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Czechoslovak Mathematical Journal, 21 (96) 1971, Praha 

NOTE ON SEPARATION OF CONVEX SETS 

VACLAV ZIZLER, Praha 

(Received February 27, 1970) 

A statement is proved concerning separation of two convex sets by two disjoint 
balls. 

We work in real Banach spaces. К^.(х) denotes the closed ball centered at x with 
radius r. By a ball we shall always mean a closed one. The set of all real numbers is 
denoted by R, X* means the dual space of the Banach space X with the usual 
supremum-norm on Ki{0) с X. S^x) denotes the norm boundary of X /x ) c: Z . 
X*(0) = {/eX*; 11/11 ^ r}, Sf = [feX^- \\f\\ = r}. 

Following R. R. PHELPS ([8]), we shall c a l l / e SX the strongly exposed point of K* 
if/ attains its norm at the point x e -Si which is a point of strong (Fréchet) differen­
tiability of ||x]| of Z . The set of all strongly exposed points of K\ will be denoted 
by strX*. For A ^ X, ô(À) denotes the norm boundary of A in X. For / e Z * , 
A c: X, f{A) ^ с means f{y) ^ с for j^ e Ay-

Definition 1. Let К be a convex subset of Z , z e 6{K). f eX"^ is said to be the sup­
porting functiona / of X at z if either f{k) ^ / (z) for all /c e X or f{k) й f{z) for all 
кеК, 

Lemma. Let 0 ф feX"^ be a supporting functional of К^.{0) at x e ^(X^(0)). Take 
any p > 0 and z e Rx. Then: 

1) / IS a supporting functional of Kp(z) at both points ö{Kp(^z)) n Rx, 
2) Оф Kp{z) implies either f{k) > Ofor all к e Kjz) orf(k) < Ofor all к e K / z ) , 

Proof. 1) First assume z = 0, p > 0. Then it is easy to verify t ha t / i s a supporting 
functional of Kp(0) at ±(/?/r) x. In fact, take for instance the point (i?/r) x. Assume, 
without a loss of generality, f{y) ^ / (x) for у e K,{0). Then if у e iC/O), it is (r/p) у e 
e Kr{0) and therefore /((r/p) y) ^ / (x) , i.e. f{y) ^ f{{plr) x). 

Now, take p > 0, ae R, z = ocx. Ô(KXZ)) n RX = {a ± p\r) x. Take for instance 
(a + pjr) X. Let Ay ^ y ~ ax for yeX. Then AKJ^OLX) = K^O). Since / is a sup­
porting functional of ХДО) at {pjr) x we have either/(y - a^) ^ !{{&) ^) for each 
уеКр{ах) or f{y ~ ax) uf({pjr)x) for each yeKJ^ax), Hence either f{y) t 
> füpjr) X + ax) for у e X^ax) or/(>;) ^ / ( (a + pjr) x) for each у G X^(ax) which 
means / i s a supporting functional of Х^,(ах) at (a + pj^) ^• 
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2) If / (x) = 0 then for all уеК^О) we should have either/(3;) ^ 0 for yeK^O) 
от f{y) ^ 0 for all у e КХО). Both cases are obviously impossible, therefore Rx n 
nf~Щ = {0}. Thus the fact ОфКр{г) is equivalent to the fact that Kp(z) n Rx n 
n / - ^ ( 0 ) = 0. Denote ô(Kp{z)) n Rx = {v, w}. Suppose f{v) > 0. Then /(w) > 0, 
otherwise there exists aQxeKp{z), /(agx) = 0. Then ŒQX ef~^(0) n Rx n Kp{z) 
which is a contradiction with our assumption 0 ф Kp{z). We have also f{w) Ф f{v), 
since / is one-to-one on Rx. Assume without any loss of generality f{w) > f{v). 
Since / is a supporting functional of Kp{z) at v, we have f{y) ^ f{v) > 0 for all 
у E Kp{z). Similarly for f(v) < 0. The following statement was motivated by the 
resuhs of S. MAZUR ([7]) and R. R. PHELPS ([8]): 

Proposition 1. Assume X is a Banach space such that str iC* ф 0. Let К be a convex 
closed bounded subset of X, f e str iC* 50 that 'mïf{K) > 0. Then there exists a ball 
В cz X, В ZD К so that f(B) > 0. 

Proof. Let xe Si be such that / (x) == 1, ЦхЦ of X is strongly differentiable at x. 
Let us choose г > 0 so that inf/(X) > 2г > 0. Take z = ex. Now, following S. 
Mazur ([7]), take a system J T of balls: X(^_i)/rz) for r > 1. 

Then it is possible to prove ([7]) that, while 0 ф K(^^_y>^^{rz) for all г > 1, there 
exists Го > 1 so that К с X(^^_i)£(roz). Repeat, for completeness, this proof: 

The first statement is obvious. 
For the second one, suppose there exist sequences {r„} and {x„} so that r„ > 1, 

r„ -> 00, IIx„ — r„z]| > (r„ — 1)8, x^eK for each n. Denote y^ = —x^jsr^. Then 
y^ -> 0. We have ||x + y„\\ - ||x|| = D\\. || (x, y„) + œ(y^), o)(y„)l\\y„\\ -^ 0 (where 
D[| . II (x, h) denotes the differential of ||. || and œ the remainder), since ||. || is strongly 
differentiable at x. We have 

sr„ 
1 =/(Уп) + со{Уп) 

so that er„ œ{y„) = l|x„ - r„z|| - er„ + /(x„) > (r„ - 1) e - sr„ + Is = s. Hence 

Ы Ы Ы 
since {x„} is bounded. Therefore we have a contradiction with Fréchet differentiability 
of ] | . | | at X. Thus there exists VQ > 1 such that К a K(^^^_i^^(rQz). Now, we may 
apply our lemma on J T , / and see that since 0 ф K(^ro-i)e{^o^) ̂ ^^^ f{^o^) > 0 we 
have/(^) > 0 for all keK(^j.^^iy^{rQz), 

Corollary. Suppose a Banach space X has the property that strK* is a norm 
dense in S*. Ki,K2 be closed convex bounded subsets of X, one of them being 
weakly compact. Then there exist balls B^, B2 so that Bi :=) Ki,i = 1, 2, B^ n B2 = 
= 0. 

Proof. By the well known Separation Theorem ([3]) there exist / e S * , e > 0, 
ceRso tha t / (Ki) ^ с -~ s < с < f{K2\ 
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Take Cl = с - is. Then sup/(iCi) < c^ - ^s < c^ + is < inf/(X2). We may 
choose / e str K* so that sup/(iCi) < c^ < infJ(K2). First, consider K2. Let z eX 
be such tha t / (z) = c^. Then consider a translation Ay = у — z for у eX, Denote 
К2 = ЛК2. к2 is a closed convex bounded set, inf/(K2) > 0. By our proposition 
there exists a ball В z:> K2S0 that/(B) > 0. ^""^5 = Б is then a ball so that В =э K2, 
J(B) > c^. Analogously, dealing with —f(e strX^) we may obtain a ball B^ => Ki, 
/ (Bi) < Ci. Therefore B^ n B2 = 0. 

In this connection, perhaps, the following fact is worth mentioning, too: 
It is almost obvious that whenever ]|. || is Gâteaux differentiable a.t XQG S^ a X 

then the limit 
Ч0 + th\\ - f- '' 

lim 
f-*0 

= D (xo, h) 

is uniform on heK where К is an arbitrary norm compact subset of X, To prove it 
(as for example N. A. IVANOV) [3a])) suppose this is not true for some compact 
К c: X, Then there exist „̂ -> 0, h^eK such that whenever we write ||xo + t/i|| — 
— ||xo|l = Щ • II (̂ o> Щ + ^(^0? ^^)' ^^^^ 

k(xo, tx)\ > г > 0. 

Without any loss of generality suppose h„ -^ heK, Then 

col (^0, t„h) Ц^о> tnK) ^ 11̂ 0 + »̂̂ 11 11̂ 0 + «̂̂ «11 

+ D | | . | | (xo , /z„) - i) | | . | | (xo,/i) 

+ 

> ö^(^o, tX) \\xo + fnH -
t„ 

II X o + 'All + 

+ |D| | . | | (xo, / i„) -D| | . | | (xo, /z) | ' ) > 

> -(WK-hW + \\h--h\\ 

for n ^ По -- a contradiction with Gâteaux differentiability of ||. || at XQ. 

Definition 2. C a l l / e 5* the X-exposed point of X* if there exists xe S^ such that 
f(x) = 1 and ||x|| is Gâteaux differentiable at x. The set of all X-exposed poiiits 
of K t denote by exp;^ X^. 

Analogously to Proposition 1 we may derive: 
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Proposition 2. Assume X is a Banach space such that exp;^ X* Ф 0. Let К be 
a compact convex subset o / X , / e e x p ^ K * so that inf/(X) > 0. Then there exists 
a ball В a X, В :D К such that f(B) > 0. 

Proof. Follow the proof of Proposition 1; put further t^ = l/er„, h„ = — x„. 
Then we have t„ -^ 0, 

0){tX) 
L 

— a contradiction. Therefore, we again have 

Corollary. Suppose a Banach space X has the property that exp^ K* is a norm 
dense on Sf, iC^, Kj be two disjoint compact convex sets in X. Then there exist two 
balls Bi 3 Ki, i = 1, 2, Bi n B2 = 0. 

As for the assumptions of our propositions we would like to remark the following: 

First, the Bishop-Phelps Theorem ([2]) says that for every Banach space X the 
set С of all continuous linear functional on X which attain their norms on 5̂ ^ a X 
is norm-dense in Z*. Therefore if we suppose ||x|| of X is Fréchet (Gâteaux) differenti-
able at every x e Si we have immediately str K'l = С n S^ (expx K^ = С r\ St). 
Thus our assumptions as for the density of strongly exposed (X-exposed) points of K* 
are satisfied if [|x|| of X is Fréchet (Gâteaux) differentiable on S^ c: X. 
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