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NEAR DOMAINS AS LINEAR PSEUDO TERNARIES 

VACLAV HAVEL, Brno 

(Received March 2, 1970) 

H. KARZEL investigated in [2], §11 near domains with regard to sharply doubly 
transitive permutation groups. The purpose of the present Note is to characterize 
near domains as coordinatizing 3-groupoids of certain pseudo planes (pseudo planes 
v̂ ere introduced by R. SANDLER in [3], p. 301). This topic is a generalization of the 
classical considerations of M. HALL presented in [1], chap. IV, §3. 

By a 3-groupoid we mean a non-void set S together with a ternary operation 
T : S^ -^ S. A 3-groupoid (S, т) is called a pseudo ternary (cf. [3], p. 304) if two 
elements 0 Ф 1 of 5 are distinguished such that т(а, 0, b) = т(0, a, b) = b, т(1, a, 0) = 
т{а, 1, 0) = a Va, b E S and if to any 

((b,c,d)E{S\{0}) X S^ iaeS 
Ua, c, d) e{S\ {O}) x Ŝ  there exists just one < fo 6 S satisfying 
[{a, b,d)ES^ [c ES 

т{а, b, c) = d. 
If there is given a pseudo ternary {S, т) then define binary operations +^ : Ŝ  -> .S, 

•̂  : 5^ -> S by the rules a +^b := т(а, 1, b), a \b := т{а, b, 0) Va, b E S. A pseudo 
ternary (5, т) is said to be linear if т(а, Ь, с) = {a- ^b) +^ с Va, b, с E S.ïf Т = (5, т) 
is а pseudo ternary then define for any (i/, V)E{S\ {O}) X S the permutation (т„ ^ 
of S by the rule cr„ Дх) = т(х, w, v) Vx e S. Further put Ij := {ö-„y | (w, г;) G 
E{S\ {О}) X S} . Let us remark that â ^̂ ^ Ф cru2,v2 if (^i' ^i) + (̂ 2? ^2)- Finally let 
us introduce the notation <r-a, ->a for the solutions of x -f- a = 0 and a + y = 0 
according to a given loop (S, +) with neutral element 0 

Begin with two simple assertions: Let T = (^S, т) be a linear pseudo ternary. 
Then (I'j, o) /5 a semigroup (where о is the usual composition of maps) if and only 
if to any (ui, Vi), (w2, V2) E{S\ {O}) X S there exists a (unique) (^3, ^3) E{S\ {O}) :X 
X S such that 

(1) (((x 4 Wi) +, v^) ', U2) +r V2 = (x \ W3) + , 1̂3 Vx G S . 
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(The p r o o f is simple and will be omitted.) 

If T = (iS, T) is a linear pseudo ternary such that (Zf, o) is a semigroup then 
[S \ {O}, \ ) is a group. 

Proof. Using (l) for v^ = V2 = 0 WQ get (x \ u^ \U2 = x \ u^, H-̂  v^- Putting 
X = 0 we conclude 1̂3 = 0 whereas x = 1 yields u^ \U2 — u^. Thus (x \ u^ \ u^ — 
— x\(ux\ W2). But (iS \ {0}, •̂ ) is a loop so that it is even a group. Q.E.D. 

Recall that a near domain ([2], p. 123) is defined as a triple (5, + , .) having the 
following properties 

(i) (S, + ) is a loop with the neutral element 0, 

(ii) (S \ {0}, .) is a group with the neutral element 1, 

(iii) (fl + b) . с = a . с + Ь . с Уа, b, с e S, 

(iv) a . 0 : = 0, 0 . a : = 0 Va e 5, 

(v) (a + b) + с = (a . dfjc) + (b + c) VÖ, b, С E S where J/,^ is the solution of 
(1 + Ь) + с = X + (Ь + с), 

(vi) (1 + а) + {-^а) = 1 Va е 5. 

If D = {s, + , .) is а near domain then denote by а^,^, the permutation of S deter­
mined by (Гц y(x) := (x . u) + V Ух e S for any given (u, V)E{S\ {0}) x S. Further 
put Ij, : = {(7„,;| (u, V)E(S\ {0}) X S}. 

Remark that for any near domain {S, + , .), ^ a = -^a holds for all a E S so 
that we can use a simpler notation —a. Further it can be proved that ( — a).b = 
= a,{-b) = ~{a .b) '^a,bES. 

As there is shown in [2], pp. 124 — 125 for any near domain D = (5, + , .), 
(ij), o) is a sharply doubly transitive permutation group on S and conversely, each 
sharply doubly transitive permutation group G on a set S (with at least two elements) 
determines a unique near domain D such that (Г^,, о) = G. 

Theorem 1. / / T = (S, т) is a linear pseudo ternary such that^Ej, o) is a semigroup 
and that for + := -\-^,-:~\ 

(2) al,^, = id YVES , 

(3) (JIQ = id for w Ф 1 implies w ,= ->1 , 

then (5, + , .) is a near domain. 

Proof. Rewrite (2) as 

(4) ' ( ( (x.(-^l)) + t;).(->l)) + I? = x Vt; ,xeS« 
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Putting here v = x = 0 we get (->1) . (-^1) = 1. Similarly, for i? = x = 1 we obtain 
(((->1) + 1) . (->!)) + 1 = 1 which implies ->1 = ^ 1 = : - l . Let (u^, v^), ( l , V2) e 
e(S\ {0}) X S so that there is a unique W3 e S \ {0} such that 

(5) ((x . Wi) + v^) + V2 = (x . M3) + (^1 + V2) \fxe S . 

Vi For X = щ^ ^MQ obtain (l + v^ + V2 = («Г^ • ̂ з) + (î i + 1̂ 2), i-^., u^ = u^ . d^^^, 
and (v) is fulfilled. If 1 ф - 1 then for each a G 5 \ {0} we obtain a .{-1). a~^ Ф 1 
and cr^.(_i).^_i == iJ sothatby(3) a.{—i).a~^ = — 1 and consequently a . ( —1) = 
= ( —1) . fl. This last equation is trivial for a = 0 and also for all a e 5 if 1 = —1. 
Thus 

(6) a.(~l) ={-l),a V a e S . 

By (4) for X = i; we obtain (({v . ( - 1 ) ) + v) . ( - 1 ) ) + i; = 1 so that v .(-1) = <-t; 
for all V e S. Consequently 

(7) (4-a) . Ь = a . (<-b) = ^{a . b) Va, beS. 

Now let (1, v^), {u2, 0)e(S\ {O}) x S. So there is a unique (1/3, |;з) e(S\ {O}) x S 
such that (x + Vi) ,U2 = X .u^ + v^ Vx e S. If we choose x = 0 then v^ = v^ . U2 
whereas x = ^Vi yields ((^1^1) . W3) + {v^ . M2) = 0, i.e., (^t^i) . u^ = ^-(I'l . Wi)-
Therefore by (7) (<-v^) . u^ = (<-t^i) • W2 and consequently M3 = W2. Thus the 
distributive law (iii) holds. More generally, the preceding investigations in connexion 
with (1) yield 

(8) (((x . Wi) 4- üi) . W2) + V2 =-{x , (wi . 1/2)) + (î̂ i . W2 + ^2) 

Vx, Ml, W2, î^i, î̂ 2 ^ »̂  • 

Now 0 = O . ( - l ) = (a . ( - 1 ) + ö ) . ( - l ) = a + (<-a) so that ^^-a = -^a:= -a 

for all a G iS. Using (8) for Wi = M2 = x = 1, ^2 = ~^ i we verify (vi). Q.E.D. 
If a linear pseudo ternary T ~ (S, т) satisfies all the assumptions of Theorem 1 

then by the results of Karzel mentioned above {ij, o) is a group and for any (x^, y^, 
(x2, j^i) e(*^\{ö}) ^ ^ with Xi Ф X2 there is precisely one (t/, f) G ( 5 ' \ {0}) x S 
satisfying т(х^, w, t;) = y,-, / = 1, 2. 

Theorem 2. For an>̂  near domain D = (5, + , .) there is just one linear pseudo 
ternary (5, т) such that -\- = +^, - =^ \, that {ij^, o) is a semigroup and (2), (З) hold. 

Proof. Define т : S^ -^ S by the rule T(Ö, b, С) := {a . b) + С \fa, b, с e S. As 
immediate consequences of near domain properties (i) to (vi) we get that (S, т) is 
a linear pseudo ternary such that +^ = + , -̂  = -, that (ij^, o) is a semigroup and 
that (2) is valid. The only non-trivial assertion is the validity of the remaining con­
dition (3). This can be deduced as follows. By [2], pp. 126—128 {{(x, y) | j ' = 
= ^u,vi^)} I (w. ^) + (b 0), al^ = id} and {{(x, y)\y = o^uj.^)] \ (^l,v = Щ in case 
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1 Ф — l o r l = - - l , respectively are decompositions of S^ into pairwise disjoint 
non-void subsets. But {{(x, y) \ у = x , {-\) + v} \ v E S] must be the same 
decomposition so that consequently {(x, j ) | j ; = (Ги,о(^)}, w Ф 1 = w ,̂ is one term 
of it and therefore и = ~\. The uniqueness of this (S, т) already follows from the 
linearity property and from +^ = + , \ = •. Q.E.D. 

Now we are able to interpret simply Karzel's necessary and sufficient condition 
a) for a near domain D = (S*, + , •) to be a near field (i.e. such that (5, + ) is a group), 
b) for a near field D = (S, + , .) to be „projective" (i.e. such that the equation x . a = 
= (x . b) + с is uniquely solvable through x G 5 for all a, b, ce S with a ф b). 

In the first case the Karzel's condition ([2], p. 132) reads that for J : = {cr„ ^,|(м, v) Ф 
Ф (l, 0), cr̂ ^ =- id}, J^ forms a subgroup in {ij^, o). This means in our interpretation 
that (S, +T:) is a group because of o-i,vi ° ^-uvi = ö'i,_i;i + t;2 ^^ i ' 2̂ ^ ^' 

In the second case the Karzel's condition ([2], p. 135) reads that all cr̂^ ^ e 2'^ 
fixing no elements belong to J^. But this means in our interpretation that {(x, y) | 3̂  = 
= T(X, W, V)} n {(x, y) I }̂  = T(X, 1,0)} = 0 => t/ = !, i.e., {(x, )̂ ) | у = т(;с, w, v)} n 
f^ {(̂ » Ĵ ) 1 Ĵ  = ^{^^ Ь 0)} Ф 0 for all (w, V)E{S\ {0, 1}) X S and this gives already 
the statement that D is projective. 
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