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Let 2A = (4; F) be an algebra in the sense of MARCZEWSKI ([2]). Let the set A be
ordered (an order is considered as a reflexive, antisymmetric and transitive relation)
and every f belonging to F be isotone in all variables. Then 2 will be called an ordered
algebra (see [3]). In [3] bidirected algebras were studied, in particular the sets () =
= {n: p,(A) * 0} were described (p,() is the number of essentially n-ary poly-
nomials over ). This paper deals with the possibilities of extension of the results and
constructions given in [1] to the case of ordered algebras. As a corollary, the #(2)’s
for directed algebras will be described. Let us emphazise that, for card 4 > 1, we
take identity mapping as an essentially unary polynomial (see a different point of
view in [1]). It turns out that the only condition on &(21), where 2 is at least two-
element algebra, is 1 € £().

The paper [1] will be considered as known, nevertheless the most important facts
concerning our paper are recalled.

In our considerations we shall need the constructions of the algebras given in the
cases (i) and (iv) of the Theorem from [1].

It may be convenient for the reader to state the relevant statements here (in our
notation concerning p,()).

Let {py, ---, s> ---» be a sequence elements of which are cardinal numbers. Such
a sequence is called representable if there exists an algebra 9 such that p,(%) = p,
for all n.

In the sequel « is the smallest ordinal with p; < & for all i. For every i < o we take
a countable set 4; such that 4, " 4; = @ for i * j.

(i) If po > O then <{py, py + 1, .., Pn --.> is representable .

The algebra 2 representing the sequence {Po, ---» P> --.» is constructed in the fol-
lowing way:

*) Supported by National Research Council of Canada.
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Let card K = p, + 1, ko, k; € K. ko # k4, let K be disjoint to the A;’s. Let A =
=KuU{4;:i<a}.

Operations are defined as follows.

For every ke K, k * ko, f, is the nullary operation with the value k. For n > 0,
0 < i < p,, f{" is defined on 4 by

ko, if aq. ....a,_,€A;, card{ag, ....,a,_1} =n.
k, otherwise .

fin(ao""’an—-l) ={

Put
A= (A;{fu keK, k+ ko U {ff:0<i<p,}).

(iv) If po =0, p, > 0 and n divides p,, then {po, p; + 1, ..., Py, ...>

is representable.

The algebra 2 representing this sequence is constructed in the following way:
A = A4;u {t,, t;, 1,}, where to, t,, 1, are three objects not belonging to U 4.

i<a i<a

Operations are defined as follows:

g'(a) = {10 if a = to -

t, otherwise .
Fornz1,i<n,j<p,ln

to N if a; = tO .
W {ags .o, @p-y) =3ty if ag.....a,_,€A;, card{ag,...,a,,} =n.
t, otherwise .

Put

‘2[=(A;{g’}uU {h'} 1i<n, ]<—n—forn>landj<p1—1forn-—1})
n=1

Theorem 1. Let A = (A; F) be the algebra from Theorem, case (i) in [1]. There
exists an ordering < on A such that (A; <) is an upper semilattice and in respect
to this order (A; F) is an ordered algebra.

Proof. It is sufficient to order U A; U (K — {k,}) trivially (i.e. any two distinct

i<a

elements are incomparable) and put (4; <) = ( U A; U (K = {k;}) ® {k,} (&® means
the ordinal sum).

Remark 1. As it is evident from results in [3], one cannot demand in general < to
be a bidirected order for .

Remark 2. Similar result to that one of Theorem 1 can be deduced in the case (ii)
of Theorem from [1]. But in this case we have (%) = {1, 2, 3, ...} so a priori there
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is a possibility to construct bidirected algebras, representing a given sequence with
po = 0. However, a simple argument concerning t, and ¢, in the construction dealing
with the case (i) shows that the algebra constructed in that case cannot be provided
with a compatible bidirected order. Nevertheless, constructing another type of al-
gebras we shall find the corresponding result for bidirected algebras. Let us state the
relevant theorem in a rather different form than that one used in [1]. In this formula-
tion, the universality of the construction is emphazised. Theorem in [1] could be
refrazed in an analogous way.

Theorem 2. There exists an algebra W = (A; F), a lattice order < on A and, for
every n = 1, an essentially n-ary polynomial g"(x,, ..., x,) over U with the following
properties:

1) W is an ordered algebra in respect to <.

2) There exist X, essentially n-ary polynomials over U for every n.

3) There is no constant in A.

4) Let F, be a system of polynomials over A. Then F; L {g": 1 < n} and projec-
tions are the only polynomials over (A; F, U {g" : 1 < n}).

Remark 3. A trivial modification of the construction given below presents a similar
result where ¥, is replaced by an arbitrary infinite cardinal number.

Proof of Theorem 2. The construction of 4 and of the order <. For n > 1,
let A" be the set of nonvoid subsets of the set {1, e n} different from the whole set
{1, ..., n}. Order A" by inclusion.

A' be an one-element set.

Let A} (i =1,2,3, ) be a copy of A", where two-element chains are imbedded
instead of minimal elements. For instance, if n = 3, we get the ordered sets A2 of the
form

All A% are supposed mutually disjoint.
Let a, b, c ¢ U A}. Then

in
4, =5)={a} @Y 47® {b} ® {c} (® means the ordinal sum, ) the cardinal
sum). i
(4, =) is clearly a complete lattice.

393



Definition of an algebra on A. We shall define the functions g"(xy, ..., x,), f*(xy, . ..
e X)), m, i =1,2,3, ..

Define g'(x) as follows:
g'(b) = c.
Let x be minimal in ) A4}, x* be the upper neighbor of x in 4. Then g'(x) = x*.

n,i

Put g'(x) = x otherwise.

For n = 2, define ¢" as g"(x,, ..., x,) = g'(x; V ... vV x,).

Let A} = {a;, b;), a; < b;. Put f}(a;) = a;, f(x) = g*(x) otherwise.

For n 2 2, let a7, ..., a}’' be the minimal elements in A47. Define f7(x,, ..., X,) by
the following equations:

fiayh, ..., ay') = b.
fi(xqs o0 X,) = g"(xyq, ..., x,,) otherwise.
All operations are clearly symmetrical.
g"'s are apparently isotone in all their variables. So are fi’s. We shall prove the same

for f for n > 1. Isotonicity must be checked in respect to the n-tuple a}*, ..., a*,
in other cases the isotonicity of f' is a consequence of the isotonicity of g”. Replace
ay’ by a, then f1(a, a3, ..., ay) e A%, so fi(a, a3, ..., ay) < b = fY(a}, ..., a}”
Replace a7’ by some u, u > a}’. Then
fi(u, a3’ .. a)) = g"(u,...,ay) = g'(u v ... v al’) =
=g'(b) = ¢ > b = fa%, ..., a™).
Now, we prove that every identification in any function gives some g"(xy, ..., X,).
In particular (for n = 2)

g"(x, X, x3, .., %) =g'(x vxv..vx)=g'(xvx;Vv..vx)=
= g" " (x, X35 -0 Xp) -
T X5 X35 0oy Xg) = g%, X, X3, 0003 X,) = "X, X3y 000 Xy)
Superpositions yield no other polynomié.], as well. Let us prove that.
a) Clearly ‘
919" (%15 s X)) = 9" (X155 X,) -

R CTRE ) el A
Letn > 1.

We shall prove .
g"(gm(xl, seey xm), Yasovos yn) = g"+m—l(x1’ coes Xy yZz sy yn) .
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By the definition
(9" (X1s s Xy Yoo s V) = M9 (x1 Vo VX)) VY2V Vo).

If g'(x; V ... V X,,) = X; V ... V X, the formula is clearly valid.

a) Let x; v ... v x,, = b. In this case, both sides of our formula are c.

b) Let x; Vv ... v x,, be minimal in ) A7 and x* be the upper neighbor of x; v ...
CV X

b,) Let y5, ..., ¥» £ X; V ... V X,,. Then both sides equal to x*.

b2) Letx; v ... v X, be not the greatest element among y,, ..., y,, X; V ... V X,.

Then
gn(gm(xb vy Xm), Y25 eees yn) = gl(X* \4 V2 V...V yn)

Under our conditions
gy v vx, vy, v.o.vy)=g'((xv..vx)v(Vv..vy)=
=g'(x* vy, v..vy).

The formula is proved.

It is
GUT(X10 s Xon)s Vo ooos V) = " Xqy oees X Voo oy V) -
Let m > 1.
If
{x1, ..o xp} * {aT, .., apt
then

Sl gs oo X)) = §"(X1s oo Xpy) -

The validity of the formula follows from the previous case.
Let {x, ..., x,} = {a7"’, ..., ajr'}. Then both sides are equal to c.
Ifm=1
gn(fil(XI), Vas ooy .Vn) = g"(xls Vas e yn) .

B) Clearly
G (X 10 oo Xin)s V2o oo Yu) = (G (%10 ooy Xi)s V2o oo Vo) =
=" " T (X gy ey Xy V2 eees V) -
Ifn$lorm=+1
ST s Xn)s 2o evos ¥a) = G T(X 15 oo Xon)s Yoo v s Vi) =

— amtn—1
=4d (xla'“ax:mer"-ayn)‘
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Letn = 1 = m. Leti % j. We have f(f}(x)) = g'(x). If i = j, we get f!(f(x)) =
=f il(x)'

Now, it is already easy to finish the proof of our theorem. We have to prove 2),
3), 4).

g", fT are evidently essentially n-ary, so 2) is true.

Considerations on compositions of f{" and g", on identifications together with the
symmetry of all operations give 3) and 4).

The result of the case (iii) of [ 1] cannot be extended for ordered algebras, for which
the order is a semilattice order. First of all, we shall prove the following Lemma.

Lemma. Let A = (A; F) be an algebra with py(A) = 0, py(A) = 2 and p,,(A) =
=0, pps+1(W) =1 for n=1,2,3,... Let g(x) be the unary polynomial over A
different from the identity mapping. The g(g(x)) = g(x).

Proof. Let us suppose that our assertion is not true. Then g(g(x)) = x. Let us
choose two elements a, b e A such that g(a) = b, g(b) = a, a + b. They exist as
g(x) * x. Let f3(x, y, z) be the essentially ternary polynomial over . As p;(2) = 1,
there is just one such a polynomial. As p,(W) = 0 = po(A) there are the following
possibilities.

a) f3(x,x,y) = x.

b) /3(x, x, ¥) = y.

) f3(x, x,y) = g(x).

d) £3(x, %, y) = g(»)-

Ada). It is f3(a, b, g(b)) = a, f3(b, b, g(b)) = b. Hence f3(x, y, g(z)) depends
on x, by symmetry of f3(x, y, g(z)) in x, y, we get the dependence on y and for
p2(A) = 0, 3(x, y, g(z)) depends on z, too. At the same time f3(a, b, b) = b + a =
= f*(a, b, g(b)). Hence f3(x, y, z) * f3(x, y, g(2)), a contradiction to p,() = 1.

In the remaining cases similar conclusions can be drawn from the following
equations:

Ad b) f(a, b, 4(5)) = b, /(b. b,g(b)) = a.
Ad ¢) f%(a, b, g(b)) = b, f3(b, b, g(b)) = a.
A d) f(a, b, g(b)) = a £(b. b, g(b)) = b.
The proof is finished.

Now, we can prove the following proposition.

Proposition. Let A = (A4; F) be an ordered algebra with py(A) = 0, py(A) = 2
and py,(N) = 0,p2,+1(W) = 1 for n = 1,2, 3, ... Then the order of A is not a semi-
lattice order.
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Proof. Let again g(x) be the only essentially unary polynomial over 2 different
from the identity mapping. Then, by Lemma, g(g(x)) = g(x). Put

B = {x:g(x)=x}.

B is a subalgebra in 2. Let us prove it. Let " be the essentially n-ary polynomial
over A for n > 1. Then g(f"(xy, ..., x,)) is essentially n-ary over A. As p,(2A) = 0
or 1 we have g(f"(xy,..., X)) = f"(x1, ..., X,), ie. f'(xy,...,x,)e B for every
Xqs.-0 Xy € A.

Let f" be the restriction of /" to B. f*is not a constant, because the /"(g(x), ..., g(x))
would be a constant over U, which contandicts to py(2) = 0.

Asf"(xy, ..., x,) is symmetrical, f*(x, ..., x,) is symmetrical and therefore essential-
ly n-ary.

Put 8 = (B;{f":n =3,5,...}).

We shall prove that f3, f°, ... are the only nontrivial polynomials over ®B. Let
F(xq, ..., x,) be some polynomial symbol over 8. Let f(xy, ..., x,) be the cor-
responding polynomial over B. Replace f™ in F(xy, ..., x,) by f™ for every m. We
obtain a polynomial symbol H(xy, ..., x,) over 2. Let h(xy,..., x,) be the cor-

responding polynomial over . Clearly h = f. If h is trivial, f is trivial, too. Therefore
nontrivial polynomial f over B is of the form k, where h is a nontrivial polynomial
over U. g is identity on B, hence 3, 5, ... are the only nontrivial polynomials over B.
It is poy+1(B) = 1, po(B) = 0.

Hence, B is an idempotent algebra without constants and it is by Urbanik’s
Theorem 2.2 in [4] a reduct of an at least two-element Boolean group (G, +), in
which x + y + z is taken as the fundamental operation.

Suppose (4, <) is a semilattice: At the same time, B is a semilattice in regard
to <. To prove this take a@, be B. Let ¢ = a v b in A. Then g(c) € B, g(c) 2 a,
gc)zb. Ifd=2a,d=2b, deB, then d = cand d = g(c).

On the other hand, such an algebra cannot exist. In particular, take some b € B,
for which b <0. Then 0=04+0+0>b+0+0=2b+b+0=0, a con-
tradiction. If such a b does not exist in B, we have for some b b > 0and 0 = 0 +
+0+0<b+0+0=b+ b+ 0=0,again a contradiction.

We see that (4, <) is not a semilattice and this concludes the proof.

Theorem 3. Let A = (A; F) be the algebra from Theorem, case (iv) in [1]. Then
there exists an ordering < on A such that (A, £) is an upper semilattice and A
is an ordered algebra in respect to this order.

Proof. Let | 4, be ordered as an antichain. Put
(4,2)=U4® {1} @ {} ® {t}.

Easy calculations show that h} ; and g' are isotone in respect to <.
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From theorems 1 and 3 we conclude

Theorem 4. Let ko, k,, ..., k,, ... be an arbitrary sequence consisting of zeroes
and ones (so k, = 0 or 1). There exists an ordered algebra A with the following
properties:

1) The order on A is a semilattice order.
2) If n * 1, p,(A) * 0 exactly when k, = 1.

Remark 4. n = 1is excluded as, by our agreement on identity mapping, p,(2) +
+ 0 for every A = (A; F) with card 4 > 1.

Remark 5. In [3] the sequences ko, ks, ..., k,, ... have been described for
bidirected algebras. It turned out that only quite special sequences are representable
(in the sense of Theorem 4) by bidirected algebras.
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