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Z. ZAHORSKI proved in [6] that if the approximate derivative of a function f
exists at every point of an interval (a, b) then it is of Baire class 3. A. MATYSIAK [4]
and K. KRZYZEWSKI [3] independently proved the following stronger theorem.

Theorem A. Let f be a finite function defined on the whole real line and let R be
the set of all points x at which the approximate derivative f,, exists. If every point
of R is a point of outer density of R, then

(a) there exists a countable set Z = R such that f is of the first class of Baire
with respect to R — Z,

(b) f., is of Baire class 2 with respect to R.

Z. Zahorski in [6] gives two examples of functions and shows that these functions
have the approximate derivative and that this derivative is not of Baire class 1. It is
not difficult to prove that these functions have not the approximate derivative in an
uncountable set. (This follows from Theorem 2 because these functions have the upper
approximate derivative which is nonnegative except for a countable set and the appro-
ximate derivative is equal to — oo at each point of a set which is dense in the Cantor
set.)

A. M. BRUCKNER in [1] and T. SwiaTkowskI in [5] independently proved the
following theorem.

Theorem B. Let f be a Darboux fuhction of Baire class 1 which possesses the
approximate derivative in (a, b), except perhaps on a denumerable set of points,
and let f;, = 0 almost everywhere in (a, b). Then f is nondecreasing and continuous
in (a, b). .

A. M. Bruckner (1) and A. M. Bruckner, J. L. Leonard (2) show that it is not pos-
sible to omit the condition that f is of the first class of Baire in Theorem B. However,
the functions constructed by them have not the approximate derivative in an un-
countable set. The following Example 1 shows that indeed this condition in Theorem B
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must not be omitted, Example 2 shows that there exists a function f defined on <0, 1)
such that f;, exists on all €0, 1), f is a Darboux function and f is not of Baire class 1.

Example 1. Let C be the Cantor set on €0, 1), let ¢ be such a continuous function
defined on <0,1) that ¢’ < 0 exists on all <0, 1) and ¢'(x) = —o for xeC,
¢(0) = 1, ¢(1) = 0. Such function exists in view of theorem 7 [7].

Let {(a,, b,)}s- 1 be a sequence of all intervals contiguous to the Cantor set.
We put

fi(x) = o(x) +x§2:';,,.(¢(am) — ¢(by)) for xeC,

1) = T8 20 _ o) 4 5 (pla) - o(b) -

2 mSan

= ¢(b,) + a,.ga,‘ (¢(a,) — (p(b,,)) for xe€(ap by).

Then for xoe C, xe Cit is

L) = fixo) _ o) = 0x0) | L (5 (o(a,) = o(by)

X — Xo X — Xo X — Xo xZam

~ T (o) - olby) < 2= ob0)
xo<an X — Xo
for xo € C, x € (ay, by), Xo < ay, it is

fi(x) = filxo) _ @(bm) — @(x0) _ 1 (Y (oas) — o(b)) =

X — Xo X — Xo X — Xo XoSan<am

_ o) = olxo)

and for x4 € C, x € (A, by), b < Xo it is

f1(x) = fi(x0) _ #(am) — @(xo) + 1 (s

X — Xo X — Xp X — Xo am=an<xo

(o(an) — o(bn) <

< 2(x) = o(xo)

X — X

If xo = a, then lim f,(x) < fy(x,) and therefore fj*(x,) = — oo. Therefore for
x»xo+

each x e C is f{(x) = — 0.
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Now we put

f(x) = fi(x) for xeC — G{a,,, b,},
n=1

n+ 2n+1

bll an bn_ n
f(x) = fi(x) for xe<a,,+~2—T—, b, — a>’

fla)) = =1, f(b) =3.

On intervals (a,, a, + (b, — 4,)[2""") and (b, — (b, — a,)[2"*!, b,) we define f
so that f is continuous and nondecreasing on {ds b,> and f’ exists on (a,.’ bn) (thu5'
f'(x) = 0 for x € (a,, b,)).

We put

E,=U (a, b, - b"‘“">, E*=U <a,,+b""“",b,,>.
n=1 \ n=1

2n+1

If xo € C, xo * a,, then

an (x0) = lim f(x) = f(xo) < lim Ji(x) = fi(xo) _ —

X=X0 + X — X X—X0+ X — Xo

xeE, xeE,
. e - PEN o
Similarly for x,€ C, xo #* b,, it is f,,(xo) = —. Therefore f,,(x) = — for

xeC — G {a, b,}.
n=1

Obviously f is a Darboux function, f,, = 0 almost everywhere and fap EXists at
each point x € (0, 1), x * a,, x + b,

Example 2. We construct the function f, as in Example 1. We put

f(x) = fi(x) for xeC— G{ayn b,},
n=1

bn — a, bn — a,
f(x) = fi(x) for xe<a,, + R b, — poe > ,

f(a) = =1, f(b,) =3, f<a,, + b"z;za") = -2, f(b,, - b"z;za") =4.

On intervals (a,, a, + (b, — @,)[2"*?), (a, + (by — a2)[2"*%, @ + (b, — a,)[2"*Y),
(by = (by — a)2"*Y, b, — (b, — a,)[2"*2), (b, — (b, — @x)[2""?, b,) we define f so
that f is continuous on {a,, b,», /" exists on (a,, b,), /' *(a,) = —0, f'7(b,) = — 0,
f is nondecreasing on <a, + (b, — a,)[2"*?, b, — (b, — @,)[2""*> and nonincreasing
on <a,, a, + (b, — a,)[2"*%>, <b, — (b, — a,)[2"*?, byy. Similarly as in Example 1
we prove that f is a Darboux function and that £, exists on (0, 1). This function f is
not obviously of the first class of Baire.
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In this paper we prove in Part I one characterization of functions of Baire class 1.
In Part II functions are studied which have the approximate derivative on all interval
(a, b). In this part we prove that every approximate derivative is of Baire class 1
(Theorem 3). Theorems 6 and 7 give a solution of the problems proposed by A. M.
Bruckner in [1]. Bruckner’s problem solved by Theorem 6 has been solved in paper
[8] provided that f,, is of the first class of Baire. As remarked in [8], on base of
theorem 3 of the present paper the problem is completely solved. In Part III it is
proved that if R is the set of all points at which the approximate derivative of a func-
tion f (defined on (a, b)) exists then f,, is of Baire class 1 with respect to the set R
and there exists a conhtable set Z < R such that f is of Baire class 1 with respect to
the set R — Z.

Theorem 1. Let P be a topologically complete metric space, let f be a function
defined on P. Then f is of Baire class 1 if and only if the following assertion is valid:

For each closed set F < P and for any real numbers o. < 8 at most one of the
sets {x € F; f(x) = B}, {x e F, f(x) < a} is dense in F.

Proof. a) If f is of Baire class 1 then the assertion is obviously valid.

b) Let the assertion be valid. We can assume that f[P] < <0, 1) and that P is
a complete metric space. We prove the following proposition:

Let ) + A < P and let n be a natural number. Then there exist x€ A and ¢ > 0
such that for each y,, y € A n U(x)itis |f(y,) — f(v2)| < 1]n. (We denote U(x) =
={zeP, o(z,x) > ¢}.)

We find the minimal integer k such that there exist x, € 4 and ¢, > 0 such that
{ze A nU,(x,), f(z) = kf2n} = 0. Then there exist xe A N U,(x,) and & > 0
such that {ze A4 nU/x), f(z) < (k — 2)2n} = 0 and U,x) = U,(x,). (If we
supposed that such x and ¢ do not exist then both sets {z € A N U,(x,), f(z) =
> (k — 1)[2n}, {z€ A 0 U,(x,), f(z) < (k — 2)[2n} would be dense in 4 N U, (x,).)

Now let F < P, F % 0 be a closed set. We choose x; € F and put ¢ = 1. If the
sequences {x;}, {¢;} are defined for all i < j such that x;e F, ¢; > 0 then we put
A=Fn Uej(xj), n = j and by the proposition we find x;,, € 4 and ¢;,; > 0 such
that for each yy, y, € A 0 U,,, (x;41) itis |f(y1) = f(¥2)] < 1/n and U,,, (x;+,) <
c U, [(x)), &j+1 < 38

@
Then there exists a point xe () U, (x;) and the functionf|,,~ is obviously continuous
j=1 '

in x. Hence it follows that f is a function of Baire class 1.
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Theorem 2. Let f be a function defined on (a, b). If G < (a, b) is a nonempty G,
set such thatf_,,',, < a on a dense subset A of G then f;, < o at each point of a G,
set H such that A = H < G (consequently H is a residual set in G).

Proof. For each x € 4 we find 1 > J, > 0 such that for each hy, h,,0 < h; < 5,
it holds

#e{ZG(X—’11,x+h2);M ga}éhlzhz.
Z =X

We put G, = U (x — 6,/4n, x + ,[4n), H = G G, Then H is a G; set and
AcHcG ™ net

If ye H, f,(y) > « then there exists 6 > 0 such that for each hy, h,, 0 < h; £ 6
it is

;te{ze(y = hy, y + hy); f(—zz :fy(y) < a} <t h : h

We find x € 4 such that |x — y| < min {44, },}, we can assume that x < y (in the
case y > x the proof is similar). We put z; = max {x — 6, y — &}, z, =
=min {x + 8., y + 6}. Then z; < x < y < z, and if we put

4, = {ze(zl,x); f(z%f;(") > :z}, 4, = {ze(zl, x);f(Z_ka(y) < a}
then

ue(AluA2)§%+¥<x~zl.

Therefore there exists a point ¢, € (zy, x) such that

) =), S =10)

ty — x ty—y

Similarly we prove that there exists a point t, € (¥, z,) such that
) =5 _ S =S0)

I — X =y

But this implies that (f(z,) — f(t,))/(t2 — t;) < eand (f(t;) — f(t,))/(t; — t;) > «

which is a contradiction.

Theorem 3. Let f be a function defined on an interval (a, b) which possesses the
approximate derivative f,, at each point of (a, b). Then fap is of the first class of
Baire on (a, b).

Proof. This theorem is an obvious consequence of Theorems 1 and 2.
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Lemma 1. Let f be a function defined on (a, b). Let f,, 2 0 almost everywhere,
fap > — 0 except perhaps for a countable set E such that for each x€ E and ¢ > 0
the sets {ze(x—¢ x); f(z) < f(x) + &}, {ze(x,x + &), f(z) > f(x) — ¢} are un-

countable. Then f is nondecreasing on (a, b).

Proof. Suppose that f is not nondecreasing on (a, b). Let ¢ be such a function
that ¢(a) = 0; @(b) = 1, ¢'(x) = +oo for all x such that f,,(x) <0 and ¢’ >0
everywhere. Then there exists 7 > 0 such that the function g(x) = f(x) + 1 ¢(x) is
not nondecreasing on (a, b).

Let .# be a set of all open intervals (x, y) such that g(x) > g(y). We put G, =
= U I, G=NG, then G is a G; set. Let (x, y)e . If xe E then there

Ies u(I)<1/n n=1
exists a point x' € {z e (x, y) — E, g(z) > g(y)}, ie. x < x' <y, (x',y)€ £, x' ¢ E.
If x ¢ E, then g;,(x) = 0 and hence it follows that there exists x’ such that x < x’ <
<y, (¥',y)e #, x' ¢ E. Similarly we prove that there exists y’ € (x’, y) such that
(x',y')e#, y' ¢ E. Now it is easy to prove that for each (x, y) e # and for each
¢ > 0 there exists (x,, y,) € # such that x < x; < y; < y and y, — x; < & This
implies that for each (x, y) e # it is G A (x, y) + 0 and that G has no isolated point.

For each (x, y) € # we denote by (x,, yo) the interval constructed as follows:

We find (x;, y1) < (x, »), (x1, 1) € £ such that x,, y, ¢ E. Now we choose y, €
(x15 y1) such that for each z e (x4, yo) it is . {t € (x4, 2); g(t) < g(x,)} < #(z — x,)
and g(yo) < g(x,). Such y, exists; we put y’ = inf {t € (x4, y,), g(t) < g(x,)} and if
x; < y’ then it is sufficient to choose y, sufficiently close to y’, if x; = )’ then the
existence of y, follows from the fact that g,,(x,) > 0.

Similarly we choose x, € (x, y,) such that for each z € (x,, y,) it is p{t € (z, yo),
g(t) > g(vo)} = H(yo — 2) and g(y,) < g(x,). Then for ze(xo, yo) it is either
re{te (x5, 2); (9(t) — 9(2)[(t — 2) > 0} = 4(z — xi) or uft € (z, yo); (9(1) — 9(2) :
1t —z) >0} < Hyo — 2). .

Now we put H, = U (x05 ¥o)» H = ann. From the construction it

(x,y)ef,y=x<1/n )
follows that each H, n G is dense in G, thus H is a residual set in G and hence H is

uncountable. But for each x € H it holds g,,(x) £ 0, hence H = E which is a con-
tradiction.

Theorem 4. Let f- be a function defined on (a, b), let f;, = 0 almost everywhere
in (a, b). Let at each point x of (a, b)

limf(x — h) < f(x) # limf(x —h) exists,
h=0 4 h—04

limf(x + h) < f(x) if limf(x + h) exists
h=0+ h=0.

and let E be a denumerable set such that if x ¢ E, !a(p(x) = —© thenfalp(x) = —00.
Let for each x € E and € > 0 the sets {z € (x — &, x); f(2) < f(x) + ¢}, {ze(x, x +
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+ ¢); f(z) > f(x) — &} be uncountable, and let f be of Baire class 1 with respect
to the set E.
Then f is nondecreasing on (a, b).

Proof. We can assume that f;, = n > 0 almost everywhere. Suppose that f is not
nondecreasing on <{a, B> < (a, b). From Theorem 2 it follows that {z € (a, b),
fap(z) = — o0} is nowhere dense in (a, b), hence by Lemma 1 there exist maximal

closed intervals of monotonicity of f on {a, 8>. We denote these intervals <{a,, b,»
and we put F = (o, ) — U (a,, b,). From Lemma 1 and Theorem 2 it follows that

{z€eF,f,(z) = — oo} is a residual set in F.
If we suppose that F — E + 0, xo€ F, (xo — 9, xo + 6) n F n E = @ then for
each b, e(xo — 8, Xo + 8) is fop(b,) > — oo (because the case f,,(b,) = —co is not

possible). From the fact that f,, > 0 a.e. it follows that f(4(a, + b,)) < f(b,) for
each n. Since f,,(b,) > — o0, it is llmmfap f(t) = f(b,) and therefore there exists d,

such that §, < min (3(b, — a,), 1) and for each 0 < h < &, it is p{te (b, b, + h);

7)< fG(by + @)} < 3h. We put Gy= U (by by + 6,J4), G =F
0 bpe(x0—38,x0+3)

N N G, Then G is a residual set in F n (xo — 8, X, + 6) and at each point y e G
k=1

it is f,(y) = 0, which is a contradiction. Thus F < E and f is of Baire class 1 with

respect to F.

Now we prove the following proposition:

If b, € («, B) then for each ¢, & > O there exists a point x € (b,, b, + ) 0 (a, ) N
NF,x % a, b, x¢E, f(x) > f(b,) — &

We denote B = {b; € (b,, b, + 36); f(by) > f(b,) — 1&} 0 (a, B). If B is a perfect
set then we find a point x, of continuity of f|B, xo ¢ E, xo * ay, b,. The point x,
obviously satisfies the assertion of the proposition. If B is not a perfect set then there
exists b, € B such that for some §,, 0 < 6, < b, — b, + 35, 6, < B — by it is
(bi, by + 8,) 0 {x; f(x) > f(b,) — 3e} n U<a,, b,> = 0. If we choose X, € (b, by +

+ ;) such that f(x,) > f(b,) — %&, X, ¢ E then x, is the required point.

Now let k be a natural number, b,€ («, f), b, — a, < 1k, x, € (b, b, +
+ 3(b, — a,)) " F; xo % a;, b5 x0¢ E; f(xo) > f(3(ay + b,)). I fJ(x0) > —0
then we find 6 > 0 such that 6 < b, — a, and pJfte(xq, xo + 8); f(f) <
< f(3(a, + b,))} < 45. We put x = x¢, b, < y < x, x — y < }8. If f(x0) = — o0
then we find 6 > 0,5 < x, — b, such that u,{t € (xo, xo — 3), f(1) < f(3(a, + b,))} <
<}idand weputx = xq — 3, b, <y <x,x —y < 10.

Let G, be the sum of all intervals (y, x) which are constructed in this way. Then
G, n Fis dense in F, therefore G = F n () G, is a residual set in F. But at each point
k=1
x € G it is fu(x) = 0 and at each point of a residual set in F it is f,(x) = — oo; this

is a contradiction.
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Theorem 5. Let f be defined on (a, b), let f possesses the approximate derivative at
each point of (a, b). Let f be a Darboux function and let f,, = 0 almost everywhere.
Then f is continuous and nondecreasing on (a, b).

Proof. This theorem is a consequence of Theorem 4 but it can be easily proved on
the base of Theorem 3 and Lemma 1 as follows.

If x, is a point of continuity of f,,, then f is nondecreasing in some neighbourhood
of x,. Let {a,, b,> be the maximal intervals of monotonicity of f, F = (a, b) —
— U(ay, by), fi{a) =0, fi(b,) = 0. If x is a point of continuity of fy,|r then f

is nondecreasing in some neighbourhood of x which is a contradiction.

Theorem 6. Let f be defined on (a, b) and let f possesses the approximate derivative
ap on all (a, b). If at each point at which lim f(x—h) exists it is lim f(x—h) = f(x)
h—-0+

h-0 4

and at each point at which lim f(x + h) exists it is lim f(x + h) = f(x) then f,
h-04 h=0 4+

has the Denjoy property (i.e. for each o < B the set f,; '[(«, B)] is either empty or
of positive measure),f‘,’lJ is a Darboux function and f fulfils the Mean Value Theorem.

Proof. Suppose that there exist @ < f such that f, " '[(a, B)] is nonempty and of
measure zero. In view of Theorems 2,4 there exist maximal intervals <{a,, b,> such
that f(x) — Bx is nondecreasing on <a,, b,> and maximal intervals {a,, B,> such
that ax — f(x) is nondecreasing on (o, B,> (one of the sequences {<a,, b,>},

{< B,>} can be empty). Then the set G = U(a,, b,) U U(,, B,) is dense in (a, b)
and the sst (a,ly)——c; is perfect. Let xq € (a’,l b) - G be"a point of continuity of
fapl@ry=c- Then it is either f,,(xo) < o or f7,(xo) = B. In the first case, according
to Lemma 1 the function ax — f(x) is nondecreasing in some neighbourhood of x
which is a contradiction; the other case is similar.

Because f,, is of Baire class 1 and has the Denjoy property it is a Darboux function
(see[7]). The third assertion can be easily proved on the base of this fact and Theorem4.

Let € be a family of functions defined on <{a, b). A subset E of {a, b) with the
property that whenever f e € is constant on E, then f must be constant on {a, b), is
said to be a stationary set for %.

Theorem 7. A set E is a stationary set for the approximate derivatives of Darboux
Sunctions if and only if u(<a, by — E) = 0.

Proof. a) If E is a stationary set for the approximate derivatives of Darboux
functions, then it is p(<a, by — E) = 0 because if p(<a, by — E) > 0 then there
would exist a finite (ordinary) derivative such that it is constant on E and is not
constant on {a, b (see [7]).
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b) If pi<a, b) — E) = 0 and if / is a Darboux function such that fap €xists on all
<a, by and f,, = c on E then the set E* = {z € {a, b), f,,(z) = ¢} is measurable
and if we put g(x) = f(x) — cx then g,, = 0 almost everywhere. According to
Theorem 4 the function g is constant on <a, b), hence f,, = ¢ on all <{a, b).

I

Theorem 8. Let f be a function defined on the whole real line. Let R be the set of
all points at which the approximate derivative f,, exists. Then f;, is of the first
class of Baire with respect to R and there exists a countable set Z = R such that f
is of the first class of Baire with respect to the set R — Z.

Proof. 1. Let o be a real number, M = {x € R, f,,(x) < «}. According to Theorem
2 we can find for every natural n a G, set H, suchthat M = H, = M and f,(x) <

0
<o+ 1/nonH, Then M = R n (\ H,,i.e. M is a G, set with respect to R. Similarly

n=1

we prove that also {x € R, f,(x) = a} is a G, set with respect to R.

2. Letabearealnumber, M = {x € R, f(x) = a}, My = M n {x € R, f(x) = 0}.
For each x € M, and any natural n we can find 6}, 0 < 8% < 1/n such that for each
ye(x,x + 67 it is

ﬂe{ze(x,y); 1) < —i}q(y—x).

0
We put G, = U (x, x + 49}), then M, — G, is a countable set. Let G = () G,.
xeMo

n=1
Then G is a G, set. Let xe G n R. If f,(x) = 0, ¢ > 0, then we can choose § > 0
such that foreach 0 < h < d it is

tfze(x — h,x), f(z) = f(x) + de} < th.

As xe G we can find ye M, and n > max (1/5, 2[e) such that xe(y, y + 45}).
Hence it follows that y € (x — 4, x) and

ue{ze(y, x), f(z) £ a — %} <Hy-1x)),

,ue{ze(y, x),f(z) gf(x) + %s} < %(y - x).

Thus there exists z, € (y, x) such that f(z,) = « — 1[n, f(z,) < f(x) + 4¢ and there-
fore f(x) = « — & If f,,(x) <0, ¢ > 0, then we can choose & > 0 such that for
each0O < h < ditis

telz e (x,x + h), f(z) = f(x) + 3¢} < 1h.
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As x€ G we can find ye M, and n > max (1/3, 2/¢) such that x e (¥, y + 15}).
Hence it follows that y + 6} € (x, x + J) and

rfze(x,y + &), f(2) 2 f(2) + 3e} < 3y + 8} — x),
ue{ze(x,y F ), S() S o - %} < ue{ze(y,y + ), f() < o - 1} <

<Yy + 8 —x).

A
B

Thus there exists z; € (x, y + 8}) such that f(z,) = « — 1/n, f(z,) < f(x) + 4¢ and
therefore f(x) = « — & Thus M, = G' U S' = M where G' is a G, set with respect
to R and S! is a countable set. Similarly we prove that

Mn{xeR, fi(x) £0} =« G*uS*c M

where G2 is a G, set with respect to R and S? is a countable set.

This implies that M = G} U S} where G} is a G, set with respect to R and S
is a countable set. Similarly we prove that {x € R; f(x) < «} = G; U S,; where G,
is a G4 set with respect to R and S, is a countable set.

WeputZ= U (SfuUS;). Then {xeR; f(x)=a}= N G5 uUS where

r rational rrational, r<a

S < Z and similar result is true for {x € R, f(x) < a}.
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