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Czechoslovak Mathematical Journal, 21 (96) 1971, Praha 

CONTRIBUTION TO THE FOUNDATIONS OF NETWORK THEORY 
USING THE DISTRIBUTION THEORY, II 

BEDRICH PONDELICEK, Podebrady 

(Received September 9, 1969) 

In [1], linear and continuous operators on the space of distributions have been 
studied. Let D^ be the set of all distributions/such that every/vanishes on some inter­
val (—oo, a) which in general depends o n / . In this paper we shall study analogous 
properties of linear and uniformly continuous operators on a space of distributions 
from D\ 

1. INTRODUCTION 

The terminology and notation will follow [1] and [2]. Let D be the set of all distri­
butions on K. Put DQ = DQ n D\ Let us also remark that in this paper x{t) for 
X e DQ always means a continuous function on (—oo, +oo) such that x(t) = 0 on 
some interval (— oo, a) which in general depends on x. Let n ^ 1 be an integer, and 
let Dl be the set of all distributions having the following property: i f / e D^ then there 
is a distribution z e DQ such that / = z^"\ Evidently D^ с D\ Finally, let D^ = 

= и D„. Clearly, D', Dj, (n = 0, 1, ...) and D^ are linear time-invariant subspaces 
n = 0 

ofD. 
From Lemma 3.1.2 [2] there follows 

Lemma 1.1. Le^ a, Ь (a < b) be real numbers and let f e D. If f vanishes on (—oo, 
b), then f vanishes on (— oo, a). 

Lemma 1.2. Let a, b, a, ß be real numbers and let f, g e D. If f vanishes on (—oo, 

a) and g vanishes on (—oo, b), then a/ + ßg vanishes on ( —oo, c), where с = 
= min (a, b). 

Lemma 1.3. Let a, b be real numbers and let / e D. / / / vanishes on (—оэ, a), 
then g = Pb[/] vanishes on (—oo, a + b). 
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Lemma 1.4. Letx, x„e D,n = 1,2,. . . and letx„ -> x.Ifx„ vanishes on some inter-
val (—00, Ь) /or n = 1, 2, ..., then x vanishes on (~oo, b). 

Proof, lî (p e К and (p(t) = 0 on (c, + ce) where с < b, then by Lemma 1.3 [1] 
we have <x„, ^> = 0 for every n = 1, 2, ... Thus <x„, (̂ > -> 0 = <x, ф> and there­
fore from Lemma 1.3 [1] it follows that x vanishes on ( — oo, b). 

Definition 1.1. Let x,x„eD,n = 1, 2, ...; the sequence x„ will be called iniformly 
convergent to x (this fact will be symbolized by x„ zX ^)^ if ^n ~^ ̂  ^^^ ^n vanishes on 
some interval ( — oo, b) for every n = 1, 2, ... 

Lemma 1.5. Let x e D'; then there is a sequence x„ e O^, n = 1, 2, ... such that 
x„ __>, X. 

Proof. The proof is analogous to that of Lemma 5.4.5 in [2]. 
Let K^ denote the set of all infinitely differentiable real functions (p(t) such that 

every (p(t) vanishes on some interval (a, + oo) (which in general depends on (p). 

Definition 1.2. Let J^^ be the set of all distributions {fa} from D^ depending on 
a parameter a (where a is an arbitrary real number) with the following properties: 

1. If (p e K, then ф e K ,̂ where il/{a) = </^, cp} for every real number a. 

2. If 00 is an arbitrary real number, then there exists a real number bo such that/^ 
vanishes on (— oo, bo) for every real number a ^ «o-

Note . The statement 1 of Definition 1.2 holds if and only if the partial derivative 
^7a/5a" exists for every positive integer n mid а„/д^ -> 0 for every two sequences of 
real numbers a„, a„ with a„-> + oo, n = 1,2,. . . 

The proof is similar to the proof of Theorem 1.1 [ l ] . 

Tlieorem 1.1. Let {/J, {g,} e ^ \ 

1. i / a , ß are real numbers, then {ocf^ + ßga} ^ ^^-

2. / / n is a positive integer, then {57a/5ö"} e ^K 

3. If b is a real number, then {/ẑ } e ^ \ where h^ = ^ь[/а]-

4. / / b is a real number, then {h^} e ^ \ where h^ = f^-b-

FTOoL Put ф(а) = </^, cp} and x(^) = {g^, cp} for every cp e K. 

1. IÏ a, ß are real numbers, then œ{a) = <a/^ + ßg^, cp} — ос ф[а) + ß x(a). Thus 
CO — осф + ßxe К^. If öo is an arbitrary real number, then there exist real numbers 
bi, b2 such that/д vanishes on (— oo, b^) and g^ vanishes on (— oo, Ьз) for every real 
number a ^ a^. From Lemma 1.2 it follows that a/^ + ßga vanishes on ( - c o , bo) 
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(where BQ = min (bi, Ьг)) for every real number a ^ ÜQ. Hence {a/̂  + ßga} ^ ^^^ 
2. If и is a positive integer, then from Lemma L6 [1] it follows that o){a) = 

= {ô"fjda\ срУ = ф^"\а). Thus со = î "̂̂  e К .̂ If ^о is an arbitrary real number, 
then there exists a real number BQ such that/^ vanishes on (—00, bo) for every real 
number a ^ ÜQ. Let с be a real number, с < BQ, and let (p{t) = 0 on the interval 
(c, + 00). Then by Lemma L3 [1] we have il/{a) = </,, cp} = 0 for every real number 
a ^ UQ. From this it follows that <ö"/j3a", срУ = ф^'^^а) = О for every real number 
a ^ UQ. Then by Lemma L3 |[1] dyjda'^ vanishes on (—00, bo) for every real 
number a ^ ao- Hence {djjda''} e ^ \ 

3. If Ь is a real number, then (o(a) = (h^, (рУ = <^'b[/J, (рУ = </a» ç{t + Ь)>. 
Evidently (p(t + b)e К and thus we have œ e K .̂ If UQ is an arbitrary real number, 
then there exists a real number BQ such that/^ vanishes on (—00, bo) fo^ every real 
number a '^ ÜQ. From Lemma L3 it follows that h^ = Pb[fa] vanishes on (— 00, bo + 
+ B) for every real number a ^ ÜQ. Hence {/ẑ } G ^ \ 

4. If Ь is a real number, then co(a) = ^.h^, срУ = (^fa-ъ^ (рУ = Ф{й — В). Thus 
ш G К .̂ Let «о be an arbitrary real number. Since QQ — Ь is a real number, there exists 
a real number bo such that /^ vanishes on (-co, BQ) for every real number a ^ 
^ Go — B. From this it follows that h^ = fa~b vanishes on (—00, bo) for every real 
number a ^ ÜQ. Consequently {/ẑ } G #'^ 

Example 1. Let a be a real number and let H^ be the shifted Heaviside's distribu­
tion, i.e. 

•+00 /•+00 

J ^(0< 
for every cp e K. Evidently, H^ vanishes on (—00, a) for every real number a. If 
(p e K, then ф e K ,̂ where i/̂ (a) = <Яд, ф>. From this it follows that (Я«} G ^K 

Example 2. From Theorem LI it follows that {ô„} e ^K Also, we clearly have 
dHjda = -(?,. 

Definition 1.3. Let Ь be a real number and let Ж^ be the set of all real infinitely 
differentiable functions ß{t) on (—cx), +00) such that 

a(ù-/^ "̂ ^ (-00, c), 
^ ^ ^ " \ 1 on (d,+00), 

where с < d < B, 

Lemma 1.6. / / {/J G #"' and ju e J^b, й̂вп {/г(а)/^} G #". 

Proof. Let Ф G К. Put ф{а) = </«» ^> for every real number a. Evidently, ф e K^, 
We have </х(а)Л, (рУ = /i(a) ^AW and thus 1гф G К. Hence (К«)/Л e #". 
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2. INTEGRAL 

Let us recall the fact that if {fa} e #" and x e D, then 

(2.1) /\{^Ja)àa,ç>\ = <x,iA> 

for every (p e K, where \l/{a) = </«, (p} for every real number a. (See Definition 2.1 

[I].) 

Lemma 2.1. L̂ ^ b, с be real numbers (c < b). Let {/«} e ^ and f^ = 0 for every 
real number a > c. If xe D^ and x vanishes on (— oo, b), then 

i: {xJ,)da = Ö. 

Proof. Put у = J!^ (x, /J da. 1Î (peK then by (2.1) it follows that <y, cp} = 
= <x, ФУ, where ф{а) = </„, ф> for every real number a. Since ф(t) = 0 on the 
interval (c, +oo), it follows from Lemma L3 [1] that <x, ф} = 0. Thus у = 0, 
q.e.d. 

Lemma 2,2. L^t b, с be real numbers (c < b). Let {/̂ }, {̂ }̂ e J^ anJ /̂ ^ /« = Qa 
for every real number a > c. If xe D^ and x vanishes on (—oo, 5), then 

00 / * + 00 

(x,/Jda = {x,g^)da 
oo J — 00 

Proof follows from Lemma 2.1 and Theorem 2.3 [1]. 

Lemma 2.3. Lê  {/д} e #" an(i /e^ x e D̂  vanish on the interval (•- oo, b). If ße J^i,, 
then {ß(a)f^} e ^ and 

J - Q 

{xj^ da = (x, ii{a)f^ da . 

Proof. Put ф{а) = </a, <p> for every cpeK. Then co(a) = ili{ci)fa, Ф> = /̂ (Ö )̂ Î̂ C*̂ ). 

Thus со e К. Hence {pi{a)f^} e J^. The rest of the proof follows from Lemma 2.2 and 
from Definition 1.3. 

Definition 2.1. Let {/«} e ^ \ x e D' and let the integral jl% (̂ %/a) da be defined by 

(2.2) 
D / • + 00 

(x,/^)da = (x,/x(a)/Jda 
Э J - 00 

where /i e c/T̂  and x vanishes on the interval (— oo, b). 
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Note . The integral J ^ ^ ( x , / J d a is defined by (2.2) uniquely, i.e. it does not 
depend on /л e УГ^. Indeed, if /л^ e jV^^, 1X2 e J^^z^ then iii{a)fa = ß2{<^)fa f^r every 
real number a > с where с is some real number (c < max (b^, ^2)). From Lemma 2.2 
it follows that 

/*+ 00 / «+ 00 

(x, Hi{a)f^ da = (x, ^2(^3)/a) ^^ • 
J — 00 J — 00 

Theorem 2.1. Let {/J e ^^ and x e DK Then ^1^ i^Ja) àa e D\ 

Proof. Let X vanish on (—00, b). From Definition 2.1 it follows that y = 
== | i ^ (x,/^) da = J ! ^ (x, fi{a)fa) da, where jn G J^^- Let fi{t) = 0 on (~oo, ÖQ), 
where «o is some real number («o < b). According to Definition 1.2 there exists a real 
number bo such that /^ vanishes on (~oo, bo) for every real number a ^ ag. Let 
Ф G К and let (p{t) = 0 on (c, + со), where с is some real number (c < bo). Then by 
(2.1) <j , ф> = <x, ipy, where i/̂ (a) = ili{a)f^, cp} = /i(a) </^, (p>. If a < «o, then 
/i(a)) = 0. Thus ф^а) = 0. If a ^ «o? then/^ vanishes on (—00, bo). By Lemma 1.3 
[1] it follows that </^, <p> = 0 and thus xl/(a) = 0. Hence <x, ф} = 0. Lemma L3 
[1] implies that 3; vanishes on (— 00, bo). Consequently, у G D\ q.e.d. 

Example 3. Let Ь be a real number and {/̂ } E ̂ \ If / X G ^ ^ , , then fi(b) = 1. 
From Definition 2.1 and from Example to Definition 2.1 [1] it follows that 
J - ï (к fa) da = jl^ {ô„ / |(а)Л) da = / t (b)/ , = Л- Thus 

Л = r^iSbJajda. 
J — со 

Theorem 2.2. / / a, j5 are rea/ numbers, {fa} e J^^ anti x, _y G D\ then 

/ •+ 'X) Л + CO / • + 00 

(ax + ßyj,) da = ai ( x , / J da + j? (y,/„) da . 
J — 00 J — GO J — 00 

Proof. Let X vanish on (—00, b̂ )̂ and let 3; vanish on (—00, ̂ 2). By Lemma 1.1 
X and y vanish on (— 00, b), where b = min (Ь^, ^2). If/i G Ж ^ , then from Definition 
2.1 and Theorem 2.2 [1] it follows that J i ^ (ax + ßyJa)da = jl^ (ax + ßy, 
Ка))Л) da == a J ! : : (x, / | (а)Л) da + ß Г-Z {У^ К^) fa) da = a ^1^ (x, / , ) da + 
+ ^ 1 - " ( ь Л ) da, q.e.d. 

Theorem 2.3. / / a, ß are real numbers, {fa}, {ga} e J^^ and x G D\ then 

f*+ CO l*+ 00 • /»+ 00 

(x, (xfa + î öfj da = a (x,/«) da + Д (x, Qa) da . 
J — CO J — CO J — CO 

Proof. According to Theorem 1.1 {ocfa + ßga} e J^^ Let x vanish on (—00, b). 
If/1 e Жь, then from Definition 2.1 and Theorem 2.3 [1] it follows that J î ^ (x, ocfa + 
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+ ßg^) da = j l : (x, an{a)f, + ß /t(a) g„) da = a f l^ {x, ^^(a)/„) da + jS J!« (x, 
/z(û) g,) da = a J ! ^ (x, /„) da + ^ J ! ^ (x, g,) da, q.e.d. 

Theorem 2.4. If x, x„e D', n = 1,2, ..., x„zX x and {/„} e ^ ' , f̂ en 

(x„,/Jda=? (:'c,/„)da. 
J — 00 J — 00 

Proof. Let x„, n = 1, 2,. . . , vanish on (—со, Ь). By Lemma L4 it follows that x 
vanishes on (—oo,b). If {леЖ^, then Definition 2.1 and Theorem 2.4 [1] yield 
Уп = J i : {xnJa) da = J ! - (x„, м(а)Л) da - . J ! - (x , K^)/,) da = J!S (x,/,) da = 
= y. By the proof of Theorem 2.1 there exists a real number b^ such that y„, n = 
= 1, 2,.. . , vanish on (— oo, bo). Hence y^ zX J, which completes the proof. 

Theorem 2.5. If x e D^ and {/J e ^ \ then 

Proof. By Theorem 1.1 we have {^Ta/̂ a"} e J^^ Let x vanish on (—oo, b). If 
fi e J^j,, then there exists a real number c{c < b) such that fi(a) = 1 for every real 
numbera > c.Ifa > c, then by Note to Lemma 1.6 [1] we have <(5"^(a)/J/^a", (p> = 
= [li{a) iA(a)]("> = 1л{а) i/̂ "̂>(a) = </i(a) djjda", (p} for every (p E К where iA(a) = 
= </д, <p>. Thus {d"ii(a)f^)lda'' == 1л{а) ôYal^^^*" for all real numbers a > c. Using 
Definition 2.1, Theorem 2.5 [1] and Lemma 2.2 it follows that 

f*+ 00 / •+ 00 Л + 00 / 

{x^"\ Л) da = (x<">, /i(a)Л) da = (-1)" / x, 
J — 0 0 J — CO J — oo \ aa" 

q.e.d. 

Theorem 2.6. / / b is a real number, {fa} e ^^ and x G D\ then 
/ •+00 

^ьСз'] = {x, Qa) da , 
J — 00 

where у = I^Z {x,L) da and g^ = Рь[/„]. 

Proof. By Theorem 1.1 we have {̂ „} e Ĵ '̂. Let x vanish on (-oo, c). If ;* e J^„ 
then у = J:^^ (x, ii{a)f„) da and P ^ ^ H / J = ц{а) Pb[/J = At(a) 0„. From Defini­
tion 2.1 and Theorem 2.6 [1] it follows that Р^У] = J !* (x,/^(a) ^^) da = 
= J!:(x,^Jda. 
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Theorem 2.7. / / b is a real number, {fa} e #"' and x e D\ then 
/ *+00 / *+ 00 

( x , / „ ) d a = (P , [x ] ,A_ , )da • 
J — 00 J ~ GO 

Proof. According to Theorem LI {QOIE^^ where ^^ = fa-ь- Let x vanish on 
( - 0 0 , c). If ^ 6 > " ^ , then from Definition 2.1 and Theorem 2.7 [1] it follows that 
J i : : (х,Л) da = r-Z {x. K^)fa) da = r-Z ( П М , fi{a - b) / ,_ , ) d« = J ! - ( П Н 
v(fl)/,_i,)da = J i : ^ (PbH, /^_b)da , where v(f) = ^(r - b) on ( - o o , -boc) and 

Theorem 2.8. Let {fa} G ̂ ^ cind letf^ vanish on (— oo, a) for every real number a. 
Ifb is a real number, x e D^ and x vanishes on {-co, b), then J î ^ {^,fa) da vanishes 
on (—00, b). 

Proof. If ßE J^i,, then ix{a)fa vanishes on (— oo, a) for every real number a (see 
Lemma 1.2). From Definition 2.1 and Theorem 2.8 [1] it follows that ^1% (x, / J da = 
= f î ^ (x, ii{a)fa) da vanishes on (—oo, b), q.e.d. 

Example 4. From Example 2 and from Example to Definition 2.1 [ l ] it follows 
that 

Ç^+ 00 

X = (x, d^ da 
J — 00 

for every xeD\ 

3. LINEAR UNIFORMLY CONTINUOUS OPERATORS 

Let P be a non-empty subset of the set DK A mapping Tof P into D^ will be called 
the operator on P. The set P will be termed the domain of the operator Г. 

Definition 3.1. Let P be a non-empty subset of D\ An operator Ton P will be called 
uniformly continuous if the following implication holds: 

If Х,ХПЕР,П = 1,2,..., x„ z j X, then T[x„] Zj T[x]. 

E x a m p l e 5. Let H = НоЫ the Heaviside's distribution. If we put 

T[x] = x^-^> = Я * х , {xeD') 

then the operator Tis not continuous. Actually, we have <5_„ -> 0 and, on the other 
hand, r [^_„] = Я_„ -> 1 Ф 0 == T[0]. However, the operator Tis uniformly con­
tinuous (see p. 137 [3]). 

Theorem 3.1. Let T be a linear uniformly continuous operator on a linear sub-
space P с D\ Let {/J e ^^ and djjda'' e P for every n = 0, 1, 2 , . . . and for every 
real number a. Then {g^} e ^^ and d'^gjoa'' = T[djjea"] where g^ = r [ / J . 
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Proof. 1. Let a„ -> a (a„ Ф a), n = 1, 2, . . . be a convergent sequence of real num­
bers. Then there exists a real number ÜQ such that ÛQ ̂  a„ for every n = 1, 2, ... By 
Definition 1.2 there exists a real number BQ such that/^^ vanishes on (—oo, Ьо)^г 
every n = 1, 2, According to Lemma 1.5 [1] it follows that (a„ — a)~^, 
• {fan - fa) ^ ¥al^^- Usiug thc linearity and uniform continuity of the operator T, 
we obtain {a„ - a)~~^ {g^^ - g^zXT [pfal^ci] where g^ = T [ / J . By Lemma 1.5 
[1] there exists дд^\да and dgjda = T[dfa\dd\. Similarly we obtain that there exists 
a"^Jaa" and d^'g^jda'' = T[djjda'''] for every n = 2, 3, ... 

2. Let a„, a„, /t = 1, 2, ... be two sequences of real numbers and let a^-^ +oo. 
Then there exists a real number QQ such that ÜQ ^ a„ for every n = 1, 2, ... By Defini­
tion 1.2 there exists a real number bo such that/^^ vanishes on (—oo, bo) for every 
w = 1, 2, ... By Note to Definition 1.2, a„/^„ -> 0 and thus it follows by Lemma 1.2 
that a Jan ^ ^' Using the linearity and uniform continuity of the operator Г we 
conclude that a^^g^^^ zX 0. From Note to Definition 1.2 it follows that ф e K^ for every 
(peK, where ф{а) = (g^, cp}. 

3. If {gal Ф -^K then by Definition 1.2 there exists a sequence a„ of real numbers 
such that к ^ a„ for every n = 1, 2, ... and the statement ''g^^ vanishes on ( - o o , 
— и)" is not true for every n == 1, 2, . . . 

On the other hand {/«} e J^^ and thus there exists a real number Ъ such that /^^ 
vanishes on ( - o o , b) for every w = 1, 2, . . . If ^ e K, then xj/ e K^ where il/{a) = 
= <fa. <P>. 

Next, there clearly exists a subsequence b„ of a„ such that either b„ -> ÜQ or b„ -• 
-^ +СЮ. If (peK, then either (Л^, (рУ = Ф{Ь„) ~> lA(̂ o) = <fao^ Я>У or </ьо, Ф> = 
= i//(b„) -^ 0. Thus Л„ -^ / , , or fb,, -^ 0. Since /,„ i t /,« or ^ Zj 0, by Definition 3.1 
we have бГь,. ^ ö̂ ao or дъп ^ Ö. Hence é̂ «̂ vanishes on some interval ( - oo, c) for every 
n = 1,2, ... which is a contradiction. Consequently {g^} e i^^ and the theorem is 
proved. 

Theorem 3.2. Let T be a linear uniformly continuous operator on a linear sub-
space P с O^ Let {fa} e #"' and d%lda" e P for every n = 0, 1,2, ... and for every 
real number a. If xeD^ and у e P, where у = J;!^ x(a)/^ da, then T[y] = 
— J : ^ x{a) g a da, where g^ = T [ / J . 

Proof. Let X vanish on some interval {—oo, b). From Theorem 3.1 it follows that 
{QO} ̂  ^^' By Lemma 1.7 [1] and Definition 1.2 there exist y and w = J i ^ x(a) g^ da. 
Let ^ be an arbitrary subdivision of the interval (—oo, +oo). Using the notation 

m 

introduced in Definition 1.4 [1], we obtain for the integral sums, Si(^) = Yji^t ~~ 
m i = 1 

— a|_i) x(^,)/<«., S2(£ )̂ = X!(^i ~" ^i~i) ^i^i) 9^r From the linearity of the opera-

tor Tit follows that T[s i (^)] = S2(^). By Definition 1.2 there exists a real number с 
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such that /д vanishes on (—00, c) for every a ^ b. If ĉ - ^ b, then/^. vanishes on 
( - 0 0 , c). Ifçi < b, then x{^i) = 0. Hence, by Lemma 1.2, Si(^) vanishes on ( - 00, c). 

If ^„ is an arbitrary zero sequence of subdivisions of the interval ( — 00, + 00), then 
Si(^„) -> y and S2(^„) -^ w. Since Si(^„) Ht y, we have by Definition 3.1 S2(^„) = 
= r [s , (^„) ] Zi Т[У1 Thus w = Т[У1 q.e.d. 

Theorem 3.3. Le? T be a linear uniformly continuous operator on a linear sub-
space P с DK Let {/̂ } G .^^ an(i 5"/J^a" e P / o r ^f^rj; n = 0, 1, 2, ... and for every 
real number a. If x e D^ and yeP, where j ; = J - ^ ( x , / ^ ) da, r/ie/t Т[з;] = 
= J ! :̂  (x, ^,) da, w/tere ^, = r [ / J . 

Proof. According to Theorem 3.1, {^J e J^^, and consequently, J l ' ^ (x , ^^Jda 
exists. On the other hand, there is evidently a z G DQ such that ẑ "̂  = x. From this it 
follows that z vanishes on some interval ( — 00, b). If liejV^, then Theorem 2.5, 
Definition 2.1 and the proof of Theorem 2.1 [1] yield y = J î ^ ( x , / J d a = 
= {-\Г1тг,{дЪ\да"))аа = {-\)"ltZ{z, ^г{a){д•^Цдa^^))àa = ( -1 ) " J ! » z(a) . 
. Ii{a)(dyjôa'')da. However, according to Theorem 3.1, Theorem 3.2, proof of 
Theorem 2.1 [1], Definition 2.1 and Theorem 2.5 we have T[>;] - ( - 1 ) " J ! ^ z{a), 
,fi{a){d"gjda^))da = {-If j1^{z, fi{a){d^gjda"))da = {-If r-Z{z,{d^gJda")). 
. da = jl^ (x, Qa) da, which completes the proof. 

No te . Let {/̂ } G J^^ and let S^e P a D^ for every real number a. If the operator T 
on P has the form 

/ •+00 

7 ^ И = {x,fa)da, (xeP) 
J — 00 

then from Example 3 it follows that/^ = T[^J . 

Theorem 3.4. Le? P cz D^^ be a linear subspace and let 5̂ "̂  G P /o r ei;er3; n = 
= 0, 1, 2, . . . and for every real number a. Then the operator T on P is linear and 
uniformly continuous if and only if it has the form 

r»+ 00 

Г Н = (x , / „ )da , (xeP) 
J — GO 

andf, = T[öal 

P r o o f follows from Theorem 2.2, Theorem 2.4, Theorem 3.3 and Example 4. 

Theorem 3.5. Let P (D^ с P с D )̂ be a linear space. Then the operator T on P is 
linear and uniformly continuous if and only if it has the form 

a n d / , = T[ô„]. 

(x , /„ )da , : ( x e P ) 
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Proof. The proof is analogous to that of Theorem 3.5 [1], and follows from 
Theorem 2.2, Theorem 2.4, Theorem 3.4 and Lemma 1.5. 

Corollary. / / Ti, T2 are two linear uniformly continuous operators on D^ and 
Ti[ßJ\ = ^2[<^a] /^^ every real number a, then Ti[x] = Т 2 И for every x e D .̂ 

N o t e . I f / e D\ then {/̂ } e J^^ where/^ = Pa[ / ] for every real number a. Actually, 
the operator 

T [ x ] = / * x , (xeD^) 

is linear and uniformly continuous (see p. 137 [3]). From Theorem 3.5 it follows 
that 

/•+00 

J — 00 

where {/J e J^'. However /„ = T[,5j = / * ^„ = P „ [ / ] . 

Theorem 3.6. The operator T on D^ is linear, uniformly continuous and time-
invariant if and only if it has the form 

/•+00 

4^1= {x,fa)da, {xeD^) 
J — 00 

where f, = Plf] and f= T[ôl 

Proof. Let Tbe a linear, uniformly continuous and time-invariant operator. From 
Theorem 3.5 it follows that T[x] = jl^ ( x , / J da {x e D^) where {/J e ^ \ Also, 
Л = Т И == Т[Р.И] = Р.[ТИ] = ?lf\ 

If the operator Thas the form T[x] = J!:^ (x,/^) da (x G D^), where/« = ^l.f\ 
then by Note to Theorem 3.5, {/J G J ^ ^ According to Theorem 3.5 Tis linear and 
uniformly continuous. From Theorem 2.6 and Theorem 2.7 it follows that T[P^,[x]] = 
= J - » ( П Н , Л ) dfl = J ! s (х.Л+ь) da = J i : : {x, P , [ / J ) da = P , [ r H ] f o r every 
X G D^ and for every real number h. Thus the operator Tis time-invariant. 

N o t e . If/д = J^fl[/] for some/G D ,̂ then from Note to Theorem 3.5 it follows that 

(x,/«)da = / * x , ( X G D % Г 
Theorem 3.7. T/ie operator Ton D^ is linear, uniformly continuous and causal if 

and only if it has the form 

T [ x ] = (x , / „ )da , {XBD') 
J - 0 0 

where {fa} G #"' and f^ vanishes on (—00, a) for every real number a, 
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Proof. Let Tbe a Hnear, uniformly continuous and causal operator. From Theorem 
3.5 it follows that T[x] = jt^ i^Ja) àa (x e D% where {/J e # ' ' and f, = T[ô,]. 
Since 0^ vanishes on ( - oo, a),/^ vanishes on ( - oo, a) for every real nurnber a. 

Let the operator Thave the form T[x] = J i ^ {x,fa) àa {x e D )̂ where {/J e J^^ 
and fa vanishes on (—00, a) for every real number a. From Theorem 3.5 it follows 
that r i s linear and uniformly continuous. Finally, from Theorem 2.8 and Lemma 3.1 
[1] it follows that the operator Tis causal. 

Theorem 3.8. The operator T on D^ is linear, uniformly continuous, time-
invariant and causal if and only if it has the form 

ТЫ= r " ( x , / , ) d a , (xeD^) 
J — CO 

where f^ = Pa[/] ^nà f = T[(5] vanishes on the interval (—00, 0). 

The p r o o f follows from Theorem 3.6 and Theorem 3.7. 
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