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Czechoslovak Mathematical Journal, 21 (96) 1971, Praha 

IMMERSIONS OF RIEMANNIAN MANIFOLDS 
WITH A GIVEN NORMAL BUNDLE STRUCTURE 

PART IL 

OLDRICH KOWALSKI, Praha 
(Received December 1, 1969) 

In the previous part we characterized a maximal isometric immersion of a Rieman-
nian manifold M into a Riemannian space N with the constant curvature by a system 
of metric tensors /i^, .. . ,/i^ on M. Here the "generalized Gaussian equations" 
formed a complete system of integrability conditions for our problem. (We shall 
refer to them as to "Gaussian equations of genera 1, . . . , r" in the sequel; cf. [1], 
Formula (24).) 

In the present part we consider a new system of tensors B^, ..., B^ on M called 
Bompiani forms. These forms were introduced originally by E. BOMPIANI and we 
give here a modern interpretation of them. We also give an alternative definition of 
that structure which was called by E. Bompiani "a Riemannian geometry of genus r". 
As a basic result, in the maximal case we show the equivalence of our definition with 
the classical one. We prove this non-trivial fact making use of an immersion theorem 
due to V. V. RYZKOV (See [2]): Any sequence B^,..., B^ of analytic symmetric forms 
satisfying certain positive definiteness conditions on M is locally realizable as a partial 
system of Bompiani forms of a maximal analytic immersion M -^ N. (We outline 
also the direct way how to prove the equivalence of the definitions but an open 
problem is left in this direction.) As a consequence, we derive a new immersion theo­
rem: The oiily integrability condition for symmetric forms Б^, ..., Б^ of class C^ to be 
(globally) realizable as a, full system of Bompiani forms of a maximal immersion 
M -^ N is that the Gaussian equation of genus r holds in the corresponding Rieman-
menian geometry of genus r. (Besides that the positive definiteness conditions must be 
satisfied by Б^, ..., Б^. These conditions were mentioned rather vaguely in Paper [2] 
and they are given precisely here for the first time.) 

The last result seems to be much deeper than the classical theorem, saying that the 
integrability conditions for Б^, ..., Б^ are the equations of Gauss, Mainardi-Codazzi 
and Ricci-Kühne. (Cf. [4] and [5].) 
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We shall keep all the notation of [1] if not otherwise stated. Particularly, let us 
remind the concept of a graded Riemannian vector bundle (Definition 1) and that of 
a sequence of canonical connections (Definition 2, ibid.). 

RIEMANNIAN GEOMETRIES OF HIGHER GENUS 

Proposition 1. Let {E^, P^Y be a graded Riemannian vector bundle over a Rieman­
nian manifold M. Suppose that a sequence of canonical connections V^^\ ..., V̂**̂  
exists in {E^, Р^У. Then, under the canonical identification E^ = Т(М), we have the 
following identities: 

(la) R^JIV + R\}^T 4- R^U = 0 , 

(lb) î l/V '^n(F, x^'^) + R[?J" '%{z x(̂ >) + R? ;̂ 'Щи, x(̂ >) = 
= P,(V, RPrX^'^) + P,{T, R^y'lX^'^) ,+ P,{U, Rf^X^'^) . 

for к = 1,2,..., r — 1. 

Proof, (la): Directly by Formula (2), [1]. 
(lb): We express the left-hand side by Formula (2), [1] and then apply in two steps 

Formula (18), [ l ] . 

Remark . Formula (la) is classical, (lb) is its generalization of "higher genus". 

Definition 1. By an equivalence of two graded Riemannian bundles E = {E^, Pj^y, 
E' = {E'^, PI,Y (with the same base M) we mean a bundle morphism Ф : E -^ E' 
with the following properties: 

(i) For any xe М,Ф maps E^ isometrically onto E^, 
(ii) For any /c = 1, ..., r, Ф maps E^ into E'^. 

(iii) We have Ф о F^ = P^ о Ф for ic = 1, ..., г - 1. 
(iv) For the corresponding solder maps j : Т(М) -> E, j ' : Т(М) -> E' we have 

/ = Ф о ; . 

Definition 2. A graded Riemannian bundle {E^, Pj^"" -> M is called strictly reahzable 
if it is equivalent to an induced vector bundle \jj^T{N) -> M where xj/ is an isometric 
immersion of M into a Riemannian space N with constant curvature. 

The bundle {E^, P^y -> M is called realizable, if it is a graded subbundle of a strictly 
realizable graded Riemannian bundle {E^, PkY, s ^ r. 

Definition 3. A Riemannian geometry G .̂̂ , of genus r and of exterior curvature C, 
on a manifold M is a graded Riemannian vector bundle E = {E^, P,,y over M 
such that 

(i) a sequence V^'\ ..., V^''^ of canonical connections exists in £, 

(ii) the Gaussian equations of genera 1, ..., r - 1 and with the parameter С hold. 
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Proposition 2. Let G^^ = {£*, Р^У be a Riemannian geometry of genus r over M. 
Put 

(2) Q,{U, T, X^''\ y*")) = -L,{U, T, X^''\ y*"') + i?<* '̂(t/, T, X^''\ У»"') + 

+ c«c/ , y<''> <T, x^"^} - <c/, x^'^^y <T, y»)>} 
/or i' = 1, ..., r. 

Гйе")! we have the following identities: 

(3a) ôi( t / , T, V, y) + Ôi(F, и, T, У) + ö i ( r , F, С/, У) = О , 

(ЗЬ) a.+ i(t/, г, Р,(К Х « ) , y^'+i») + Ö.+ i(K t/, Р,{Т, Х*")), yC'+D) + 

/or Â' = 1, 2, ..., r — 1. 

Proof. (За) follows directly from (2) and (la) (here L^ = 0). 
(3b): Substituting from (2) we obtain the left-hand side of (3b) in the form 

(4) -L,^,{u, T, pjy,z«), y(̂ +i>) - L,^,{v, u, p{zx^'^), y^̂ +D) -
- L , + i(r,F,n([/,X(^>),y<^+i)) + 

+ R^'^^'\U, T, P„{V, Z*"̂ >), yC'+i)) + R^^^^XV, U, P,{T, X*"*, y<«̂ +i)) + 

We apply Formula (20), [1], to the first half of (4) and after a simple re-arrangement 
we obtain the expression 

(5) <L.+ i(t/, P,(F, Z<*))) - L,+ i(F, P,{U, Z'*>)), L,+ ^(Г, у('+ ")> + 

+ <L,+ i(F, P,(T, X('>)) - L,+ i(T, P,(F, X«)) , L,^,{U, y^^ + D)) + 

+ <L,+ i(T, P,(f / ,X«)) - L,+ i(C/, P,(r,Z(^>)), L,^,(F, y<^+i))> . 

Now we use the Gaussian equation of genus /c ^ r — 1 in the form 

b,+ i(l/,P,(r,Z(^>)) - L,^i(T,P,(l/,Z<^>)) = -R[,^>Z(^) + 

+ Ри-г{Т, L,(U, Z^̂ >)) - P,_i(L/, L,{T, X^'^)) . 

We substitute into (5) and detach the vectors y(^+^) in all scalar products using the 
duality formula (15) from [1]. Taking into account the symmetry of the mapping 
Pk+1 о Pj^WQ obtain finally the expression 

<P,(t7, P^Z^^O + P,{T, R^^lX^^^) + P,{V, R^2X^% y<^- î)> . 

Now, let us form the scalar product of each side of (lb) with the vector у(^+ D. Then 
we see immediately that the expression (4) is zero. 
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Remark . For к ^ r — 2 the proof is trivial because we can use the Gaussian 
equation of genus к + 1 in the form 

(6) P,^,{U, Г, Jt<* + », y<*^i>) = Q,,,{U, T,X^^^'\ y<*+'') 

and then substitute P^+i instead of ß^+i into (3b). 

Proposition 3. Any realizable bundle {E^, P^^}'' -^ M is a Riemannian geometry 
of genus r. 

P r o o f is clear from the considerations of the first part. Now, the Gaussian equation 
of genus г is a necessary condition for a Riemannian geometry of genus r to be strictly 
realizable. (This condition is also sufficient in the case that M is simply connected, 
cf. Theorem 2, [1].) 

We derive now a weaker condition which is necessary for a Riemannian geometry 
G^ с to be reahzable. In fact, let G^ с = {^^^ PkY be a reahzable but not strictly 
realizable Riemannian geometry. Then {E^, P^Y is a subbundle of a realizable 
Riemannian geometry {E^, PuY^^ of genus r + 1 (and of the same exterior curva­
ture C). Thus the Gaussian equation of genus r holds in the bundle {£^, Р^}*"^^: 

(7) P,{U, Z X^''\ Y^'^) = QXU, T, X^''\ Y^'^) . 

Put 

K{X,, ..., X, I 7„ ..., Y,) = iP\X,,..., X,), P\Y,,..., y,)> , 

and consider the following identity on {E^, Р/̂ }*"*"̂ : 

r+l 
2 J {"r+l(Xf, . . . , X^+l> -М? •••? ^ i - 1 I ^b • • -5 -^r+lJ X j , . . . , Xi^i) — 

~ ^^r+i(^i5 X,-+i, . . . , X^+i , Yj, . . . , y._;^ I Xj-, Yj+i, . . . , Уг+iJ X j , . . . , X f _ i j j = 0 . 

Hence we have "^ 

r + l 

E X {i?ix„ r{x,^„..., z,^„ y„..., y;_i)). 

Р,(У„ Р'(Уг+„ . . . , y , + „ ^ „ . •., ^ ; - j ) ) > -

- <ед, r{x,^„ ...,Xr^uTi,...,y,_i)), 
P,(X,,P'(y,+ „ . . . , y , ^ : , X i , . . . , X ; _ , ) ) > } = 

r + l 

= I Р,(У„Х„ P ' ( Z ; H . I , ..., y^-i), P'Cl'i+b . . . , ^ i - , ) ) = 0 . 
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From (7) we obtain a tensor equation on M depending only on the Riemannian 
geometry {E^, PkY: 

(8) Z Qr{Yi,x,, PXX,^,, . . . X , ^ ! , Y,, ..., y,_0, 

P^Yi+i, ..., Yr+i, Xi, ..., Xf_i)) = 0 

which we call the cyclic condition of genus r. 

Remark . If G^^ = {E^, P^^y is strictly realizable, then we have the Gaussian 
equation of genus r, Qr{U, T, X^''\ Y^'^) = 0. Hence (8) is satisfied trivially. 

We can summarize: 

Proposition 4, Any realizable Riemannian geometry G^ ^ satisfies the cyclic 
condition of genus r. 

Definition 4. Let hk{X^, ...,Х^\ Y^, ..., Y^), к = 1, ..., r, Ы the metric tensors of 
a graded Riemannian vector bundle {E^, P^Y -^ M, ^^(Xi, . . . ,Х^ | 7^, ..., Ŷ ) = 
= < P X ^ I , ..., Xfc), P\Yi, ..., Yfc)). The Bompiani forms of the bundle {£^ P^Y are 
symmetric со variant tensors on M defined for /c = 1, . . . , r by 

where ^ indicates the summation over all permutations of indices 1, ..., 2/c. 

In a similar way we define the Bompiani forms of an immersion ф : M -^ N 
to be symmetrizations of the corresponding metric tensors. 

Proposition 5. Let Gr~i,c = {E^^PkY'^ ^^ ^ Riemannian geometry of genus 
r — I on a manifold M. Let B^^X^, ...,X2r) be a symmetric covariant tensor 
[''symmetric 2r-form'') on M. Then there is, exact up to an equivalence, at most one 
Riemannian geometry G^ ^ = {E^, Pj^Y ~^ ^ such that 

a) G^c is a prolongation ofG^_^ç, 

b) By is the r-th Bompiani form of G^^, 

Proof. Let G^ с be a Riemannian geometry with properties a), b) (provided that 
it exists). We can write the Gaussian equation of genus (r — 1) in the form 

<F,_i(r,X<-^>), P,_i(C/,y^^-^>)> - <P,_i([/,X(-^>), P,_i(r,y(^-^>)> = 
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Using the standard notation 

K{X,, ..., X, I 7i, ..., y,) = <P(Xi, ..., X,), P{Y,, ..., y,)> 

we can write 

(10) ^ r ( - ^ l , • • . , X a ? ^ a + l J •••? ^r I Yi, . . . , y^j, X ^ + i , . . . , X^j — 

— nr{Xi, . . . , Xjj, X ^ + i , Уа + 2? •••> Уг 1 Yi, . . . , Уа+1, ^ « + 2? •••5 ^ r ) = 

= ß r - l ( ^ a + l 5 ^ + 1 5 M ^ l ' ••• ' ^ a » ^a + 2? • • •? ^r)? M ^ l ' ' * *' ^a ' ^ a + 2? • •> ̂ r j ) • 

Further, we can see easily that (putting for a moment X^+i = У̂ ) 

( 1 1 ) Bj\Xl, . . . , X^, y ^ , . . . , y ^ ) = 2Li M ^ < r ( l ) ' • • • > ^<r( | - ) ^ < r ( r + l ) ? • • • 5 ^ f f ( 2 r ) ) = 

(2r)! . 

(^Zrj! a = 0 (i^I,j<jJ,<) 

a 

where ^ indicates the summation over a//mcreasm^c/ta ins/j < 1*2 < ••• < â̂  
( /u / , yuJ ,< ) 

Ji < J2 < ••• < Joc, J i < J2 < .. . < Л-а. / i < /2 < .. . < /r-a sclccted from the 
index set {1, 2, ..., r} and such that {I'l, ...,/^, / i , . . . , /^_^} = {j 
. . . , J , _ J = { l , . . . , r } . 

From (10) we obtain 

^r(^ii» • • •> ^ia^ Yj^, ..., Yj^_^ I y^ ,̂ ..., Yj^, Xj^, ..., Xj^_j = 
Г — a 

~ Z i M ^ i l ' •••?^ia? ^ / p •••5^Jfl-i5 X^̂ ' •••5 ^/r-« I Yj\, ..., Уу„, yji, ... 

~ M ^ i i ' ••• ' ^ i « 9 ^ / i ' • • • 5 ^ / / 5 ' ^ / ^ + 1' ••• ' -^Jr-« I ^ i i ' ••• ' Yj^, Yj^, . . . 

+ /z,(X,,, . . . ,X,^ ,Z , , , .,..,Z,^„^ I y,„ ..., y,^, y,,, ..., Yj_) = 
^ Г — a 

ß=l 

Д ^ / ß + i' •••' ^ /r-« ' Yj^, ..., y,-̂ , yj^, ..., Yj^_J) + /i^Xj, . . . ,X^ I У1, ..., y j . 
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Now we can write (11) in the form 

(12) B,{X,, . . . ,X„ Y„ ..., 7,) = K{X„ . . . ,X , I Yi, ..., n ) + 
( ; ^ f ) 2 r - l a 

+ , Ч 2 J 2 i -^(Ч» •••5 â> ^1? • ••> ^ r - a î i l ? • • •? Ja? »^lî • • •? *^r-aj 
(^2rj! a = 0 (i^I,j^J,<) 

where we put for the sake of brevity 

r —a 

/3=1 

Д ^ / д + 1' • • • » ^ / r - « ' ^ i l ' ••• ' ^Ja' ^il> ••• ' ^ß-ü) • 

Hence we see that h^ is uniquely determined by B^ and CJ^-I,C- NOW, the mapping P** 
induces an epimorphism Q"" : ОТ(М) -^ £*" and consequently, an isomorphism 

r 

f : 0T(M)\Z -> E'', where Z is the kernel of Q\ The metric tensor hJ^X^, . . . ,X^ [ 
r 

I 7i, ..., y )̂ induces a symmetric bihnear positively semi-definite formH^ on ОТ{М) 
and Z is the kernel of H^. Hence, H^ induces a unique Riemannian product on 
О T{M)\Z and then / is an isometry. Finally, we have a unique bundle epimorphism 
r 

JP , - I : T(M) ® Е*""̂  -^ OT(M)/Z such that the following commutative diagram 
holds: 

®T{M) 

T{M) ® ( ® T{M)) 
r - 1 

^ r -

OT(M) 

OT{M)IZ 

Moreover, we have P^.^ = / о Pr-i- Hence we see that G^ ^ is, exact up to an equi­
valence, uniquely determined by G^.^ ^̂  and h^. This completes the proof. 

Let Ya denote the summation over all finite sequences (ii, ..., Q , ( / j , . - . 
(iul JuJ) 

...,/^_д), (ji, . . . ,Л), {JI, ..., Jr-a) selected from the index set {1, ..., r} and such 
that {il, ..., z^,/i, . . . , / ,_ J = {ji, . . . , ^ / i , ..., Jr-a} = { l , . . . , r } . Then we have 

a 

( i u / J u J , < ) 

1 "" 
Z , /î^(Xj-^, . . . , X,-^, Yj j , . . . , Yj^_^ I 7j-j, . . . , Yj^, Xj^, ..., Xj^j 

(a!)2 [(r - a)!]^ (/U/JUJ) 
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and hence 

Zu о ( г \ , . . . , 1д, / i , . . . , Ir-oo 7 l> • • -î 7a» Jlf • • •? Л - а ) " 
( i u / , i u J , < ) 

•t а 

2^ S[li, . . ., ïflt, i 1, . . ., Ir-a^Ji, • • •» 7a' «^iJ • • •> Л - а ) 
(a!)^ [(r - a)!]2 (.w/lloJ) 

Then we can re-write (12) in the form 

(14) K{X„ ...,X,\Y„..., y,) = BlX„ ..., X„ Y„ ..., Y,) -
-J r— 1 a 

L^\Çr) Zu ' ^ ( Ч » •••> ^a9^1» •••? ^ r - a » 7 l J ••-5 7a» «^1» • • • ' Л - а ) • 
( 2 r ) ! a = 0 iiul,j\jj) 

Let us remind that the metric tensor h^ is completely characterized by the following 
properties: 

(i) h^ is symmetric in both groups of variables (Z^, ... , Z^), (F j , . . . , 7^), and 
K{X„ . . . ,X, I Y,, ..., 7,) = K{Y„ ..., 7, I Z i , . . . ,Z,), 

(ii) f/ie induced bilinear form H^ on ОТ{М) is positively semi-definite, 

V^V / ^ Ч. А и М ^ < ^ ( 1 ) ' • • • ' ^<^(»-) I •^сг(г+ 1)5 • • •» ^(T(2r)) — ̂ rV^U • • •» ^ r » ^ r + 1> • • •» ^ 2 r ) » 

(2r)! . 

(iv) the Gaussian equation of genus r holds, i.e. we have 
(15) hj{X„ ...,X,\ Y„ ..., Y,) - K{X^, . . . , Z , _ i , y, I У1, . . . , y , - i ,X , ) = 

= Or-I(Î;, ^r, ^'(^i, • • -, X,_,), P{Y„ ..., y,_ 0 ) . 

Proposition 6. Let {E^, Pk\^~^ be a Riemannian geometry of genus r — 1, and let 
Br{Xi, ...,X2r) be a symmetric 2r-form on M. Define a tensor Ä^(Zi, ..., Z^ | 
\Y„...,Y,)onM by 

(16) K{X„ ..., Z , I 7i, .. „ 7,) = B,{X,, ..., Z „ 7i, ..., 7,) -

^ r - 1 a 

"~ /^ Ч, /LJ V^r) Zu 5'(г\, . . . , i ^ , / 1 , . . . , / , . _a ,7 i , . . . , ^ , J i , . . . , Jr_oj) 
(^2rj! a = 0 ( i u / J u J ) 

where S(...) f5 f/te tensor given by (13) fl«(i C^ = r!/a! (r — a)!. T/z^n 

1. й̂  15 symmetric in both groups of variables (Z^, ...,Z,.), (7^, ..., 7̂ ) anJ satisfies 
the identity K{X^, ..., Z , | 7^, ..., 7,) = Ä,(7i, ..., 7, | Z^, ..., Z,). 

Thus h^ determines a symmetric 2-form Й^ on О Т(М). 
r 

2. Pye/iat>el/(2r)!XÄ.(X„i), . . . ,X,(, , |Z,„^i), . . . ,X,(2r)) = ß X ^ b - - - , ^ n ^ r + i , - . 
. . . , Х 2 г ) -
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Proof. From the symmetry of our definition we see that h, is symmetric in the 
variables X,- and also in the variables Yj. Further, if we make the transpositions 
^i "^ ^b "-J Xr<-^ Yj., then each partial sum S(/'i, ..., f̂ , / j , ..., /^-a» Jb •••? Ja? J и ••• 
..., Л_,) passes into S{j,, . . . ,7 , , J,, ..., / , _ „ 4 , ..., /«, / 1 , .- . , /r-«). This follows 
from (13) and from the identity Q,_,{T,U,Y^'~'\X^'-'^) = Q,^,{U, T, X^'~'\ 
Y^'-^^). Thus K{Y,, ..., y, I Xi , ..., X,) = /v(Xi, ..., X, I 7i, ..., У,) and the assertion 
1. follows. 

As for 2., let us remark that the tensor Ôr - i ( ^ i ' ^r+i? P{^r+2^ '"^^2r)-> ^{^2^ ••• 
... , X^)) is antisymmetric with respect to Xj , Xr+1, and hence 

(2r)! . 

From (16) and (13) we obtain 

7 Г Т : E^^r(^^(l)5 • • •? ^a(r) I ̂ ff(r+ 1)5 • • -5 ^fr(2r)) = 
(2r)! a 

~ 7TTT Z^^r(^<7(l)5 • • -5 ̂ ff(r)5 ^сг{г+ 1)5 • • -5 ^a(2r)) ~ ^ r ( ^ l » • • -5 ^2r) • 
(2r)! . 

According to Proposition 5, a Riemannian geometry G^_i^ is uniquely determined 
by its Bompiani forms B^, ..., B^_^. Hence we can introduce the following definition: 

Definition 5. Let G^_^ ^ = {E^, Р]^"""^ be a Riemannian geometry, the Bompiani 
forms of which are B^, ..,, B^-i. A symmetric 2r-form B^(Xi, ..., X^, Y^, • •., У,) 
on M is called relatively positive with respect to G^_i ^̂  or ^Ise, with respect to the 
forms B^, ..,, Br-i involving the parameter C, if the corresponding symmetric 
2-form H^ on О T ( M ) defined by Proposition 6, is positively definite at each point 

Remark . A relatively positive form j5^(Xi, ...,X^, Y^, ..., У )̂, r ^ 2 need not be 
positively definite as a symmetric bilinear form on ОТ(М). On the other hand, ifB^ 

r 
is relatively positive and B^ positively definite on О Т(М), then a) B^ + B^ is relatively 

r 
positive, b) if/ is a function on M with great positive values, then f. B^is relatively 
nositive positive. 

MAXIMAL RIEMANNIAN GEOMETRIES 

Let us remind that a maximal graded Riemannian bundle {E^, P^Y -^ M is equi­
valent to a "normal form" { O ^ Y M ) , P'^Y (̂ ^^ [I])- ^^ the normal operators P^ are 
uniquely determined, we shall prefer the symbol {ОТ{М), Hf^Y referring to a given 

к 
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Riemannian product Я^ = < , >̂  on each subbundie ОТ{М). Now, according ta 

Corollary of Theorem 3, [1], we can re-write Definition 3 for the maximal case: 

Definition 6. A maximal Riemannian geometry G^^^ of genus r on M is a maximal 
graded Riemannian bundle {ОТ{М), Hj^Y -^ M satisfying the Gaussian equations 

к 
of genera к = 1, ..., r -- 1 with the parameter C. 

We see that a Riemannian geometry Ĝ  ̂  is equivalent to a maximal one if and only 
if each Bompiani form Bj,, k = 1, ..., г is relatively positive with respect to Б^, . . . 
..., J5;^-i, involving the parameter С 

Theorem 1. Let G^_i ^ = {ОТ(М), Hf,Y~^ be a maximal Riemannian geometry 
' к 

of genus r — 1 satisfying the corresponding cyclic condition (8). Then for any 
symmetric 2r-form B^i^Xi, ..., X^, Y^, ..., Y^) relatively positive with respect to G _̂ ̂  ^ 
there is a unique maximal Riemannian geometry G^c ~ [0T{M),H^Y "̂̂ ^̂  ^^'^^^ 
a) G^Q is a prolongation ofG^_-^c, 
b) Bj. is the r-th Bompiani form ofG^ç. 

Proof. The uniqueness of the prolongation geometry follows from Proposition 5. 
It remains to prove the existence. Let B^X^, ..., X^, Y^, ..., У).) be a form as required 
and let us suppose that the cyclic condition holds. Define the tensor hj.(X^, ..., X^ | 
I Fj, ...,Yr) by (16). According to Proposition 6 the proof is reduced to showing 
that the Gaussian equation holds: 

(17) K{X,, . . . ,X . I n , ..., 7.) - /v(X„ . . . ,X ,_ i ,7 ,1 r „ ..., Y,_„X,) = 

= Qr-i{Yr,Xr,P{X,,..„X,_,lP{Y„,..,Y,,,)). 

Lemma 1. Each partial sum 

S(/j, ..., /^ , / i , . . . , / , _^ , j i , . . . , j ^ , J i , •.., Jr-a) (see (13)) 

is symmetric in all groups of indices (/j, ..., Q , (/i, . . . , / r -a) . {ju •••.7а)»('^ь •-
*. . ,Л-а) . 

Proof. Let us write the cyclic condition (8) for the sequence of variables (X^^, . . . 
..., Xf̂ , Xjj, ..., Xj^_^, 7yj,, ..., Уу̂ , У/Р ..., 7j^_ J : 

r — a. 

P{Xj^^^,...,X,_,Yj^,...,Yj^,Yj^,...,Yj;_J) + 

+ i Qr-,{X,^, Yj^, P{Y,^^^, ..., Yj^, Yj^, ..., Yj_,X,^, . . . , ^ „ _ . ) , 
7 = 1 

PiX,^^^,...,X,^,Xj^,...,X,_,Yj,...,Yj.^.^,)) = 0 . 
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Here 5(/i, ..., /«, / j , ..., Ir-c,Ju --Jx^ J и •••» Л-а) is equal to the first sum, which is 
symmetric in the groups of variables (X,-̂ , ..., J^,J, (Yj^, ..., У/J, and to the opposite 
value of the second sum, which is symmetric in the groups of variables {Xj^, . . . 
...,Xj_),{Yj„...,Yj^^:),q.e.d. 

Using Lemma 1 we obtain from (16) easily 

(18) K{X,, ..., X, I y^, ..., n ) = B,{X„...,X,, Yi, ..., n ) -
( ,^1)2 ' - -1 « 

_ 2 J XJ ' J ' i^l? • • •? f̂lt5 ^ b • • - v V - a ^ y i ? • •-5 Jot' «^1? • • •? Л - а ) 

( 2 r j ! a = 0 ( J 4 J / J U J , < ) 

or else, if we substitute (13), 

(19) /l(Xi, ..., X, I y^, ..., n ) := ß , (^ , , ..., X„ y^, ..., y,) -
(rlY '""^ "" '•""' 
(^Zrj! a = 0 ( r u / , y u J , < ) / / = 1 

p(x^^,.,...,x,_,y,„...,y,,,y,„...,y,^_,)) 

where we write simply Q instead of ôr - i -
Here we shall distinguish formal terms and its values, i.e., tensors determined by 

the terms. The summands ö(*, *, P(...), P(.••)) of (19) having neither X^ nor У̂  on 
the places marked by stars will be called terms of the l-st kind. The other summands 
will be called terms of 2-nd kind. 

Lemma 2. The sum of all terms of the 1-st kind is invariant with respect to the 
transposition X^ <-̂  Y^.. 

Proof. Consider a 1-st kind term of "degree" a 

M ^ / ^ + l' • • • ' ^ / r - a ' ^ J l ' • • • ' ^Ja' ^ J l ' • • • ' ^Jß-l)) ' 

Let us discuss the possible locations of the variables X^, Y^ in this term. (Remember 
that we admit only increasing sequences of indices /, j , / , and J.) 

a) i^ = r, J,_^ = r, {ß < r - a), or j ^ = r, /,_^ = r, {a ^ 1, ß < r - a). 

The transformed term has the same value as the given one. 

b) i^ = r, J^ = r, a ^ 1. 

The transformed term has the same value as a 1-st kind term of degree a — 1: 

Q{Xj^, Yj^, P{Yjß^,, ..., Yj^_^, Yj^_^_^^,Xi^, ...,Xi^_^,Xj^, ...,Xj^_j , 

P{Xjß..,^-;X,_,Xj_^^,Yj,,--.Yj^_^,Yj^,...,Yj^_,)) 

where we put Jr-^a+i = >̂ h~a+i = •̂ 
c) / , _ , = r, Л _ , = r, a g r - 2, /? < r - a. 
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The transformed term has the same value as a 1-st kind term of degree a + 1 

where we put f^+i = rj^+^ = r. 

We see that the mappings defined in b) and c) are inverse operations on terms. Hence 

Lemma 2 follows. 

Now, let us consider the 2-nd kind terms and their transforms by the transposition 

a) If Iß = r, Jp = r, we have ß = r — a ^ \ and there is exactly (C^_])^ terms of 
this form and of degree a = 0, 1, ..., r — 1. The value of each term is ô(X„ У„ 
P{X^, ..., X^_i), P{Yi, ..., i'r-i))- Hence the difference of each term and its trans­
form is equal to 2Q{X„ ¥,, P{X„..., X,^,), P{Y„ ..., Y,_,)). 

b) If/p = r, Jß Ф r, we have ß = r — oc, j ^ = r, a > 1. There is exactly C^_iC^lJ 
terms of this form and of degree a. The difference of each term and its transform 
is equal to 

Q{X„ F,_,, P(X,,, ..., Zi, , Xj^, ..., Z^^_,..), P{Yj„ ..., Yj^_„ F„ y^., ..., Yj,_,)) -

- e ( n , y,_„ P{X,^,...,X,^,Xj^,...,Xj^_^), P{Yj^,..., У;,_„Х., Yj^,..., y,,_,_,)) = 

= Ô(n_„ X„ P,_,{Y„ P{Y„ ..., t _ „ ..., y,_i)), P(X„ ..., X ,_0) + 

+ Q{K,Yr-., Pr-2{Xr,P{Yu ..., Î . - . , . . . , y . - , ) ) , P ( ^ „ . . . ,X ,_0) = 

= -Q{X„ Y„ F,_2(y,_,, Р(У1,... , У,-., ..., y.-i)), P(Xi, . . . , Z , _ 0 ) = 

= Q{X,, y„ P(Xi, ..., X,_i) . ^(i ' l , • • - Y,-1)) (see (3b)). 

c) If Jß = r, /^ Ф Г, we have ß = r — (x, i^ = r. There is exactly CJ!_iCJ!ZÎ terms of 
this form and of degree a. The difference of each term and its transform is again 
equal to ß(X„ F„ P{X„ ..., X,_ i), Р(У„ ..., 7,_ J ) . 

Consider the difference 

/v(Xi, . . . ,z . In, . . . , y,) - Я,(х,, ...,x,_i, y, I y^,..., y,_i,z,). 
The contribution of the 1-st kind terms is zero according to Lemma 2. Now, the 
contribution of the 2-nd kind terms is equal to 

- ^ ( ? 2 ( C - 0 ' +?2C-,c^:;). Q{x,,z,p{x„...,x,_,),p{Y„...,y,_0) 
( 2 r j ! a = 0 (x=l ^, 

r-l r - 1 

where 2{ ^ {С%,У + I C^iC;::}} = r^r- Hence (17) follows. 
a = 0 a = l 
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THE CYCLIC CONDITION 

Theorem 2. The cyclic condition (8) is satisfied by any maximal Riemannian 
geometry G,^c = {ОТ{М\Щу. 

Proof. We have two different ways how to prove formula (8), namely indirect and 
direct ones. 

A) Indirect proof. Here we use some basic results of papers [2], [3] due to V. V. 
Ryzkov. These results, translated into our language, can be formulated as follows: 

Theorem. Let M be a real analytic manifold of dimension n and G^c — 
= {0T{M),H^^ a maximal analytic Riemannian geometry of genus r on M, 

k 

Then the geometry G^c ^^ realizable, in a neighbourhood U of any point xeM, 
by an analytic immersion of U into a complete Riemannian space N with constant 

r 

curvature С and of dimension ^ C^+2s-i- (Cf- Theorems 1 and 3 from [2].) Hence 
we obtain ^"^ 

Proposition 7. Let Gr-i,c be an analytic maximal Riemannian geometry of genus 
r — 1 over an analytic manifold M. Let B^(Xi, .,.,X2r) be an analytic, symmetric 
Ir-form on M which is relatively positive with respect to ^^-i ,c- Then there is exac­
tly one analytic Riemannian geometry G^ ̂  such that 

a) G^Q is a prolongation ofG^^^ç, 

b) Bj. is the r-th Bompiani form ofG^^. 

Proo f of P r o p o s i t i o n 7. For any point x G M the geometry G^_^ ^ is realizable 
on a neighbourhood U oï x and according to Proposition 4 the cyclic condition of 
genus r — 1 holds at x. Hence the cyclic condition holds on the whole M and we can 
apply Theorem 1. 

Now, let Ej,(Zi, Z2) , . . . , Bj^Xi, ..., ^2^) be symmetric analytic forms on an analyt­
ic manifold M. Let С be a real number. If B^ is positive definite on M, then it deter­
mines an analytic Riemannian geometry G^ ç. If B2 is relatively positive with respect 
to В I, involving the parameter C, then B^, В 2 determine an analytic Riemannian 
geometryG2^c prolongingG^^ etc .... Finally, if B^ is relatively positive with respect 
to B i , . . . , Б^_1, involving C, then Б^, ..., Б^ determine an analytic Riemannian 
geometry G^^, which is maximal and unique. 

Let M be a manifold of class C°° and G^ ^ ^ maximal Riemannian geometry on M. 
Denote by jlf the s-jet with the source x of a function / defined on M. If Tis a tensor 
on M, then the s-jet j^Tis determined by the 5-jets of its components with respect to 
an arbitrary local coordinate system (w\ ..., м") in a neighbourhood of x. Now we 
can see easily that the tensor Q^(U, T, X^''\ Y^'^) at the point x is uniquely determined 
by the j e t s y / " ß^, -"Jx^r-ufx^r of the corresponding Bompiani forms. Choose 
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a coordinate neighbourhood U(u^, ..., u") of x and a system of symmetric forms 
Bi(Xi, X2),..., 5 r ( ^ i , . . . , X2r) such that 

a) JSI, ..., 5r are defined in (7 с M, 
b) JBJ, ..., 5,. have analytic components with respect to the coordinate system 

C) 7 " / " ^ 1 = 7 * / " ^1» •••» J x ^ r - l = Jx^r-uJx^r = Jx^r-

We know that each form J5̂ t is relatively positive with respect to Б^, ..., JB^^^, 
involving C, at the point x. Moreover, if a form B^. is relatively positive with respect 
to a Riemannian geometry Gk-\,c ^t a point x, then this property is preserved in 
a neighbourhood of x. Hence we see by induction: for /c = 1, ..., г — 1 the forms 
5 i , ..., 5jt_i determine a Riemannian geometry е^_1,с on a neighbourhood (7jt_ 1 c: 
cz C/ and B^ is relatively positive with respect to Gfe_i с it̂  ^ neighbourhood L'̂ ^ с 
с l/jt-i- Finally, there is a Riemannian geometry G^^ with the given Bompiani forms 
Bi,,.., Br on Uy, Let us make C/̂  an analytic manifold so that (w ,̂ ..., u") are its 
analytic coordinates. Then Gr,c is an analytic maximal Riemannian geometry over U^. 
Moreover, we have Q,{U, T, X^'\ Y^'^) = Q,{U, Г, X^''\ Y^'^) at the point x. The 
geometry G^ ^ is realizable in a neighbourhood F <= l/^ of x and hence it satisfies the 
cyclic condition (8) at x. Consequently, the Riemannian geometry Ĝ  ^ satisfies the 
cyclic condition at x. Theorem 2 is proved. 

B) Direct proof. To tell the truth, the author has no idea how to proceed in general. 
For r = 2 a "routine" process proved to be successful but it leads to very tedious 
calculations. For dim M = 2 we have an interesting, purely combinatorial proof; 
the maximality of Ĝ  ̂  is not required here. 

Theorem 3. Let {£ \ Pi^Y be a Riemannian geometry [equivalent or not to a maxi­
mal geometry) over a 2-dimensional manifold M. Then the cyclic condition holds. 

P r o o f of Theorem 3. Consider an oriented (2r + 2)-sided polygon J with vertices 
Xy, X2,..., Xr+i, У1, ..., F^+i- For any F e J let us denote by P the opposite vertex 
to P. Let be given a fixed map / adj oining one of two symbols Z or У to each vertex 
of Ê. Let a(P) denote the number of vertices Q placed between P and P in the positive 
direction and such that f(Q) = Z . 

A vertex Pel will be called essential i f / (P) ф / (P ) , 
principal i f / (P) Ф / (P) , a(P) Ф a(P). 

Two principal vertices P, Q will be called: 

a) congruent if either f(Q) = / (P) , a(ß) = a(P) 

o r / ( e ) = / ( P ) , a(ô) = a (^ ) , 

b) conjugate if either f{Q) = / (P) , a(ß) = a(P) 

o r / ( e ) = / ( P ) , a(e) = a(P) . 
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An essential vertex Q will be called the successor of an essential vertex P (and P 
the predecessor of Q) if ß is the first essential vertex following P in the positive 
direction. 

Lemma 1. Let Q be the successor of P. Iff{Q) + f{P), then a(ß) = a(P). Iff{Q) = 
= / ( P ) = X, then a(ß) = a(P) ^ 1. Iff{Q) = f{P) = У, f/t̂ /i a(ß) = a(P) + L 

P r o o f is clear from the definition. 

Lemma 2. Between any two congruent vertices P, ß Г/геге is a principal vertex R 
which is conjugate to P and ß. 

Proof, a) Le t / (P) = / ( ß ) = X, then a(P) = a(ß) = m. Let R be the successor 
of P, then a(P) ^ m (Lemma 1). If a(P) = m, then Lemma 1 implies/(P) = У and R 
is conjugate to P (and to ß). If a(P) < m, then let S be the first essential vertex 
following R and such that a(S) = m. Then for the predecessor S' of iS we must have 
a(S') = m - L Hence a(S) = a(S') + 1 and Lemma 1 implies f{S) = f{S') = У. 
Thus S is conjugate to P and ß . 

b) Let / (P) = X, f{Q) = y, then a(P) = m and a(ß) = m' Ф т. For the succes­
sor P of P we have a(P) ^ m. If m < m', let S be the last essential vertex between P 
and ß such that a(S) = m. Then for the successor S* of S we must have a(S*) = 
= m + L Hence/(S) = /(S*) = У and S is conjugate to P and ß . If m > m', let T 
be the first essential vertex following P such that а(Г) = m'. Then if T' is the predeces­
sor of Z we have а ( Г ) = а(Г) + 1 and hence f{T) = / ( T ) = X, Consequently, 
Tis conjugate to P and ß . 

c) / ( P ) = У, / ( ß ) = X. 

d ) / ( P ) = / ( ß ) = F. 

These two cases can be discussed in a similar way. Hence Lemma 2 follows. 

Now we see that if P is an essential (principal) vertex, then P is also essential 
(principal). In this case we say that the diagonal PP is essential (principal). Further, 
if P, ß are congruent (conjugate), then P, ß are also congruent (conjugate). Then we 
speak about congruent (conjugate) diagonals PP, QQ. (Remember that P and P are 
always congruent if P is principal.) Now we obtain from Lemma 2: The principal 
diagonals of й can be distributed into pairs of mutually conjugate diagonals. 

Let [E^, Pfc}'' -^ M be a Riemannian geometry over a 2-dimensional manifold and 
consider the "cyclic sum" 

Г + 1 

i = l 

Choose X e M and let Z , Уе T^.(M) form a basis. As the cyclic sum is a multilinear 
function on T^{M), it suffices to prove (8) in the case that some of the variables X ,̂ Yj 
are substituted by X and some of them by У. Then we obtain a polygon J as above 
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with a given mapping/ of vertices. Each term of the cyclic sum corresponds to a dia­
gonal of <â. If the diagonal is not essential, then the corresponding term has the form 
Q,{X, X, X^'\ Y^'^) or Q,{Y, Y, X^''\ Y^'^), which is zero. If the diagonal is essential 
but not principal, then the corresponding term has the form ß^X, Y, X^''\ Ẑ *"̂ ) or 
Qr{Y, X, X^''\ X̂ **̂ ), which is zero again. Finally, any two terms corresponding to 
a pair of conjugate diagonals cancel each other. Hence Theorem follows. 

Conjecture. The cyclic condition (8) is satisfied by any Riemannian geometry 
G^ с = [E^, Pi^y, equivalent or not to a maximal one. 

CONSEQUENCES 

Theorems 1 and 2 together imply the following: 

Theorem 4. Let G^_^ç -^ M be a maximal Riemannian geometry of genus r — 1, 
Let Bj.{Xi, ...,X2r) be a symmetric 2r-form on M which is relatively positive with 
respect to G^_i c. Then there is exactly one maximal Riemannian geometry G^.^ 
such that 

a) G^c is a prolongation ofG^_^Q, 

b) B^is the r-th Bompiani form ofG^.^-

Hence an assertion follows which is sensible only if understood as an inductive 
process. It says that our definition of a Riemannian geometry of genus r is eguivalent 
with the classical one (in the maximal case). (Cf. [2] and [6].) 

Theorem 5. Let B^ÇX^, X2), . • -, B^(Xi, ..., X2,.) be symmetric forms on a differen-
tiable manifold M and let С be a real number. If for fc = 1, ..., r Б^ is relatively 
positive with respect to B^, ..., Bj^^^ involving C, then there is exactly one maximal 
Riemannian geometry G,. ^ = {ОТ(М), Hj^Y such that B^, ..., Bj. are the Bompiani 
forms of G^c. 

Finally, using Theorem 4 from [1] we obtain the following Immersion Theorem: 

Theorem 6. Let Bi(Xi, X2), . •., B^(Xi, ..., X2r) be symmetric covariant tensors of 
orders 2,4, ..., 2r respectively on a simply connected manifold M and let С be 
a real number. LetN be a complete Riemannian space with the constant curvature C, 

r 

of dimension d = YJ ̂ и+s-i? ^^^ ^^^^ ^^^^ ^^^ isometry group acts transitively on 

orthonormal frames. Suppose that for к — 1, ..., r the form B^ is relatively positive 
with respect to B^, ..., J5/t_i, involving C, and that the Gaussian equation of genus r 
holds in the corresponding Riemannian geometry G^ c'-

L,{U, Г, X('->, Y^'^) = R^'\U, T, X '̂'>, 7<̂ >) + C{<C/, X̂ >̂> <Г, F̂ ''>> -

- <t7,y<''>><r,X^''^>} . 
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Then there is, exact up to an isometry of N, a unique immersion ф : M •-> N such 
that Bi,,..,B^ are the Bompiani forms of ф. Particularly, the immersion ф is 
isometric and maximal. 

Remark . We can prove Theorem 4 more shortly using the immersion theorem 
by V. V. Ryzkov in the following interpretation: Let M be a real analytic manifold 
of dimension n and CJ^_I,C = {ОТ(М), Hi^Y"^ a maximal analytic Riemannian 

к 
geometry of genus r — 1 on M with Bompiani forms В i, ..., B^^^. Let Br(X^, ..., ^2^) 
be an analytic, symmetric 2r-form on M which is relatively positive with respect 
to G^_i c- Then for a neighbourhood U of any point xeM there is an analytic 
immersion of U into a complete Riemannian space N with the constant curvature С 

г 
and of dimension ^ C^+2s-i ^^ch that the restrictions of Bi, ..., B^ to U are the 

s = l 
first r Bompiani forms of the immersion. 

The p roo f of Theorem 4 is then similar to that of Theorem 2. 

THE EXISTENCE OF PROLONGATIONS 

Let (£, j) -» M be a soldered Riemannian vector bundle with a Riemannian con­
nection V and consider the canonical orthogonal splitting E = E^ @ E^' @ ... 
. . . © Е** @ Z as defined by Formula (13) in [1]. We allow here that the subbundle Z 
be non-trivial. We shall call the number r the genus of E. If ф : M -^ iV is an isometric 
immersion we put by definition: genus of ф ^= genus of ф* T(N). 

Now, let us present another variant of the Ryzkov's immersion theorem (cf. 
Theorems 2 and 4, [2]): Let M be a real analytic manifold of dimension n and 
G^ с — {0T(M), Hk} a maximal analytic Riemannian geometry of genus r on M. 

' к 
Then the geometry G^ ^ is realizable in a neighbourhood U of any point x e M 
by a maximal analytic immersion of U into a complete Riemannian space N^ 

2r 
with the constant curvature С and of dimension d = Y, ^n+s-i = ^n+ir "~ 1- ^^ ' 

s = l 
such maximal immersions are of genus Ir and depend {for a fixed U) on {C^lzr "̂  

r 
— 1 — ^ ^n + 2s-i) arbitrary functions of n arguments. 

Hence we see that any maximal analytic Riemannian geometry Ĝ  ^ can be locally 
prolonged to a maximal analytic Riemannian geometry G2r,c (and hence to a geo­
metry G^+i c)- Particularly, let M be a small piece of the coordinate space jR" and let 
us construct a maximal analytic immersion ф of genus r of M into a Euclidean space 

r 
E^, J = ^C^+^_i . Then we have Qr = 0 (the r-th Gaussian equation) for the 

corresponding Riemannian geometry Gj.,c = Â* T(E^ over M. If G^+j^c is a maximal 
analytic prolongation geometry of Gj.c, we can see that the Bompiani form B^+i 
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coincides with the metric tensor h^+i and hence J5r+i defines a positively definite 
bilinear form on О Т(М). If we Hmit ourselves to a point XEM and put V = TJM), 

we obtain the following purely algebraic theorem: 
Let V be a finite dimensional vector space over R and O ^ its r-th symmetric 

r 

tensor power. Then on OV there is a positively definite symmetric bilinear form 
г 

< , > such that the induced Ir-linear form on V, B^X^, ..., X,., X^+i, ...,X2r) = 
= <^^i О ••• O^n ^r+i О ••• О ^21-) ï5 symmetric with respect to all arguments. 

The last result seems to be non-trivial and it would be of interest to seek its direct 
proof for the following reason: the direct proof of this algebraic assertion together 
with a direct proof of the cyclic identity (see the discussion of Theorem 2) will provide 
a direct proof of the following prolongation theorem: 

Theorem 7. Any maximal Riemannian geometry G^ Q (of class C°°) can be pro­
longed to a maximal Riemannian geometry G^+i,c-

Proof. Let M be a manifold of class C°°. From the algebraic lemma we see that 
for any sufficiently small coordinate neighbourhood U a M there is a (2r + 2)-form 
JB^+ i(Xi, ..., Z^+1, Yi» • • •» ^r+1) on U, symmetric in all 2r + 2 arguments and defin­
ing a positively definite symmetric 2- form on О T(U). Let Ĝ  r be a maximal Rie-

r + l 
mannian geometry defined on M. Then, multiplying В^,^^ by a convenient positive 
function/t; on и we can make it relatively positive with respect to G^c on U. Let us 
choose a locally finite covering {V^jo^eA on M by coordinate neighbourhoods of the 
above property. Using properly the differential variant of Uryson's Lemma, we can 
construct a family {B%i}^^^ of global symmetric (2r + 2)-formssuch that each B^^ 
is relatively positive with respect to G^^ on W and the family (supp ^J^+J^^^ of 
supports forms a locally finite covering of M. Then the expression X!^r + i defines 

аеЛ 

a global form which is relatively positive with respect to Ĝ  ^ on the whole M. Finally, 
the prolongation geometry exists according to Theorem, 1, q.e.d. 
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APPENDIX 

1. As for Theorem 1, [1], an equivalent result was obtained by R. H. SZCZARBA 
by different methods. ("On existence and rigidity of isometric immersions", Bull. 
Amer. Math. Soc. 75 (1969), pp. 783-787.) 

2. As for Theorem 2, [1], it is a modern interpretation of an earlier result by C. B. 
ALLENDOERFER. ("The imbedding of Riemann spaces in the large", Duke Math. J. 3. 
(1937), pp. 317-333). 

3. Corollary of Theorem 3, [ l ] , can be also derived as a consequence of Ryzkov's 
immersion theorems. 

4. A formally similar theorem (for order 2 only!) was obtained by С В. Allen­
doerfer under different assumptions (the maximality property is replaced by the 
assumption that the type number of the subbundle £^ is ^4 ) . Cf. "Rigidity for 
spaces of class greater than one", Amer. J. Math. 61 (1939), pp. 633-644. 

5. Theorem 3, [1], has the following consequence: 

Theorem. Let {E\ Р^}' be a maximal graded Riemannian bundle over a two-
dimensional manifold M. Then a sequence V^̂ ,̂ ..., V̂**̂  of canonical connections 
exists in {E^, Р,,у. 

Proof : Each function Р^((7, ZX^^\Y^% 1 ^ / ^ r - 1 trivially satisfies the 
Bianchi identity. 

6. Errata. In the statement of Theorem 4, [ l ] , insert: Let iV be a complete.. . of 
dimension d = dim(£^ © . . . © £ ' " ) and such that its isometry group acts transi­
tively on orthonormal frames. 

7. The cyclic condition (8) appears in a coordinate form in the Allendoerfer's 
paper "The imbedding.. ." (Formula (5.6)). The author asserts that this formula 
"actually is an identity" but no proof is given to justify the assertion. 

8. The tensors Qk{U, T, X^^\ Y^^^) (see Formula (2)) have the following geometrical 
significance: Let ф : M ^ N Ы a stable isometric immersion of genus r of a Rieman­
nian manifold M into a Riemannian space N with the constant curvature, and let V 
be the induced Riemannian connection in \I/^T(N) -> M.Le t S^, к ^ r be the /c-th 
osculation bundle of M, S^ с ф^Т{М), S^ = E^ ® ... ® E^, and denote by V̂ ^̂  the 
orthogonal projection of the induced connection V into S^. (See [1], p. 680.) Finally, 
let us denote by R^^^ the curvature tensor of V̂ ''̂  in S^. Then we have 0^((7, T, X^^\ 
y< )̂) = R^'^\u, Z X^^\ Y^^^). In fact, in the paper of С В. Allendoerfer "The imbed­
ding. . . " the tensors g^ are presented as "higher curvature tensors". 
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9. Problems. 
1. Is any analytic Riemannian geometry Ĝ  ^ locally realizable in a Riemannian 

space of the constant curvature C? 

2. Does any Riemannian geometry G, ^ of class C°̂  have a nontrivial prolonga­
tion G, ̂ ^̂ с"? 
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