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Czechoslovak Mathematical Journal, 21 (96) 1971, Praha 

A CERTAIN EQUIVALENCE ON A SEMIGROUP 

BEDRICH PONDËLICEK, Podëbrady 
(Received November 5, 1969) 

Let iS be a periodic semigroup. We shall introduce the equivalence K: for a, b eS, 
aKb if and only if there exists an idempotent e and positive integers m, n such that 
a'"' = e = b". In [1] J. T. Sedlock studies necessary and sufficient conditions on a pe­
riodic semigroup S in order that К coincide with any one of the Green relations [2]. 
In this paper we consider arbitrary semigroups having similar properties. 

In this section, S will be a fixed non-empty set. The mapping U : exp iS -> exp S is 
said to be ^-closure operation if the mapping U satisfies the following conditions: 

(1) u(0) = 0 ; 

(2) Ac в cz S=> U{Ä) c U{B) ; 

(3) A с U{A) for each A c: S ; 

(4) ЦЦ^) ) = Щ) for each Ac: S. 

For X e 5 we write simply U(x) instead of U({x}). The set of all ^-closure operations 
for a set S will be denoted by ^(S). 

A ^-closure operation U is said to be l-closure operation if 

(5) U( и Л,) = и Ц^О for А,с: S {tel Ф 0) 
ieï iel 

holds. Let l(S) be the set of all J-closure operations for a set S. Evidently J(S) с 
с: ЦЗ), 

Let и, VG ^(5), then we define 

(6) и SVo U{A) с V{A) for each A cz S . 
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The ordered set 'ê{S) is a lattice. If U, У e ^(S), then 

(7) (U л У) {A) = U{A) n V{A) for each A a S . 

If Ü, У 6 ^(S), then 

(8) и V VE1{S); 

(9) Ü ^ V <> U(x) с V̂ (x) for each x G 5 . 

A subset У4 of iS will be called U-closed if U(^A) = A. The set of all U-closed subsets 
of S will be denoted by J^(U). If U, V̂ G '^(S), then 

(10) #'(U V \̂ ) = J^(U) n #'(У) ; 

(11) и ^Vo3^{V)cz ^(U). 

Let U G '^(S). We define U* G J ( S ) . If Л C= 5, then x e U^{Ä) if and only if U{x) n 
n Л Ф 0. For Ü, / G ^(S) we have 

(12) U ^ / => U* ^ V̂* ; 

(13) X e U(y)o у e U^(x) for each x, у e S ; 

(14) U(x) = ü**(x) for each x G S ; 

(15) и = Ü * * ^ Ü G ^ ( 5 ) . 

(See [3].) 

Definition 1. Let U e ^(5). We shall introduce the equivalence Ü on S by: for x, y e 
e S, xUy if and only if U(x) = U(y). For any element x of S, let U^ denote the 
U-class of S containing x. 

Lemma 1. Let U e ^(S). If x, y e S, then xUy if and only ifxe U(y) and y E U(X). 

Proof. If xVy, then by (3) x G U(X) = U{y) and y G Ü(};) = U(x). If x G U{y) and 
j ; G ü(x), then by (2), (4) we have U(x) c= U(U{y)) = U{y). Similarly we obtain 
U{y) cz U(x). Thus U(x) = U{y) and xUj;. 

Theorem 1. Lê  Ü, VG ^(-S). T/iew the following conditions are equivalent: 

l.UczV; 

2. for every x e S, U^ a У(х); 
3. for every A e #'(V), A = [J U^. 

xeA 
Proof. 1 => 2. Let X 6 S, then U^ с /^. If у e U ,̂ then у e V^. By Definition 1 and 

(3) we have у e V{y) = V(x). Thus U^ c: V{x). 
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2 => 3. If X 6 Л e ^ ^ \ then V(x) <= ^{Ä) = A. Hence U^ с: A. This implies A 

:>:бЛ 

3 => 1. Let xUy. Evidently V(x) e i^(V) and thus j e U^ = U .̂ с V(x). Similarly 
we obtain x e U^ с V(}̂ ). From Lemma 1 it follows that хЧу, 

Corollary. / / U e ^(S), i/ie^i for every A e ^{U), A = \JU^. 

Theorem 2. Le^ U, \̂  e ^(S). If U ^ У, then U a V. 

Proof. If xUj;, then by Lemma 1 and (6) we have x e U[y) с V(j;) and у e Цх) 
: y{x). It follows from Lemma 1 that xVy. 

Theorem 3. Let L/, VG ^(S), r/ze/t U AV = U nV. 

Proof. It follows from Theorem 2 that U A V C U , U A V C V . This implies 
и A V CZTJ nV.lf x(D n V) y, then xUj; and xVy. We have thus U(x) = U{y) and 
\f(x) = V{y) so that U(x) n \^(x) = U{y) n \Г(>'). By (7) we have xU л Уу. Hence 
Ü n V с Û T T which imphes Ü^^ =UnV. 

Theorem 4. Let U E â(^S). Then the following conditions are equivalent: 

1. Ü - U*; 

2. /o r ^i^ery X G S, ü(x) = U^; 

3. / o r ^yerj xES,U^e #'(U). 

Proof. 1 => 2. It follows from Theorem 1 that U^ a L/(x) for every xe S. Let 
y G U(x). According to (13) we have x G U * ( J ) = t/(j'). Since ü(x) = ^/(j;), we have 
V G U^, hence U(x) c: U^. This implies U(x) = U^. 

2 => 3. Evident. 

3 => 1. It follows from (15) that Ü = Ü**. Let x G S. If y e ü*(x), then by (13) 
X G ^{у). Since >' G ü^, we have U(>') с 1/(1/̂ ) = U^ so that x G U^,. This implies 
y e и(з;) = ü(x) and U*(x) с U(x) for every x G S. It follows from (9) that U* ^ U. 
By (12) we have Ü = U** ^ U*. Hence Ü = Ü*. 

Theorem 5. Let Ü, V G ^ ( S ) . / / U = Ü*, r/ien U ^V if and only ifV ŒV, 

Proof. If U ^ V, then by Theorem 2 we have U cz V. Suppose now that U Œ V. 
Evidently ü = Ü* G J ( S ) . Let A a S. If ye U{A), then by (5) we have y e U{x) for 
some X e A. According to Theorem 4, Theorem 1 and (2), we have y e U^ cz V(x) c: 
с V{A). This implies U{Ä) с V{Ä). It follows from (6) that U ^ V. 
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Let now S be an arbitrary semigroup. Let Ä a S, Ä Ф 0. Put L(Ä) = S^A = 

= SA u Л and R{A) = AS^ = AS и A. Finally L(0) = 0 = R(0). It is clear that 
L,Re â{S) and ^"{1) is the set of all left ideals of S (including 0), #"(R) is the set of 
all right ideals of S (including 0). Put /И = L v R, H = L л R. Evidently M e l{S) 
and H e ^(S). It follows from (10) and (7) that #'(Л4) is the set of all two-sided ideals 
of S (including 0) and ^ (H) is the set of all quasi-ideals of S (including 0). 

Put P(0) = 0. If Л с S, Л Ф 0, then by P{A) we denote the subsemigroup generated 
by all elements of A. Evidently P e ^(S) and #'(P) is the set of all subsemigroups of S 
(including 0). Clearly P ^ H. 

Lemma 2. Let A с S, Then A e ^{P^) if and only if the implication 

(16) х"бу1=>хе.Л 

holds for every x e S and for every positive integer n. 

Proof. 1. Let A e J'^(P*). If x" e Л for some xeS and for some positive integer и, 
then by (2) and (4) we have P*(x'̂ ) с A. Since x" e P(x), it follows from (13) that x e 
eP^x") cf^'A. 

2. Let (16) hold for every xe S and for every positive integer n. Evidently P* e 
e Щ. If Л Ф 0, then by (5) we have Р*(Л) = U ^*(^). If У e Р*(Л), then у e P*(x) 

xeA 
for some xe A. According to (13) x e P(y) and thus x = y" for some positive inte­
ger n. Since y" e A, it follows from (16) that у e A. Hence Р*(Л) с Л so that, by (3), 
A = P*(v4) G J^(P*). 

Lemma 3. Let A cz S, Then A e J^(P**) if and only if the implication 

xe A^ x"* E A 

holds for every positive integer n. 

Proo f is analogous to the proof of Lemma 2. 

Definition 2. Put К = P^ v P**. I 

Lemma 4. К = K*. 

Proof. According to (8) and (15), we have К = К**. From P"^ ^ К and (12) we 
obtain P** S К*. It follows from P** S i<, (12) and (15) that P* = P*** ^ K*. 
Thus К = P'^ V P'''' й К* and by (12) we have K* ^ K** = K. This implies 
К = К*. 

Lemma 5. If x, у e S, then xKy if and only if there exist positive integers n, m 
such that x" = y"^, 
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Proof. 1. Let x" = j ' " for some positive integers n, m. By (14) and (6) we have 
У' e P{y) = P^'^^y) d K{y), This and Lemma 2 implies that x e P*(x") = P'^{y'") cz 
a K(v") c= K{y). Similarly we obtain у e K(x) and thus by Lemma 1 we have xKy. 

2. If xKy, then by Lemma 1 xe ^(у). Let A = {uju" = y"" for some positive in­
tegers n, m}. It follows from Lemma 2, Lemma 3 and (10) that A e #'(P*) n J^(P**) = 
= jr(p* ^ p**) ^ jr(K). Since у e Л, hence x e K{y) с A. We have thus x" = y"" 
for some positive integers n, m. 

A semigroup S is called rfö̂ /zt regular [left regular) if x G X^S (X e 5x^) for every 
xeS, 

Theorem 6. The following conditions on a semigroup S are equivalent: 
1. S is right regular; 
2. P* й f^; 
3. к ^ R; 
4. К cz R. 
Proof. 1 =̂  2. Let S be a right regular semigroup. Let Л be a right ideal of S. 

If x" E A (xeS, n^ 2), then there exists aeS such that x == x^a and x"~^ = 
= x"a G Ла с A. Similarly we obtain x"~^ G 4̂ for any positive integer i < n. From 
here it follows that x G Л. By Lemma 2 we have A G #^(P*). It follows from (11) that 
P* S ^ 

2 => 3. Suppose P* ^ R.̂ Evidently P ^ R. It follows from (12) and (15) that P** S 
S R*'' = R. Thus К =^ P^ V P** ^ R. 

3 ==> 4. This follows from Theorem 2. 
4 => 1. If К c: R, then by Lemma 4 and Theorem 5 we have P'^ ^ К ^ R. Accord­

ing to (11) x^ G R(x )̂ G #'(R) с #'(P*). It follows from Lemma 2 that x G R(X^) = 
= x^5\ We shall show that x G X^S. Indeed, if x = x^, then x = x^ G X^5. Hence, 
S is right regular. 

The following left-right dual of Theorem 6 is also true. 

Theorem 7. The following conditions on a semigroup S are equivalent: 
1. S is left regular; 
2. P* S Ц 
3. К ^ L; 
4. К с L. 

Theorem 8. The following conditions on a semigroup S are equivalent: 
1. S is a union of groups; 
2. S is left regular and right regular; 
3. P* ^ H; 
4. К ^ H; 
5. К с R 
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Proof. 1 => 2. Evident. 

2 => 3 => 4. This follows from Theorem 6 and Theorem 7. 
4 => 5. This follows from Theorem 2. 
5 => 1. Suppose К с H, According to Theorem 3, Theorem 6 and Theorem 7, 

iS is right regular and left regular. From here and (7) we obtain x e x^S n Sx^ с 
с R(x^) n L(x^) = H(x^). On the other hand, we have x^ e xS n Sx cz R(x) n 
n L(x) = H(x). It follows from Lemma 1 and Theorem 3 that x^ e H^ = R^ n L^. 
According to [2] Ŝ is a union of groups. 

A semigroup S is called intraregular if xe Sx^S for every x e S. 

Theorem 9. The following conditions on a semigroup S are equivalent: 

1. S is intraregular; 
2. P* ^ /И; 
3. К g Л1; 
4. К cz /И. 

(See [4].) 

Proof. 1 => 2. Let S be an intraregular semigroup. Let Л be a two-sided ideal of S. 
If x"eA (xeS, n ^ 2), then there exist a, b e S such that x"~^ = ax^^"~^^be 
G Sx"S cz SAS cz A. Similarly we obtain x"~*e Л for any positive integer i < n. 
This implies XE A and it follows from Lemma 2 that A e J*̂ (P*) so that, by (11), 
P* g УИ. 

2 => 3 => 4. The proof is analogous to the proof of Theorem 6. 
4 => 1. If К с M, then by Lemma 4 and Theorem 5 we have P* ^ К ^ УИ. It 

follows from (11) that x^ e УИ(х̂ ) e #'(M) с J^(P*). According to Lemma 2, x e 
e УИ(х̂ ) = S^x^S^. We shall prove that x e Sx^S, If x e Sx^, then x = ax^^ for some 
a e S, thus x = a(ax^) x e Sx^S. Similarly, x e x^S implies x e Sx^S. If x = x^, 
then X = x"̂  e Sx^S. Hence, S is intraregular. 

Remark 1. If S is a periodic semigroup, then from Corollary 2.3 [1], Theorem 3.8 
[1] we have: 

The conditions of Theorems 6, 7, 8 and 9 and the following condition on a periodic 
semigroup S are equivalent 

K = H. 

A semigroup S is called left (right) weakly commutative if for every a, b e S there 
exist xe S and a positive integer к such that (аЬу = bx ((аЬу = xa). 

Lemma 6, If L ^ R, then a semigroup S is left weakly commutative. 
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Proof. Let a, be S. By (6) we have ab e S^b = L{b) с R{b) = bSK If ab = bx 
for some xe S, then (ab)^ = bx. If ab = b, then (ab)^ = Ь(аЬ). Hence, S is left 
weakly commutative. 

Lemma 7, If R ^ L, f/?en the semigroup S is right weakly commutative. 

Lemma 8. / / S is a right regular and left weakly commutative semigroup, then 
L^R, 

Proof. Let a e S. If X e Sa, then x = wa for some и e S. Thus the hypothesis that S 
is left weakly commutative impHes that there exists v e S and a positive integer к 
such that x^ = (ua)^ = ave aSe J^(R). According to Theorem 6, (U) and Lemma 2, 
we have x e aS. Hence Sa a aS. This shows that L(a) с R(a) for every ae S. 
Therefore, by (9), we have L ^ R. 

Lemma 9. / / S is a left regular and right weakly commutative semigroup, then 
R^L 

Theorem 10. The following conditions on a semigroup S are equivalent: 
1. S is a semilattice of right groups; 
2. S is a union of groups and L ^ R; 
3. S is a union of groups and it is left weakly commutative; 
4. P* g L ^ R; 
5. К ^ L ^ R; 
6. К с r с R. 

Proof. 1 => 2. It follows from Theorem 2 [5] that S is a union of groups. Let 
ae S.lfxe Sa, then x = ua for some и e S, Let e a n d / b e an identity for a and for x, 
respectively. Similarly, let a~^ and x~^ be an inverse for a and for x, respectively. 
Since X = ua = uae = xe, hence / = x"^x = x~^xe = fe. By Theorem 2 [5] we 
have / = efe. Thus ef = / . Then x = / x = efx = ex = {cia~^) x — a{a~^x). This 
implies x e aS. Consequently Sa cz aS and we have thus L(a) cz R{a). By (9) we 
obtain L ^R. 

2 => 3. This follows from Lemma 6. 
3 => 4. This follows from Theorem 8 arid Lemma 8. 
4 => 5. This follows from Theorem 7. 
5 => 6. This follows from Theorem 2. 
6 => L It follows from Theorem 3 that L ~ И and К cz H. By Theorem 8, S is 

a union of groups. Let e and / be idempotents of S. Put y = fe. Let g and y~^ be an 
identity and an inverse for y, respectively. Since y = yg = feg e S eg and eg = 
= ey~~^y e Sy, hence L(y) = L{eg). Now the hypothesis that L cz R implies R[y) = 
= R{eg). From this it follows that y = eg от y = еды for some ue S. Then y e eS 
and therefore efe = ey = y — fe. It follows from Theorem 2 [5] that S is a semi-
lattice of right groups. 
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Remark 2. The following example shows that the implication 

E с R=^L S R 

on a semigroup S does not hold in general. 
Let S = {(г, n — i)/for all positive integers n and for i = 0, 1]. Define in 5 a multi­

plication by 

xy = (i, n + w) 

where x = (/, n) e S and y = (j , m) e S. Then S is a semigroup (see [6]). It is clear 
that L c: R. On the other hand, if a = (1, 0), then R{a) = aS ^ S = L{a) and thus 
L$R 

Remark 3. If 5 a is periodic semigroup, then from Theorem 3 and from Remark 1 
we have: 

The conditions of Theorem 10 and the following condition on a periodic semi­
group S are equivalent: 

11 = L , 

The dual statement reads as follows: 

Theorem 11. The following conditions on a semigroup S are equivalent: 

1. S is a semilattice of left groups; 
2. S is a union of groups and R ^ L; 
3. S is a union of groups and it is right weakly commutative; 
4. P* ^ R ^ L; 
5. KSf^Sk 
6. К c= R cz I . 

Remark 4. The conditions of Theorem 11 and the following condition on a periodic 
semigroup S are equivalent: 

Ж = R. 

A semigroup S is called weakly commutative if for every a, be S there exist 
X, y e S and a positive integer к such that 

(аЬу = xa = by , 

Lemma 10. Ä semigroup S is weakly commutative if and only if it is left weakly 
commutative and right weakly commutative. 

Proof. If S is a weakly commutative semigroup, then it is clear that S is left and 
right weakly commutative. 
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Suppose that S is left weakly commutative and right weakly commutative. Then 
there exist л% у G S and positive integers к, I such that 

(аЬу = xa , (аЬу = by . 

This implies that (аЬУ'^^ = ua = bv where и — {аЬУ x, v = у(аЬу. 

Theorem 12. The following conditions on a semigroup S are equivalent: 

1. S is a semilattice of groups; 
2. S is a union of groups and L = R; 
3. S is a union of groups and it is weakly commutative; 
4. P* ^ L = R; 
5. К ^ L = R; 
6. К с E = R. 

P r o o f follows from Theorem 2 [5], Corollary 2 [5], Theorem 10, Theorem 11 and 
Lemma 10. 

Remark 5. The conditions of Theorem 12 and the following conditions on a period­
ic semigroup S are equivalent: 

1. К = r_= R; 
2. К = M. 

Proof. Conditions of Theorem 12 о 1. This follows from Theorem 12, Remark 3 
and Remark 4. 

1 => 2. It follows from Theorem 12 that L = R. Then L = M and thus, by Remark 
3, К = Г = M. 

2 => 1. According to Remark 1, we have M = К = H. It follows from Theorem 2 
that К = r = R. 
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