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LIMITS OF APPROXIMATELY CONTINUOUS FUNCTIONS

DaAvip Presss, Praha
(Received February 4, 1970)

In the paper [1] it is proved that any function of the second class of Baire is the
limit of a sequence of derivatives. But it does not follow from this proof that any such
function is the limit of a sequence of bounded derivatives. In this paper it is proved
that any function of the second class of Baire is the limit of a sequence of approxi-
mately continuous functions, consequently any such function is the limit of a sequence
of bounded derivatives.

We denote by R the real line and if M <= R we denote by c,, the characteristic
function of M.

At first we prove the following.

Lemma. Let M be a G; and F, set. Let H be a Gy set of measure zero. Let H
contain all points of M which are not points of density of M and all points of R — M
which are not points of density of R — M. Let G be an open set, G > H.

Then there exists an approximately continuous function ¢ such that {xeR,
o(x) * cy(x)} = G — H.

Proof. We put

E,=Mn[HU(R=-G)], E;=(R-M)n[Hu(R-G)],
N=R_(E1UE2).
Then E,, N, E, are disjoint sets, E;,u NU E, = R and E,, E, are G; sets. Further
E,UN=R-E,=MU[(R~-H)nG]
E;,3uN=R-E =(R-M)uU[(R-H)nG].
Hence it follows that E, U N, E, U N are sets of the class M5 (see [2]).
This implies that there exists an approximately continuous function ¢ such that
¢(x) =0 for xeE,
0<o(x)<1 for xeN
o(x) =1 for xeE,
(see lemma 12 in [2]).
This function ¢ clearly satisfies the statement of the lemma.

371



Theorem. A function f (possibly infinite) defined on R is an element of the second
class of Baire if and only if f is the limit of a sequence of approximately continuous
functions.

Proof. From the fact that every approximately continuous function is of the first
class of Baire it follows that if f is the limit of a sequence of approximately continuous
functions then f is an element of the second class of Baire.

Now let f be an element of the second class of Baire. Then there exists a sequence
{gn}a=; of functions of the first class of Baire such that

limg, = f

n—o

and

mn
gn = Z ck,nhk,n
k=1

where ¢, , are real numbers and h, , is the characteristic function of a set H, , which
is at the same time G, and F, set (see [3]).

Let H,f.,, be the set of all points of H, , which are not points of density of the set H; ,
and all points of R — H, , which are not points of density of R — H,_,. We put

H* = U Hy,.

k,n

Then H* is a set of measure zero. Let H > H* be a G, set of measure zero. Let G, be
open sets such that

@
G2 Gy, anl =H.

1=
According to the lemma there exist approximately continuous functions ¢, such
that

{xeR, ¢ ,(x) % I ,(x)} =G, — H.
We pUt fn = Z ck,n(pk,n'
k=1

The functions f, are clearly approximately continuous and the sequence {f,,},?=1
converges to f.
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