let us put
B{(x,) = BY.
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1.2. Let xe L, x = x,. Then x = Vx(4) (i eI).

Proof. Let iel, x(A}) = y. According to 1.1 y(47) = y = x(4}) and for any
jelj # iwehave y(49) = x, = xo(49) < x(A7), hence y < x.Letze L,z > x(47)
for each i e I. Then z(A4Y) = (x(4Y)) (47) = x(A}) for each i eI, thus z = x.

13. Letiel, keK, xe L, x 2 x,. Then x(47) (B}) = x(A}) A x(BY).

Proof. Denote x(A4Y) = u, x(B}) = v, x(A}) (B}) = t. Obviously xo S u A v =
= w, whence w € [xo, u] N [x0 v] < A? n BY. Consider the components Qf elements
t, w with respect to By and B (I€ K, | + k); we get

w(By) < u(By) = t = 1(By),
w(B)) = x, = #(B});
thus w = t.

As a corollary, we obtain:

14. Let iel, ke K, xe L, x = xo. Then x(A47) (BY) = x(By) (49).

In a dual way we can prove the assertions of the lemma 1.3 for the case x < x,.

1.5. Let iel, ke K, xe L. Then x(A7) (B}) € A}.

Proof. Put u = X, A X, v = X, v x. According to 1.3 we have v(A})(By)e
€ [x0, ¥(47)] = A4). Analogously, the dual of 1.3 gives u(A?)(B§)e 4?. Since
x(A47) (BY) € [u(A?) (B}), v(A47) (BY)], from the convexity of Aj it follows x(AY).
.(BY) e 43.

For each A4; there correspond two congruence relations R(4;) = R; and R'(4;) =
= Rj defined as follows:

If x, ye Land iel, then we set x = y(R,) (x = y(R})) if x e A(y) (x € 47(»)).
For k € K let R, Ry have an analogical meaning. R; and R; are permutable and R; A
A Rj is the least congruence relation on L. Let x; € L and denote A} = A/(x,),
B}, = By(x,). Then for any z € L

) z = z(d47) = 2(4;) (RY),  =(By) = 2(B) (Ry) -

- 1.6. Let iel, ke K, xe L. Then x(A}) (By) = x(BY) (4)).
Proof. Put x; = x A X, and denote

X(42) (BY), v = x(BY) (49).,

x(47) (Bi), oy = x(By) (45) -

It

u

Uy
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According to 1.5 u, ve A} N BY, hence u = vo(R; A R,). By (2)
u = x(47) (Ri), x(47) = x(47) (RY), x(4;) = u(Ry),

thus u = u (R} v Ry) and analogously v = v,(R} v Ry). From 1.4 we get u, = v,
therefore u = v(R} v R’) This implies u A v = u v v(R] v Ry), hence there are
elements u Av=1t,<t; <...<t,=u v v such that for each m=1,..,n
either t,,_, = t,(R})ort,_, = t,,,(R,’(). In the same time t,,_, = ,(R; A R,), whence
t,—1 = t,; therefore u = v.

1.6.1. Remark. The assertion of the lemma 1.6 could be deduced also from [3],
Theorem 1, where a more general situation (concerning connected partially ordered
sets) is dealt with; in the case of lattices, the present proof seems to be simpler.

For any i €I, k € K denote A° n BS = C% and let y be a mapping of Linto ITIC%
(iel, ke K), such that x(x) (i, j) = x(47) (B}) for any x € L.

1.7. x is an isomorphism of the lattice Linto TICY (l el, keK).

Proof. Since the mappings x — x(49), x —» x(B%) are homomorphisms, y is
a homomorphism as well. We have to verify that y is one-to-one. Let x, y € L, x(x) =
= x(y), iel. Then x(A47)(B}) = y(47) (B}) for each keK, thus x(A7) = y(47).
Since this holds for each i € I, we get x = y.

18. Let x,ye L,i€l, ke K. There exists z € L such that
z(Cy) = x(CY) ,
z(C ) = ¥(C}) foreach (j,l)el x K, (j, 1)+ (i,k).

Proof. Let us consider at first the elements x(A9) (B}) and y(A4Y). Since the map-
ping ¢ satisfies (b), there exists t € Lsuch that

1(By) = [x(47) (BR)] (BR) = x(4?) (BY) »
(BY) = y(A7)(B}) foreach leK, l+k.
Further consider the pair ¢, y. Since ¢ satisfies (b), there is z € Lsuch that
2(47) = (47),
z(A9) = y(49) foreach jel, j+i.
The element z satisfies
2(47) (BY) = ((A?) (By) = t(By) (47) = x(47) (By) (47) = x(47) (BY) -
Forany leK,l + k
2(47) (BY) = (A7) (BY) = «(BY) (47) = y(47) (BY),
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and forany jel,j #+ i and any se K
2(43) (BY) = ¥(43) (BY) .

The proof is complete.

For any x € C% we have x(C%) = x(A?) (B}) = x. From this and from 1.7 and 1.8
it follows:

1.9. The isomorphism y determines a full subdirect decomposition of the lattice L.

The full subdirect decomposition of Lwith factors C% determined by y is a refine-
ment of both full subdirect decompositions with factors A49(ieI) and Bg(keK),
respectively, in the following sense:

1.10. Leti€l. Then A3 is a full subdirect product of lattices C3, (the isomorphism
of A7 into ICy(k € K) being determined by the partial mapping y,)-

Proof. It suffices to verify that the mapping y possesses the property (b). Let
x, y € A? and let z have the same meaning as in 1.8. We have to show that z belongs
to AY. Denote u = X A y A Xg, ¥ = X V ¥ V X,. Then all elements that were used
in the proof of 1.8 belong to the interval [u, v] and [u, v] = AY; therefore z € A7.

We shall need also the following simple lemma.

1.12. Let x,y,zeL, x < y <z, ye A(x), ye Af(z). Then there exists ve L
such that ve Af(x), ve A(z) and v is a relative complement of the element y in
the interval [x, z].

Proof. Let R; and R} have the same meaning as above. Then x = y(R)), y = z(Rj).
Since R; and Rj are permutable, there is v, € L with the property x = v,(Rj), v, =
z(R;). Denote v = (v; A z) v x. We have x = 0(R}), v = z(R;) and x £ v £ z.
It remains to prove that v is a relative complement of y in [x, z]. From x = v(R;)
we get x = y A v(R}) and analogously from x = y(R;) we infer that x = y A v(R)),
therefore x = y A v(R; A Rj). Since R; A Rj is the least congruence relation on L,
we have x = y A v. By a dual argument, z = y v v.

1.13. Remark. The concept of a full subdirect product can be applied in the
obvious way for universal algebras. Let L be a subalgebra of the complete direct
product T14; of universal algebras A, (i € I) such that the conditions (a) and (b) are
fulfilled; then Lis said to be a full subdirect product of algebras A4;. In the case of
lattice ordered groups the concept of the weak product (full subdirect product)
coincides with the restricted direct product (completely subdirect product [5]) of
I-groups 4;.
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2. WEAK PRODUCTS

For the definition of a weak product of universal algebras cf. [2] and the Introduc-
tion. We restrict ourselves to the case of lattices; then the definition of this concept
is as follows:

Let S = I14; (i eI) be the complete direct product of lattices 4; and let S, be
a sublattice of S satisfying the following conditions:

(i) if x, y e S, then the set {i eI : x(i) # y(i)} is finite;
(i) if x€ Sy, ze S and if the set {i eI : x(i) + z(i)} is finite, then z € S,.

Under these assumptions S, is said to be a weak product of lattices A;. It is easy to
verify that any weak product of lattices 4; is a full subdirect product of these lattices.
If the set I is finite, then the concepts of the weak product, full subdirect product and
complete direct product coincide.

2.1. Let Lbe a discrete lattice that is a full subdirect product of lattices A; (i € I).
Then Lis a weak product of these lattices.

Proof. Let x,xo€L, I, = {iel :x(i) + xo(i)}. Further denote y = x A x,,
I, = {iel:x(i) + y(i)}. Assume that the set I, is infinite; then there exist distinct
elements iy, iy, i3, ... € I,. According to (b) for each i, there is x, € Lsuch that

xi(ix) = x(i), x(i) = y(i) foreach iel, i i,.

Putz, =x;, vx, v..vVvx, (n =1,2,...). Then y < z; < z; < ... < x and this
is impossible, since L is discrete. Thus I, is finite. Analogously, the set I3 = {iel:
: xo(i) * y(i)} is finite and therefore the set I, is finite as well and so the condition (i)
is fulfilled. Let x e L, ze I1A4; (ieI) and suppose that the set {i e : x(i) + z(i)}
contains only one element i,. According to (a) there is y € Lsuch that y(i;) = z(i,).
Further it follows from (b) that there is t € L satisfying #(i,) = y(i,), #(i) = x(i) for
each iel, i + i;. Clearly t = z, thus z € L. From this we get by induction that (ii)
holds.

Remark. Simple examples show that the asserticn of the lemma 2.1 need not hold
for non-discrete lattices.

If a lattice Lis a full subdirect product of lattices 4; and x, € L, then we shall write
L = (fs) IA(x,).

Let Lbe a lattice. For any x, € Llet F(x,) be the system of all sublattices 4 of L
such that there exists a full subdirect decomposition

(3) L= (fs)1A(x,) (i)
with the property A = A; (x,) for some i, € I.
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2.2. Let L= (fs)MA(x,)(iel), L= (fs)TIB(xo)(keK), xeL, iel, kek,
Afxo) = Bi(Xo). Then x(A{xo)) = x(Bi(xo)) (i.e., the component of x in any
A € F(xo) is uniquely determined by A).

Proof. Denote x(A(x,)) = y, x(Bi(xo)) = z. According to 1.6 y(By(x,)) =
= z(A(x,)). Since ye A{x,) = Bix,) and analogously ze A(x,), we have
Y(Bi(x0)) = ¥, 2(4i(xo)) = z; thus y = z.

Let L be a lattice, x, € L. The system of all prime intervals of L will be denoted
by 2. Let us recall that in §1 we have shown that the following assertion is valid
(cf. 1.7 and 1.8):

2.3. If A, Be F(x,), then C = A n B e F(x,) and for any x € L, x(C) = x(4) (B).

2.4. Let [u, v] € 2, A(x,), C(x,) € F(x,) and assume that
u(A(x0)) < HA(xo)) . u(Clxo)) < o(C(x0) .
Then u(A(x)) (C(xo)) < o(A(x0)) (C(x0))
Proof. For any x, € L we have
u(A(x)) < o(A(x0)) = u(A(x,)) < (d(x,)
hence it suffices to prove our statement for the case x, = u. Under this assumption
u(A(x)) = u < o(A(x0) < v

and thus (since [u, v] € 2) v(4(x,)) = v. Analogously v(C(x,)) = v. Therefore

u(A(x0)) (C(xo)) = u < v = vo(A(x0) (C(xo)) -

If p=[u,v]e?, Ae F(x,) and u(A4) < v(A), then A is said to be parallel to p.
We denote by F(xo, p) the system of all 4 € F(x,) that are parallel to p.
With respect to 2.3 the Lemma 2.4 can be formulated as follows:

2.4'. If A(xo), B(xo) € F(xo, p), then A(xo) N B(x,) € F(x,, p).

Let us now suppose (in the whole §2) that Lis a discrete lattice, card L > 1. Then L
is conditionally complete. Moreover, Lis compact in the following sense: if u, ve L,
u < v and {x,} = [u,v], Vx, = v, then there exists a finite subset {x,, ..., x,} =
< {x,} such that x, v ... v x, = v and dually.

2.5. Let pe 2. For each x € Lthere is A*(xo) € F(xo, p) with the property
(*)if A;€ F(xo, p), A; = AX(xo), then x(A;) = x(A%(xo)).

The proof will consist of three steps.
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(I) Let x;, x, € L, x, < x,. Let R; = R(4;) and R} = R'(4,) have the same mean-
ing as in §1. Let P be the system of all elements y € [x,, %2] such that

xy = y(R(4;)) foreach A€ F(xy,p).
Further let Q be the set of all elements z € [x, x,] such that
x, = z(R'(4;)) for some A4;e F(xy, p).

Our aim now is to show that the sets P and Q have greatest elements (these will by
denoted by p, and q,. respectively) and that py v g, = x,.
Clearly P is a convex sublattice of Land if x; < ¢t < ze Q,thente Q. Let z,, z, €
€ Q, hence x; = z,(R(4,)), k = 1,2 for some A;, A;, € F(x,, p). In such case
according t0 2.4’ A = A; N A, € F(x,, p), R'(4) = R'(4;,), R'(4) = R'(4,,). Hence
x; = z; V z,(R'(4)), thus z, v z, € Q. Therefore Q is a convex sublattice of L,
too. Since Lis conditionally complete and compact, P has a greatest element p, and
analogously Q possesses a greatest element g,. There is 4;, € F(xy, p) such that x, =
= qo(R'(4;,)) and clearly x; = po(R(4;,)). Denote p, v qo = v and assume that
v < X,. Let v, e L, v < vy £ X, such that [v, v, is a prime interval. Suppose, at
first, that there exists A;e F(x;, p) such that v is not congruent to v, mod R(4;),
thus v = v,(R'(4;)). We have go < v < vy, qo = v(R(4)), v = v,(R'(4;)) and thus
according to 1.12 there is t€[qo, v,] such that t A v =g, t Vv =1, go=
= (R'(4;)). Clearly g, < t. Put 4, n A; = A. According to 2.4’ Ae F(x,, p).
Then R'(4) = R'(4;,), R'(4) = R(4,), therefore x; = #(R'(A)) and so te Q; this is
a contradiction with the maximality of g, in Q. This shows that we must have v =
= v,(R(4;)) for each A;e F(x,, p). In particular, v = v,(R(4,,)). Clearly p, =
= v(R'(4,,)). According to 1.12 there is te L such that t A v = p,, t v v = v,.
The intervals [po, £] and [v, v,] are projective, thus p, = #(R(4;)) for each 4;€
€ F(xy, p) and p, < t. But then x; = #(R(A4,)) for each 4, € F(x,, p), whence te P
and this is not possible, since p, is the greatest element of P. We have proved that
Do V 4o = X3.

(IT) Now let x,Xxo€L, x; = X A X, X, = X V X, and denote p, = x A p,,
q: = x A qo. From (I) it follows that p, is the greatest element of the interval
[x;, x] with the property that x; = p,(R(4;)) for each 4; € F(x,, p) and analogously
g, is the greatest element of [x,, x| with the properiy x, = q,(R’(4,)) for some 4; €
€ F(x,, p). Further according to (I) x = p, v gy. Let p, = Xo A po, 42 = Xo A go.
For the elements x,, p,, 4, We can obtain results analogical to those just proved for
X, P1, qy; S0 we have xo = p, v q,. Let A, have the same meaning as in (I). Since
41,42 € [X1, 90, P1> P2€[xy1, Po), the relations g, = q,(R'(44)), pi = p2(R(4Y)
for any A, € F(x,, p) are valid.

(TII) Under the same denotations as in (I) and (IT) put x* = p, v q,. Let 4;¢
€ F(xo, p), A; = A;,. Then

X=Pp Vg =PV {4 = x*(R’(Aio))~
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Since R'(4;,) < R'(4)),

) x = x*(R'(4)) .
Further we have
(4l) Xo =P2V {42 =P Vv qZ(R(Ai))'

From (4) and (4') it follows x(A4;) = x* = x(4,,) for each 4, € F(x,, p), 4i = A
We denote 4;, = A%(x,); the proof of the assertion 2.5 is complete.
Now let us denote A” = {x(4%(x,)) : x € L}.

2.6. The set A” is a sublattice of Land the mapping ¢, : x — x(A"(xo)) is a homo-
morphism of the lattice L onto A?. For any x € AP, ¢, (x) = x.

Proof. Let x4, y, € AP. There are elements x, y € Lsuch that (pp(x) = X1, <p,,(y) =
= y,;. Then we have according to 2.4’ and 2.5

A = A%(xo) N A(x0) 0 A™"¥(x,) € F(xo, P) »
XA) =xi, (A =y, (xAp)(A)=(xry)A"(x)),

thus x; A y; = (x A y) (4%(x0)) = @,(x A y). An analogical result holds for
x v y. Hence A? is a sublattice of L and ¢, is a homomorphism of L onto A4”. If
x; € A%, x; = x(A*(x,)), then for any 4 < A*(x,)) such that A € F(x,, p) we have

x,(A4) = X(A(x0)) (4) = x(4) (4%(x0)) = x(47(x0)) (4*(x0)) = X(47(x0)) = X1 -

For x, € L, A(Xo) € F(x,) let A*(x,) have the same meaning as in §1.

2.7. Let x,Xo€ L, A(Xo) € F(xo), B(xo) € F(x,), x(A(xo)) = x(B(xo)). Then

X(4*(xo)) = x(B*(xo)).

Proof. Put x; = x A X, and consider the lattice [x;, x]. It is isomorphic to the
direct product D; x D,, where Dy = A(x,) N [xy, x], D, = A*(x,) n [xy, x]. The
elements x(A4(x,)), x(4*(x,)) belong to the centre C, of the lattice [x,, x] (cf. [1],
p. 28) and x(A(x,)) is a complement of x(A4*(x,)); the same holds for x(B(x,)) and
x(B*(x,)). Since C, is a Boolean algebra and x(A4(x,)) = x(B(x,)) implies x(A(x,)) =
= x(B(x,)), we get x(A*(x,)) = x(B*(x,)); from this we obtain x(4*(x,)) = x(B*(xo)).

2.8. For any xe L and A;€ F(xo, p) from A; = A%(x,) it follows x(A}) =
= x(A™*(x,)). :
This is an immediate consequence of 2.5 and 2.7.

Denote A”* = {x(4™*(xo)) : x € L}. Analogously as in 2.6 we can prove (by using
2.8 instead of 2.5) the proposition:
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2.9. The set AP* is a sublattice of L and the mappl'ﬂg @y 1 x = x(A™(x,)) is
a homomorphism of L onto AP. For any x € AP* we have (Pp(x) = X.

For the sake of brevity we denote x(4%(xo)) = x', x(4*(¥o)) = x*. Let us consider
the mapping

(@) x = (x!, x?)

of the lattice Linto AP x AP*,

2.10. The mapping o is one-to-one.

Proof. Let x, ye L, x! = y!, x2 = »? and denote A%(Xo) N A’(xo) = A. Then
A € F(x,, p) and according to 2.6 and 2.9 we have

x(A) = x(A4%(x,) = x*, A(A*) = x(A%*(xo)) = x*

and analogously for y', y2. Therefore x(4) = y(A4), x(A*) = y(4*); this implies
X =y

2.11. The mapping o is an isomorphism of the lattice L onto AP x AP*.

Proof. It suffices to verify that the mapping ¢ is onto. Let u € A?, v € AP*. There
exist x, y € Lsuch that

u = x(A4%(xo)), v = y(A*(x))-

Put A4 = A%(xo) N A%(x,). Then u = x(A4), v = y(A4*). Thus there is an element
z € L with the property

u=1z(A4), v=z(4%).
Let Be F(x,, p), B = A. Then z(B) € A and therefore by using 1.7 we obtain
2(B) = z(B) (4) = 2(4) (B) = u(B) = x(4) (B) = x(4 0 B) = u

and according to 2.7 z(B*) = v. Thus z(A4%(x,)) = z(A), z(A7*(x,)) = z(4*). Ac-
cording to the definition of the mapping « this implies z' = u, z2 = v, a(z) = (u, v).

2.12. A” € F(x,, p).

Proof. Consider the isomorphism o:L— A” x AP* and construct A?(x,).
According to 2.6 A”(x,) = AP, thus it suffices to verify that AP is parallel to the prime
interval p = [c, d]. But this is equivalent to the assertion that AP(c) is parallel to p
and thus we may assume that ¢ = x,. In such a case d(4”) = d > ¢ = ¢(A”). This
shows that A? is parallel to p.
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2.12.1. A7 < A for each A€ F(x,, p) and x(A?) = x(A%(x,)) for each x € L.

Proof. Let ye A7, A€ F(xo, p). Then y = x(A%(x,)) for some x € L. By 2.5,
A%(x,) belongs to F(x,, p) and thus according to 2.4' B = A%(x,) N 4 € F(xo, p),
therefore with respect to 2.5 x(B) = y. This implies y € B = 4, whence AP c A.
In particular, A” = A%(x,) for each x € L, thus by 2.5 x(A?) = x(A4%(xo))-

2.13. The lattice AP is directly indecomposable.

Proof. According to 2.12 card A” > 1. Let x, € L. Assume (by way of contradic-
tion) at A” is directly decomposable. Then there exist lattices C,, C, with card C; >
> 1, card C, > 1 such that A? is isomorphic to C; x C,; thus by 2.11 there is an
isomorphism f of the lattice Lonto C; x C, x A”*such that A” = C,(x,) x C,(x,).
Either Cy(x,) or C,(x,) is paralell to p; we may suppose that C,(X,) satisfies this
condition. There exists a € C,(x,), a # x,. Since a € A”, by 2.12.1 we have a =
= a(A”) = a(A%(x,)) and therefore for any D € F(xo, p)

D < A(xo)=a(D) = a.

Put D = A%x,) n Cy(x,). Clearly a(Cy(xo)) = xo, whence a(D) = a(A%(x,)).
. (Cy(x0)) = a(Cy(x,)) = xo * a, which is a contradiction. The proof is complete.

Let ~ be an equivalence relation on the set 2 defined by
p1~ py AT = AP,

Let 2, be a subset of 2 containing exactly one element from each equivalence class
of the relation ~. Consider the mapping g : L —» ITA”(p € 2,) defined by the rule

g9(x) (p) = x(4”)

(x € L). Clearly g is a homomorphism.

2.14. The mapping g is one-to-one.

Proof. Assume that there are elements x, y € Lsuch that x * y, g(x) = g(y) =1
then there is a prime interval p, = [u,v] = [x A y, x v y] satisfying g(u) = g(v) =
= t. Hence u(A4”) = v(A®) for each pe 2,. But there exists p, € #; with p, ~ p,
and u(A™) = u(A”) < v(A™) = v(A™) since A" e F(x,, p;); we have a contra-
diction.

2.15. The lattice Lis a full subdirect product of lattices A” (p € 2;).

Proof. According to 2.14 the mapping g is an isomorphism of Linto IT4” (p € P,).
Since each A” is a direct factor of L, x, € A”, the conditions (a) and (b) from §1 are
fulfilled.
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From 2.15 and 2.1 it follows:

2.16. Theorem. Any discrete lattice is a weak product of directly indecomposable
lattices.

Since any two full subdirect decomposositions have a common refinement, the
representation of a discrete lattice as a weak product of indecomposable lattices is
unique.

3. ISOMORPHISMS OF UNORIENTED GRAPHS OF DISCRETE LATTICES

Let L be a discrete lattice and let 2 be the set of all prime intervals of L. We denote
by G(L) the unoriented graph such that the set of vertices of G(L) equals L and two
vertices x, y of G(L) are assumed to be joined by an edge if and only if either [x, y] € 2
or [y, x] € 2. In [1] there is formulated the following problem (Problem 8): what
discrete lattices L satisfy the condition that for each discrete lattice L the implication

) G(L) ~ G(L)=> L~ L

is valid (where ~ denotes the isomorphism of graphs or lattices, respectively).
The answer to this problem for general lattices is unknown. In[4] a solution for the
case of finite modular lattices was given. Now we shall prove that the result of [4]
can be generalized for infinite modular lattices.

For any lattice Lwe denote by L the lattice that is dual to L. Lis self-dual, if L~ L.
The following propositions 3.1 and 3.2 are known [4]:

3.1. Let Land L be discrete modular lattices. Then the following conditions are
equivalent:

(i) G(L) ~ G(L).
(ii) There are lattices A, B such that L~ A x B,L ~ A x B.
3.2. Let L be afinite modular lattice. Then the following conditions are equivalent:

(i) For any finite modular lattice L the implication (5) is valid.

(i) If L~ A x B, then A ~ A (i.e., each direct factor of Lis self-dual).

Our aim now is to show that the assertion of 3.2 remains valid for infinite discrete
modular lattices.

3.3. Let L be a discrete lattice, x, € L, and let L be a full subdirect product of
lattices A;(iel). Let I =1, uI,, I, n1, =0,

A={xeL:iel, = x(Ax,)) = X0} ,
B = {xeL:iel; = x(4(x,)) = xo} -
Then L~ A x B.
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Proof. Let x e Land for i €l let us write x(i) rather than x(4,(x,)). According
to 2.1 the set {i €I : x(i) & x,} is finite and so it follows from §1, (b) and by induction
that there is an element x, € 4 with the property x(i) = x,(i) for each i€I;. Ana-
logously there exists x, € B satisfying x(i) = x,(i) for each iel,. The mapping
¥ 1 x = (x4, X,) is obviously an isomorphism of the lattice Linto A x B. Let a € 4,
be B. Since the sets {iel :a(i) # xo}, {i el : b(i) + x,} are finite and disjoint,
with respect to (b) we can find x € Lsuch that x;, = a and x, = b; this shows that
is onto.

The assertion of the proposition 3.3 need not hold for the case when L is not
discrete.

3.4. Let L be a discrete modular lattice such that each directly indecomposable
direct factor of Lis self-dual. Then for each discrete modular lattice L the implica-
tion (5) holds.

Proof. Let L be a discrete modular lattice, G(L) ~ G(L). According to 3.1 there
exist lattices 4, B such that L~ 4 x B, L ~ A x B. Then A is isomorphic to
a sublattice of L, whence A is discrete. By 2.16 A is a full subdirect product of directly
indecomposable lattices A;. Any A; is isomorphic to a directly indecomposable
direct factor of L and therefore A; ~ A;. From this it follows 4 ~ A and hence
L~L.

3.5. Let L be a discrete modular lattice such that for any discrete modular
lattice L the implication (5) is valid. Then each direct factor of Lis self-dual.

Proof. Since any direct factor A of L is discrete and thus A is a full subdirect
product of directly indecomposable factors it suffices to prove that each directly
indecomposable direct factor of Lis self-dual. Let 4, be a directly indecomposable
direct factor of Land assume (by way of contradiction) that 4, is not self-dual. Let
Xo € L. We.may assume that 4, € F(xo). There exists a full subdirect decomposition

L= (fs)MA4(x,) (iel),
where all factors 4(x,) are directly indecomposable. Put
I, ={iel: A(xo) ~ Ao}, I, =1INI,

and let A, B have the same meaning as in 3.3. According to 3.3 L ~ 4 x B, whence
by 3.1 G(L) ~ G(L), where L = A x B. Thus if X is a directly indecomposable
direct factor of L, then X is isomorphic to some A(x,) (i €I,) or to some A(x,)
(i € I,); therefore X cannot be isomorphic to A,. From this it follows that L is not
isomorphic to L, which is a contradiction.

3.6. Let Lbe a full subdirect product of directly indecomposable lattices A;(i €I).
If all lattices A; are self-dual, then all direct factors of Lare self-dual.

411



Proof. Let xe L. Let L be isomorphic to a direct product 4 x B. Then because
any two full subdirect decompositions of L have a common refinement (Theorem
1.11) and since A4,(x,) are directly indecomposable, there is a subset I, = I such
that A4 is a full subdirect product of lattices 4(x,) (i € I,). Because A(x,) are self-dual,
so is the lattice 4.

By summarizing, we get from 3.4, 3.5 and 3.6:

3.7. Theorem. Let L be a discrete modular lattice. Then the following conditions
are equivalent:
(i) For any discrete modular lattice L the implication (5) is fulfilled.
(ii) Each directly indecomposable direct factor of Lis self-dual.
(iii) Each direct factor of Lis self-dual.

Let L and L be finite lattices such that G(L) ~ G(L). If G is modular, then so is
L[4]. It remains as an open question whether this assertion is valid for infinite
discrete lattices. '
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