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CONTRIBUTION TO THE FOUNDATIONS OF NETWORK THEORY
USING THE DISTRIBUTION THEORY, II

BeDRICH PONDELICEK, Podébrady

(Received September 9, 1969)

In [1], linear and continuous operators on the space of distributions have been
studied. Let D' be the set of all distributions f such that every f vanishes on some inter-
val (— 0, a) which in general depends on f. In this paper we shall study analogous
properties of linear and uniformly continuous operators on a space of distributions
from D,

1. INTRODUCTION

The terminology and notation will follow [1] and [2]. Let D be the set of all distri-
butions on K. Put D§ = D, n D'. Let us also remark that in this paper x(t) for
x € Dj always means a continuous function on (— oo, + o) such that x(f) = 0 on
some interval (— o0, a) which in general depends on x. Let n = 1 be an integer, and
let D! be the set of all distributions having the following property: if f € D! then there
is a distribution z € D}, such that f = z™. Evidently D} = D'. Finally, let D}, =

= U D,. Clearly, D', D; (n = 0, 1,...) and D} are linear time-invariant subspaces
=0

of D.
From Lemma 3.1.2 [2] there follows

Lemma 1.1. Let a, b(a < b) be real numbers and let f € D.If f vanishes on(— o,
b), then f vanishes on (— 0, a).

Lemma 1.2. Let a, b, , B be real numbers and let f, g € D. If f vanishes on (— oo
a) and g vanishes on (— oo, b), then of + Bg vanishes on (— o, c), where ¢ =

= min (a, b).

Lemma 1.3. Let a, b be real numbers and let fe D. If f vanishes on (— ®, a),
then g = P,[f] vanishes on (— o0, a + b).
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Lemma 1.4. Let x, x, e D,n = 1, 2, ... and let x, - x.If x, vanishes on some inter-
val (— o0, b) for n = 1,2, ..., then x vanishes on (— oo, b).

Proof. If ¢ € K and ¢(r) = 0 on (c, +o0) where ¢ < b, then by Lemma 1.3 [1]
we have {x,, ) = 0 for every n = 1,2, ... Thus {x,, ¢> = 0 = {x, ¢) and there-
fore from Lemma 1.3 [1] it follows that x vanishes on (— o, b).

Definition 1.1. Let x, x, € D, n = 1, 2, ...; the sequence x, will be called iniformly
convergent to x (this fact will be symbolized by x, 3 x), if x, — x and x,, vanishes on
some interval (— oo, b) for every n = 1,2, ...

Lemma 1.5. Let x € D'; then there is a sequence x,e DY, n = 1,2, ... such that

X, 3 x.

Proof. The proof is analogous to that of Lemma 5.4.5 in [2].
Let K? denote the set of all infinitely differentiable real functions ¢(r) such that
every ¢(t) vanishes on some interval (a, + oo) (which in general depends on ¢).

Definition 1.2. Let %' be the set of all distributions {f,} from D' depending on
a parameter a (where a is an arbitrary real number) with the following properties:

1. If ¢ € K, then y € K, where y(a) = {f,, ¢) for every real number a.
2. If aq is an arbitrary real number, then there exists a real number b, such that f,

vanishes on (— o0, b,) for every real number a = a.

Note. The statement 1 of Definition 1.2 holds if and only if the partial derivative
6"fa/6a" exists for every positive integer n and o,f, — 0 for every two sequences of
real numbers «,, a, with a, - +00, n =1,2, ...

The proof is similar to the proof of Theorem 1.1 [1].

Theorem 1.1. Let {f,}, {g.} € #'.

1. If o, B are real numbers, then {af, + Pg,} € F*.

2. If n is a positive integer, then {0"f,[0a"} € F'.

3. If b is a real number, then {h,} € F', where h, = P,[f,].
4. If b is a real number, then {h,} € F', where h, = f,_,.

Proof. Put y(a) = {f,, > and x(a) = {g,. @) for every ¢ € K.

1. If a, B are real numbers, then w(a) = <(of, + Bg, ¢ = «y(a) + B x(a). Thus
o = oy + Py e KP. If a, is an arbitrary real number, then there exist real numbers
b, b, such that f, vanishes on (— o0, b;) and g, vanishes on (— o0, b,) for every real
number a = a,. From Lemma 1.2 it follows that af, + Bg, vanishes on (— o0, b,)
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~ where c < d < b.

(where by = min (by, b)) for every real number a > a,. Hence {af, + Bg,} € F'.

2. If n is a positive integer, then from Lemma 1.6 [1] it follows that w(a) =
= (0"f,[6a", p)> = Y™(a). Thus w = Y™ e K?. If a, is an arbitrary real number,
then there exists a real number b, such that f, vanishes on (— o, b,) for every real
number a 2= a,. Let ¢ be a real number, ¢ < by, and let ¢(f) = 0 on the interval
(¢, +oc). Then by Lemma 1.3 [1] we have y/(a) = (f,, > = 0 for every real number
a = a,. From this it follows that {0"f,/da", > = ¥™(a) = O for every real number
a = a,. Then by Lemma 1.3 [[1] &'f,/0a" vanishes on (— oo, by) for every real
number a = a,. Hence {0"f,[0a"} € F'.

3. If b is a real number, then w(a) = (hy, 0> = (Py[f.], > = {fa, o(t + b)).
Evidently (p(t + b) € K and thus we have w € K?. If a, is an arbitrary real number,
then there exists a real number b, such that f, vanishes on (— oo, b,) for every real
number a = a,. From Lemma 1.3 it follows that h, = Py[ f,] vanishes on { — o0, by +
+ b) for every real number a = a,. Hence {h,} € #".

4. If b is a real number, then w(a) = <h,, @) = {fop, @) = Y(a — b). Thus
w € K?. Let a, be an arbitrary real number. Since a, — b is a real number, there exists
a real number b, such that f, vanishes on (— o0, b,) for every real number a =
= a, — b. From this it follows that h, = f,_; vanishes on (— oo, b,) for every real
number a = a,. Consequently {h,} € #'.

Example 1. Let a be a real number and let H, be the shifted Heaviside’s distribu-
tion, i.e. ) :

{H,, > = | o(t)dt

a

for every ¢ € K. Evidently, H, vanishes on (—-oo, a) for every real number a. If
@ € K, then y € K?, where y/(a) = (H,, ¢). From this it follows that {H,} € #".

Example 2. From Theorem 1.1 it follows that {5,} € #'. Also, we clearly have
0H,[0a = -4,

Definition 1.3. Let b be a real number and let 4", be the set of all real infinitely
differentiable functions p(t) on (— o0, +o0) such that

_ /0 on (-o,0),
”(t)—\l on (d, +),

Lemma 1.6. If {f,} € #* and p€ Ny, then {u(a) f,} € F.

Proof. Let ¢ € K. Put y/(a) = {fa> @> for every real number a. Evidently, y € K”.
We have {u(a) f,, 9> = p(a) ¥(a) and thus py € K. Hence {u(a) f,} € #.
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2. INTEGRAL

Let us recall the fact that if {f.} € # and x e D, then

(2.1) < J (x. 1) da, <p> =X 9)

- o

for every ¢ € K, where y(a) = {fa, ¢ for every real number a. (See Definition 2.1

[1])

Lemma 2.1. Let b, ¢ be real numbers (c < b). Let {f,} € # and f, = 0 for every
real number a > c. If x € D' and x vanishes on (— 0, b), then

'r w(x, fJ)da=0.

Proof. Put y = [1Z(x,f,) da. If ¢ € K then by (2.1) it follows that {y, p> =
= (x, Y, where y(a) = {f,, ¢ for every real number a. Since (1) = 0 on the
interval (c, 4+ o0), it follows from Lemma 1.3 [1] that {x, > = 0. Thus y = 0,
q.e.d.

Lemma 2.2. Let b, ¢ be real numbers (¢ < b). Let {f,},{9,} € # and let f, = g,
for every real number a > c. If x € D' and x vanishes on (—, b), then

+ + o
J‘ (x,fa) da = J‘ (xa ga) da *
Proof follows from Lemma 2.1 and Theorem 2.3 [1].

Lemma 2.3. Let {f,} € # and let x € D' vanish on the interval (— o, b). If pe N,
then {u(a) f,} € F and

.[ i:(x’f ) da = f+:(x, u(a) f,) da .

Proof. Puty(a) = {f., ¢ for every ¢ € K. Then w(a) = {u(a) fo, 0> = p(a) Y(a).
Thus o € K. Hence {1(a) f,} € #. The rest of the proof follows from Lemma 2.2 and
from Definition 1.3.

Definition 2.1. Let {f,} € #', x e D' and let the integral [* 7 (x, f,) da be defined by

22) | ( £ da = j ( u(a) ;) da

[}

where p € A, and x vanishes on the interval (— oo, b).
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Note. The integral [*2(x, f,) da is defined by (2.2) uniquely, ie. it does not
depend on p e A, Indeed, if py € Ay, py € Ny, then py(a) fo = py(a) f, for every

real number a > ¢ where ¢ is some real number (c < max (bl, bz)). From Lemma 2.2
it follows that

[ emt@nyta- [

0O(x, po(a) f,) da .

Theorem 2.1. Let {f,} € #' and x € D". Then [*% (x, f,) da e D".

Proof. Let x vanish on (—oo, b). From Definition 2.1 it follows that y =
= (12 (x,f)da = [Z% (x, (a) f,) da, where pe A,. Let u(t) = 0 on (— o0, a,),
where g, is some real number (a, < b). According to Definition 1.2 there exists a real
number b, such that f, vanishes on (— o0, b,) for every real number a > a,. Let
¢ € K and let ¢(f) = 0 on (c, + o), where ¢ is some real number (¢ < b,). Then by
(2.1) <y, 9> = {x, ¥, where y(a) = {u(a) fo. 9> = p(a) {fo, ¢>- If a < a,, then
u(a) = 0. Thus y(a) = 0. If a = a,, then f, vanishes on (— o0, b,). By Lemma 1.3
[1] it follows that {f,, > = 0 and thus y(a) = 0. Hence <x,¥> = 0. Lemma 1.3
[1] implies that y vanishes on (— oo, b,). Consequently, y € D', g.e.d.

Example 3. Let b be a real number and {f,} € #'. If pe A", then u(b) = 1.
From Definition 2.1 and from Example to Definition 2.1 [1] it follows that
127 (0 fu) da = [12 (0> p(a) £,) da = u(b) f, = f,. Thus

fb = J Oo(5bafa) da.

Theorem 2.2. If o, B are real numbers, {f,} € #' and x, y € D', then

J w(ocx+ﬁy,f,,)da=ocf w(x,fa)da+ﬁ.[ cc(y,f,,)da.

Proof. Let x vanish on (— o0, b;) and let y vanish on (— oo, b,). By Lemma 1.1
x and y vanish on (— oo, b), where b = min (b, b,). If € A, then from Definition
2.1 and Theorem 2.2 [1] it follows that [Z% (ax + By,f,)da = [*% (ax + By,
wa) f,)da = o [*7 (x, w(a) f,) da + B (1% (v, w(a) f,) da = o [T2(x,f,) da +
5T (1) das qed,

Theorem 2.3. If o, B are real numbers, {f.}, {g.} € F' and x € D', then

j (xof, + Pg)da = a j e f)da + p f (%, 90 da .

Proof. According to Theorem 1.1 {af, + fg,} € F'. Let x vanish on (— oo, b).
If u € A, then from Definition 2.1 and Theorem 2.3 [1] it follows that [*2 (x, af, +
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+ Bgs) da = [3 (x, ap(a) f, + B u(a) g,) da = o (2% (x, u(a) £,) da + B [*7 (x,
w(a) g)da = a [I2 (x,f,)da + B [T (x, o) da, q.e.d.

0

Theorem 2.4. If x, x, e D', n = 1,2, ..., x, 3 x and {f,} € F*, then

j+ w(x,,, f.) da 3J+ m(x,f,,) da .

Proof. Let x,, n = 1, 2, ..., vanish on (— o, b). By Lemma 1.4 it follows that x
vanishes on (—co, b). If pe A", then Definition 2.1 and Theorem 2.4 [1] yield

o = 52 (5 ) da = 122 (s ) ) 125 ) ) 0 = 22 (s ) o =

= y. By the proof of Theorem 2.1 there exists a real number b, such that y,, n =
= 1,2, ..., vanish on (— oo, by). Hence y, = y, which completes the proof.

Theorem 2.5. If x € D' and {f,} € #', then

j(wmw—<nj(aﬂ

Proof. By Theorem 1.1 we have {0"f,/0a"} € #'. Let x vanish on (—oo, b). If
R E€ A, then there exists a real number ¢ (¢ < b) such that u(a) = 1 for every real
number a > ¢.If a > c, then by Note to Lemma 1.6 [ 1] we have {(0"u(a) £,)[0a", ¢ =
= [u(a) Y(a)]™ = u(a) y™(a) = <{p(a) 3"f,[0a", @) for every ¢ e K where y(a) =
= {f,, ¢>. Thus (0"u(a) f,)/0a" = w(a) 0"f,/0a" for all real numbers a > c. Using
Definition 2.1, Theorem 2.5 [1] and Lemma 2.2 it follows that

Ji:(x(")’f") da = 'rw(x(n), u(a) f,) da = (—1y" Ji: ( ’ o"u(a) fﬂ)

-
— (- 1)"j (x u(a) f“)da—( 1y :(%)da

Theorem 2.6. If b is a real number, {f,} € #' and x e D', then

q.e.d.

PDY - [ (o),

where y = (%% (x, f,) da and g, = P,[f.].

Proof. By Theorem 1.1 we have {g,} € #'. Let x vanish on (— o0, ¢). If pe A",
then y = [*% (x, u(a) f,) da and P,[u(a) f,] = p(a) P,[f.] = u(a) g,. From Defini-
tion 2.1 and Theorem 2.6 [1] it follows that P[y] = [2 (x, u(a) g,) da =

= [12(x, g,) da.
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Theorem 2.7. If b is a real number, {fo} € ' and x € D', then

J-+w(x,fa) da = Ji:(Pb[x]’fﬂ—b) da -

Proof. According to Theorem 1.1 {g,} € #' where g, = f,_,. Let x vanish on
(= o0, ¢). If pe A, then from Definition 2.1 and Theorem 2.7 [1] it follows that
[t (x,f)da = [*2 (x, w(a) f) da = [I2 (P[x], p(a — b) f,_p) da = [T2 (Py[x]
Wa) fo_y) da = [£2 (Py[x], fu-s) da, where ¥(f) = p(t — b) on (—oo, +o0) and
Ve N ip

Theorem 2.8. Let {f,} € #' and let f, vanish on (=00, a) for every real number a.
If b is a real number, x € D' and x vanishes on (— oo, b), then [*% (x, f,) da vanishes
on (—oo, b).

Proof. If u e 4, then y(a) f, vanishes on (— oo, a) for every real number a (see
Lemma 1.2). From Definition 2.1 and Theorem 2.8 [ 1] it follows that [*% (x, f,) da =
= [*%(x, u(a) f,) da vanishes on (— o, b), q.e.d.

Example 4. From Example 2 and from Example to Definition 2.1 [1] it follows
that

+ o
x =J\ (x, 6,) da

for every x e D",

3. LINEAR UNIFORMLY CONTINUOUS OPERATORS

Let P be a non-empty subset of the set D!. A mapping T of P into D' will be called
the operator on P. The set P will be termed the domain of the operator T.

Definition 3.1. Let P be a non-empty subset of D'. An operator T on P will be called
uniformly continuous if the following implication holds:
Ifx,x,eP,n=1,2,..., x,3 x, then T[x,] 3 T[x].

Example 5. Let H = H, be the Heaviside’s distribution. If we put
T[x] =x"Y =H=x, (xeD)

then the operator T is not continuous. Actually, we have §_, — 0 and, on the other
hand, T[6_,] = H_, » 1 % 0 = T[0]. However, the operator T is uniformly con-
tinuous (see p. 137 [3]).

Theorem 3.1. Let T be a linear uniformly continuous operator on a linear sub-
space P < D'. Let {f,} € #' and 0"f,[0a" € P for every n = 0, 1,2, ... and for every
real number a. Then {g,} € F' and 0" |0a" = T[0"f,[0a"] where g, = T[f,].
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Proof.1.leta, —» a (a,, + a), n = 1,2, ... be a convergent sequence of real num-
bers. Then there exists a real number a, such that a, < a, forevery n = 1,2, ...By
Definition 1.2 there exists a real number b, such that f, vanishes on (— oo, b,)for
every n = 1, 2, .... According to Lemma 1.5[1] it follows that (a, — a)~ ™.
fa, — fa) 3 0f,]0a. Using the linearity and uniform continuity of the operator T}
we obtain (a, — a)™' (g,, — 9.) 3 T [0f./0a] where g, = T[f,]. By Lemma 1.5
[1] there exists dg,/0a and dg,/0a = T[of,/0a]. Similarly we obtain that there exists
0"g,/0a" and d"g,[oa" = T[d"f,[0a"] for every n = 2,3, ...

2. Let a,, o, n = 1,2, ... be two sequences of real numbers and let a, - + o0.
Then there exists a real number a, such that a; < a, foreveryn = 1, 2, ... By Defini-
tion 1.2 there exists a real number b, such that f, vanishes on (— oo, by) for every
n = 1,2, ... By Note to Definition 1.2, «,f,, — 0 and thus it follows by Lemma 1.2
that o,f, = 0. Using the linearity and uniform continuity of the operator T we
conclude that 2,9, 33 0. From Note to Definition 1.2 it follows that y € K? for every

¢ € K, where y(a) = {g,, ¢).

3. If {g,} ¢ 7', then by Definition 1.2 there exists a sequence g, of real numbers
such that k < a, for every n = 1,2, ... and the statement “g, vanishes on (— oo,
—n)” is not true for every n = 1,2, ...

On the other hand {f,} € #' and thus there exists a real number b such that f,
vanishes on (—oo, b) for every n = 1,2, ... If p €K, then y € K? where y/(a) =
= {fu .

Next, there clearly exists a subsequence b, of a, such that either b, — a, or b, —
— +o0. If peK, then either {fy,, > = W(b,) > ¥(ao) = {fop, ®> OF {fpp @) =
= y(b,) = 0. Thus f,, = f,, or f,, = 0. Since f,, 3 fo, or fy, =3 0, by Definition 3.1
we have g,, =3 g,, or g,, = 0. Hence g,, vanishes on some interval (— o0, ¢) for every
n =1,2,... which is a contradiction. Consequently {g,} € #', and the theorem is
proved.

Theorem 3.2. Let T be a linear uniformly continuous operator on a linear sub-
space P < D'. Let {f,} € #' and 0"f,[0a" € P for every n = 0, 1,2, ... and for every
real number a. If xe D) and yeP, where y = (17 x(a)f,da, then T[y] =
= {17 x(a) g, da, where g, = T[f,].

Proof. Let x vanish on some interval (— 0, b). From Theorem 3.1 it follows that
" {9.} € F'. By Lemma 1.7 [1] and Definition 1.2 there exist yand u = [*2 x(a) g, da.
Let 2 be an arbitrary subdivision of the interval (— oo, + o). Using the notation

introduced in Definition 1.4 [1], we obtain for the integral sums, s,(2) = Y, (a; —
i=1

— a;-1) X&) feo 52(2) = Y (a; — a;-1) x(£;) g, From the linearity of the opera-
i=1
tor T'it follows that T[s,(2)] = s,(2). By Definition 1.2 there exists a real number ¢
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such that f, vanishes on (— o, ¢) for every a > b. If £; = b, then f;, vanishes on
(=90, ¢). If ¢; < b, then x(¢;) = 0. Hence, by Lemma 1.2, 5,(2) vanishes on (— oo, c).

If 9, is an arbitrary zero sequence of subdivisions of the interval (— oo, + o0), then
$:(2,) = y and s,(2,) - u. Since s,(Z,) 3 y, we have by Definition 3.1 s,(2,) =
= T[s,(2,)] 3 T[y]- Thus u = T[y], q.e.d.

Theorem 3.3. Let T be a linear uniformly continuous operator on a linear sub-
space P < D'. Let {f,} € #' and 8"f,[0a" € P for every n = 0, 1,2, ... and for every
real number a. If xe Dy and yeP, where y = [*7(x,f,) da, then T[y] =
= [12(x, g,) da, where g, = T[f,].

Proof. According to Theorem 3.1, {g,} € #', and consequently, [*% (x, g,) da
exists. On the other hand, there is evidently a z € D) such that z™ = x. From this it
follows that z vanishes on some interval (—oo, b). If pe A", then Theorem 2.5,
Definition 2.1 and the proof of Theorem 2.1 [1] yield y = (17 (x,f,) da =

= (— 1 % (= (PJ0a") da = (~1) [*2 (2, (@) @Y Joa)) da = (C 1) T2 =(a).
. i(a) (0"f,/0a") da. However, according to Theorem 3.1, Theorem 3.2, proof of
Theorem 2.1 [1], Definition 2.1 and Theorem 2.5 we have T[y] = (=1)" [1% z(a).

- 1(@) (@g.J0d") da = (=1 [7% (2, la) (@9, J0a") da = (~1) [* (2 (a,foa")
.da = {17 (x, g,) da, which completes the proof.

Note. Let {f,} e #'and let 5, € P = D' for every real number a. If the operator T
on P has the form

+ oo
T[x] = J‘ (x,f,)da, (xeP)
then from Example 3 it follows that f, = T[4,].
Theorem 3.4. Let P = D!, be a linear subspace and let 8 e P for every n =

=0,1,2,... and for every real number a. Then the operator T on P is linear and
uniformly continuous if and only if it has the form

T[x] = jjm(X,fa) da, (xeP)

and f, = T[4,].
Proof follows from Theorem 2.2, Theorem 2.4, Theorem 3.3 and Example 4.

Theorem 3.5. Let P (D, = P = D') be a linear space. Then the operator T on P is
linear and uniformly continuous if and only if it has the form

T[x] = J.i 00(x,fa) da , (xeP)
and f, = T[3,]-
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Proof. The proof is analogous to that of Theorem 3.5 [1], and follows from
Theorem 2.2, Theorem 2.4, Theorem 3.4 and Lemma 1.5.

Corollary. If T,, T, are two linear uniformly continuous operators on D' and
T\[6,] = T,[6,] for every real number a, then T,[x] = T,[x] for every x € D.

Note. If fe D', then {f,} € #' where f, = P,[ ] for every real number a. Actually,
the operator
T[x] =f*x, (xeD

is linear and uniformly continuous (see p. 137 [3]). From Theorem 3.5 it follows
that

T[x] = rw(x, f)da, (xeD)
where {f,} € #'. However f, = T[5,] = f* 3, = P,[f].

Theorem 3.6. The operator T on D' is linear, uniformly continuous and time-
invariant if and only if it has the form

T[x] = f jw(x, f)da, (xeD

where f, = P,[f] and f = T[6].

Proof. Let Tbe a linear, uniformly continuous and time-invariant operator. From
Theorem 3.5 it follows that T[x] = [X2 (x, f,) da (x € D') where {f,} € #'. Also,
fo=T[8,] = T[P[5]] = P[T[5]] = P.[f]

If the operator T has the form T[x] = (%2 (x, f,) da (x € D'), where f, = P,[f],
then by Note to Theorem 3.5, {f,] € #'. According to Theorem 3.5 T is linear and
uniformly continuous. From Theorem 2.6 and Theorem 2.7 it follows that T[P,[x]] =

= (T2 (Py[x], f)da = [*2 (x, fars) da = [12 (x, Py[f,]) da = P,[T[x]]for every
x € D! and for every real number b. Thus the operator T'is time-invariant.

Note. If f, = P,[f] for some f € D, then from Note to Theorem 3.5 it follows that

J+w(x,fa)da =fxx, (xeD").

Theorem 3.7. The operator T on D' is linear, uniformly continuous and causal if
and only if it has the form ’

T[x] = J'+ “(f)da, (xeD))

where {fa} € #' and f, vanishes on (— o0, a) for every real number a.
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Proof. Let Tbe a linear, uniformly continuous and causal operator. From Theorem
3.5 it follows that T[x] = [*Z (x, f,) da (x € D'), where {f,} € F'and f, = T[4,].
Since 8, vanishes on (— oo, a), f, vanishes on (— oo, a) for every real number a.

Let the operator T have the form T[x] = [2 (x, f,) da (x € D') where {f,} € #'
and f, vanishes on (— oo, a) for every real number a. From Theorem 3.5 it follows
that T'is linear and uniformly continuous. Finally, from Theorem 2.8 and Lemma 3.1

[1] it follows that the operator T'is causal.

Theorem 3.8. The operator T on D' is linear, uniformly continuous, time-
invariant and causal if and only if it has the form

T[x] = Jf 0O(x, fJ)da, (xeD')

where f, = P,[f] and f = T[§] vanishes on the interval (— oo, 0).
The proof follows from Theorem 3.6 and Theorem 3.7.
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