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EQUATION Z' = A{t) - Z^ 

COEFFICIENT OF WHICH HAS A SMALL MODULUS 

MiLOS RÄB, Brno 

(Received January 9, 1970) 

In the paper [1] asymptotic properties of solutions of the equation 

(1) Z' = A{t) - Z^ 

were studied, A(t) being a continuous complex-valued function defined on the interval 
/ = <^o, oo). Sufficient conditions were derived under which the trajectories of this 
equation behave like those of the equation 

Z' -= A - Z^ , A = const Ф 0 

near f = 00. 
In this note we will study the excluded case, that means the case when the function 

A{t) has a small modulus. We will use the same method as in [ l ] in our investigations. 
In what follows let R denote the set of all real numbers and К the set of all complex 

ones. If Z = и + iv еК, we denote Re Z = w, Im Z = i;, Z = w — iv, \z\ = ^{ZZ). 
A curve Z = Z[i) in the argand plane (w, v) is called the trajectory of the equation (1) 
on an interval i if and only if the function Z{t) satisfies this equation on /. 

Let a family of circles 

/̂ 4 AZ + ÄZ 
(2) у = = — 

ZZ 
be given where Л e X, Л Ф 0 and 7 is a real parameter, 7 G (— 00, 00). This equation 
can be written in the form \yZ — A \ = |Л| and represents a parabolic pencil of 
circles with the radical axis AZ + ÄZ = 0 corresponding to 7 = 0. The circle Ky 
corresponding to the value 7 Ф 0 has the centre Л/7 and the radius r = |Л[/7. For 
7 -» + 00 the radius of К у converges to zero. The differential equation of the pencil 
(2) is of the form 

Re AZ^Z' = 0 
or 

(3) Z' = ivÄZ^ 
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where v Ф О is a real constant. If Re Л = 0 , v Im Л = —1, then the equation (3) 
becomes 

(4) T =^ -Z" , 

These considerations imply the following 

Lemma L The trajectories of the equation (4) form a parabolic pencil of circles 
having the real axis for the radical one and cutting all curves (2) at the same angle cp 
for which 

cos (p = Im Л/ |л | , sin ф = Re Л/ |л | . 

(See Fig. 1) 

Umz 

Fig. 1. 

Lemma 2. Let Ä(t) be continuous on I and let Z — Z(t) be a trajectory Ö/ (1). 
Suppose that there is a Л e X, Re Л ^ 0 such that 

(5) 
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AA{t) + AA{i) > 0 



for all tel and denote M{Ä) = {ZeK : AZ + AZ > 0]. If there is a time t = T 
such that Z{T) e M{A), then Z{t) e M{A) for all t e I. 

Proof. It is sufficient to prove that at every time Г for which H{T) = AZ{T) + 
+ ÄZ{T) = 0 it holds H'{T) > 0. The relation Н{Т) = 0 implies Re [Л2(Т)] = 0 
and A^Z\T) = Ä^Z\T) = - (Im [AZ{T)~\)\ so that 

H'{T) = AT{T) + ÄZ\T) = A{Ä{T) - 2^{Т)\ + Л[Л(Т) - Z\T)\ = 

= AÄ{T) + ÄA{T) - Л A^Z\T) - - 4 Ä^Z\T) = 
ЛЛ ЛЛ 

= AÄ{T) + ЛЛ(Т) + - 4 (Im [Л2(Г)])^ Re Л > 0 . 
лл 

The proof is complete. 

Theorem 1. Let A(t) he a continuous complex-valued function of the real variable 
tel with bounded modulus. Let 

(6) sup \A{t)\ = Ô . 
tel 

Suppose that there exists a Л eiC, Re Л > 0 satisfying (5). Let Q e R, 

(7) Q> Re Л 

If Z = Z{t) is a trajectory of{i) satisfying at a time t^ ^ to the condition Z{ti)e 
e M{Ä), then Z{t) e M (A) for all t ^ t^ and 

liminf |Z(r)| < Q . 
f - *00 

Proof. Every trajectory Z = Z{t) of (l) satisfying at t = t^ the condition Z{ti) e 
e M(A), remains in the halfplane 

Л2 + Л2 > 0 . 

This is the consequence of Lemma 1. The circle of the pencil (2) passing through the 
point Z(t) corresponds to the value y(t) 

Differentiation yields 

''^ Z\i)Z\t) 
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so that 

(9) i / ( 0 = К е Л - К е — Ö . 

In contradiction to the assertion of Lemma 1 suppose lim inf [Z(t)| ^ Q. Choose an 
t-*oo 

e > 0 in such a way that Q — г > ( |л| ^/Re Л). Then there is a Tel such that 

(10) \Z{t)\ > Q - s for all t^T 

and from (6), and (9) we have the following inequahty: 

МО>^еЛ--№^>0. 
{Q - sY 

Hence we have 

y{t) > y{T) + 2 [Re Л l 4 i _ _ I ^ _^ 00 for t-> oo 
L {Q - S) J 

and this means that the radius of the circle Xy(̂ ) of the pencil (2) converges to zero. 
From this fact the existence of a time t^ ^ T follows such that \Z{ti)\ = Q — s, 
which contradicts to (10). 

The proof is complete. 

Consequence. Let A(t) be a continuous function on I, lim A{t) = 0. Suppose that 
f->00 

there exists a Л е К , Re Л > 0 such that (5) holds. Let Z = Z{t) be trajectory of(i) 
satisfying the condition Z{t^ e M{A) at a time t^ ^ tQ. Then Z{t) e M{Ä) for all 
t > ti and 

lim inf \Z{t)\ = 0 . 
t-* CO 

Theorem 2. Let A(t) be continuous on L Let linearly independent Ai,A2eK 
exist in such a way that 

(11) R e Л , > 0 , AiA(t) + ÄiA{t)> 0, i = 1, 2 . 

Denote A = i{A^ + A^), M = M{A^ n М(Л2). If Z = Z{t) is any trajectory of{i) 
satisfying at t^ ^ ô ^he condition Z{t^ G M, then Z(t) e M for all t ^ t^. 

Let the modulus of A(t) be bounded on L 
Let 

^ = 8 и р | л ( 0 | , ^='^7Tr^Y~A^' 

/Ч ^\ « ^ / / Re л 
(12) Г о е Я , 0 < у о < L\A\ Ô 
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Then there exists a time ti ^ t^ such that the point Z{t) remains in the interior of the 
circle Ky^ of the pencil (2) for all t > ?2-

Proof. Let Z = Z{t) be any trajectory of (l) satisfying Sit t = t^ the condition 
Z(ti) e M. Then Z(t) e M for all t > t^in view of Lemma 2. The circle of the pencil 
(2) passing through the point Z{t) corresponds to the value y{t) given by means of (8) 
and its derivative is (9). 

Let 

Then we have 

The function 

R{t) Re 
ÄÄ{t) 

Z\t) 

R{i)uy\t)\AA{t)\ 
Z{t)A 

Z{i) + A Z{i) 

m = 
AZ + AZ 

assumes the constant value 

HHZ 

HHAZ + HHAZ 

H 

HA - HA 
= F{H) 

on the Ипе HZ + HZ = 0, H еК, H Ф 0. 
Consider the values of the function F{H) on the circle \н\ = \A\. Here, the function 

F{H) is defined for all Я Ф ± Л , is positive, reaches its minimum i U | ~ ^ for Я = 
= ±iA and F{H) -> OO for Я -^ ± Л . Then, in the domain M, the function / (Z) 
reaches its greatest value on one of the lines AiZ + A^Z = 0, i = 1, 2. Thus, at 
every point Z{t) e M, the following inequality holds: 

R{i) й L\A\ \A{t)\ y\t) , 

SO that 

(13) Re Л ~ L\A A{t)\ y\t) й W{t) ^ Re Л + Ь|Л A(t)\ y\t) . 

Let Го = 2[Re Л - L \ A \ ôyl]. According to (12) we have 

(14) / ( 0 ^ Го > 0 

for у < уо. 
If y{ti) ^ уо, then y{t) > Уо for all t > t^; this is a consequence of the fact that 

y(^t) = 7o implies y'(t) > ^ "^^^^ respect to (14). If y{ti) < Уо, we proceed as follows: 
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assuming y{t) < Уо for all t > tQ and integrating (14) from r̂  to t we get 

y{t) > m + Lot 

where m = y{ii) — F^t^, so that y{t) -> oo for t -^ oo which contradicts to the fact 
that y(t) < 7o- Consequently, there is a Г2 > t^ such that 7(^2) = 7o ^^^ 7(0 ^ 7o 
for all t - ^2. 

Consequence. Let A{t) be continuous on I, lim A{t) = 0. Suppose that linearly 

independent constants A^, Л2 е К exist satisfying ( l l ) . Let /1 awJ M /?ai;e t/ie same 
meaning as in the preceding Theorem. 

Then every trajectory Z = Z{t) of the equation (l) satisfying at a time t^ ^ ÎQ 
the condition Z(t^) G M converges to the origin in such a way that it remains in M 
for all t > t^. 

Note . If for example A{t) = a{t) + ib{t), A = Л + iß and a{t) ^ 0, b{t) ^ 0, 
a\t) + ЬЩ > 0, then the inequality 

(15) A Ä(t) + Л A(t) = X a(t) + \x b{t) > 0 

holds for all A > 0, ju > 0. That means: every trajectory Z = Z(t) of the equation (l) 
starting at a point Z of the domain M = (Z e К : Re Z > 0 or Im Z > 0} remains 
for t -^ СЮ in M. 

Theorem 3. Assume A{t) to be continuous on I and 

/•00 

(16) \A(t)\ dt < 00 : 
J to 

Let linearly independent Ai,A2eK exist satisfying (11). Let A and M preserve 
their meaning from Theorem 1. Then every trajectory 0 / ( l ) satisfying at a time 
ti ^ tç) the condition Z{t^ e M remains in M for all t > t^ and 

lim Z{t) = 0 . 
' t->oo 

Proof. Let Z = Z[i) be a trajectory of (l) starting at a point of M. In view of 
Lemma 2, Z{t)e M for all t > t^. The circle of the pencil (2) passing through the 
point Z(t) corresponds to the value y(t) for which the inequalities (l3) hold. 

Therefore 
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Integrating these inequalities over <^i, 0 we see, according to (16), that the assump­
tion J* (d /̂7 (̂̂ )) = 00 would imply 

t^^Jti У (s) ^-"^ 

which contradicts to the fact that y(t) > 0. Therefore 

(18) f " - i L < 00 , 

Moreover, from (17) we obtain 

/(0 
fit) ^ ^ . b H 4 0 1 . 

Hence and from (18) we have 

I IM 
.Mt) dt < CO 

This implies the existence of a finite limit lim у ^{t) and with respect to (18) it holds 
f->oo 

y{t) -^ 00. But this means lim Z(t) = 0 and the proof is complete. 
f->oo 
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