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Let S be a semigroup. Following Lajos [1], S is said to have property (M) if
L~ R = LR for every left ideal L and every right ideal R of S; and S has property
(L) [(R)] if I, n I, = 1,I, for every pair of left [right] ideals I, I, of S.

Lajos proved that if S has property (M) then S is a semilattice of groups, and
observed that a similar argument produced the same conclusion if S had both
properties (L) and (R). In the following theorem it is shown that property (M) is
equivalent to the conjunction of properties (L) and (R), and that each of these
equivalent assertions is equivalent to S being a semilattice of groups.

Theorem. The following conditions on a semigroup S are mutually equivalent.

(A) S has properties (L) and (R).

(B) All ideals of S are two-sided and I, n 1, = I,I, for every pair of ideals I,,I,
of S.

(C) S has property (M).

(D) S is normal and regular.

(B) S is a semilattice of groups.

Remark. ScHWARZ [2] calls S normal if aS = Sa for all a€ S. In [3], Lajos
proved that a normal semigroup is regular if and only if every left ideal of S is
idempotent.

Proof. (A) implies (B) as follows. If Lis a left ideal of S then L= L S = LS
by property (L), so Lis also a right ideal. Similarly, property (R) implies every right
ideal is a two-sided ideal. The condition I, n I, = I,I, is clear.

It is obvious that (B) implies (C). Now (C) implies (D) by Theorems 2 and 3 of [1],
and (D) implies (E) by the proof of Theorem 4 of [1].

We now show in turn that (E) implies (D), and (D) implies (A), which will complete
the proof. Assuming (E), say S = U G, is a semilattice Q of groups G, (x € Q),

aef2
regularity of S is immediate. If a, s€ S, say a € G,, s € G, then ase€ G,G, < G,, =
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= G,, since Q is a semilattice, and sa € G,G, S G,,. Since as, sa € G,,, as = x(sa)
for some x € G,,, whence aS < Sa follows. Similarly, Sa < aS and so S is normal.
Finally, we show that (D) implies (A). If Lis a left ideal of S, a € L, and s € S, then
as€ aS = Sa = SL < L using normality, whence L is a right ideal of S. Thus if
L,, L, are left ideals of S we have L,L, < L, n L, since L, is arightideal. fae L, n
N L,, regularity gives a = axa for some xe€ S, so that a = a(xa)e L,L,. Thus
L, n L, = L,L,, which establishes property (L). Property (R) is proved similarly.

Added in Proof: Recently, S. Lajos proved the equivalence of (C) and (E) [See Math.
Reviews 40 #5757]. The Theorem was also observed by D. W. MILLER (unpublished).
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