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Czechoslovak Mathematical Journal, 21 (96) 1971, Praha 

ON REPRESENTATION OF LINEAR OPERATORS ON Co(T, X) 

IVAN DOBRAKOV, Bratislava 

(Received April 1, 1969) 

INTRODUCTION 

Let T be a locally compact Hausdorflf topological space, let X be a Banach space 
and let CQ{T, X) denote the Banach space of all X valued continuous functions on T 
tending to zero at infinity with the usual' supremum norm. (Throughout the paper 
we shall suppose that all Banach spaces considered are either real or complex.) 
In this paper we shall investigate bounded Hnear operators on CQ{T, X) by represent­
ing them as integrals with respect to Baire operator valued measures. 

The paper is divided into six sections. § 1 is preparatory and collects results on 
operator valued measures needed for the subsequent parts. 

Theorems 2, 2' and 3 in § 2 are the basic representation theorems. We derive them 
from their known scalar versions, see VI.7.3. in [15] and Theorem 1 in [27]. Theorem 
2 gives a necessary and sufficient condition for a bounded linear operator U : 
: CO(T, X) -^ Y to be expressed as an integral with respect to an L(X, У) valued Baire 
measure countably additive in the strong operator topology of L(X, У). For such 
measures extension of the Lebesgue integration theory is possible, see [13] and [37]. 
Theorem 3 states that for unconditionally converging operators (introduced in [27]), 
particularly for weakly compact operators U the semivariation ni of the representing 
measure m is continuous on the cr-ring of Baire measurable sets of T. This property 
is of great importance for the integration theory, since then CQ(T, X) is a dense subset 
of Lp(m), see [37]. At the same time the space Lp(m) shares many good properties of 
the classical scalar Lp spaces, see [37]. 

In § 3 we show that various classes of our integrally expressed operators form 
closed left (in general only left) ideals in the algebra of all bounded linear operators 
over the space Co(T, X). 

Using the results of [18] and Theorem 3 in § 4 we prove the norm equality 
|l + U| = 1 4- |U| for every unconditionally converging, particularly for every 
weakly compact operator U : CQ{T, X) -^ Со(Г, X) (Т contains no isolated points). 
This result was known for compact and majorable operators, see Corollary 4 in [18]. 
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After collecting in § 5 the results on weak convergence in Co(T, X), Theorem 13 
in § 6 gives a very partial affirmative answer (for X = l^ or T discrete) to our most 
important open problem: If X has the Dunford-Pettis property, has also the space 
Co(T,X) this property? 

The first version of this paper contained results on representation of wceakly 
compact and compact linear operators on CQ{T, X). These results however were 
omitted, since coincided with the recent results of J. ВАТТ and J. BERG, see [35] and 
[36], where we refer the reader to. 

1. ON OPERATOR VALUED MEASURES 

Operator valued measures were treated in section 1.1 of [13]. For convenience we 
first state a few basic notions and facts and then we prove some important results 
about the semivariation m of an operator valued measure m. 

Let T be a locally compact Hausdorff topological space, let ^Q denote the (5-ring 
of all relatively compact Baire subsets of T, let X and Y be Banach spaces and let 
L ( X , y) denote the Banach space of all bounded Hnear operators from X to f.. We 
shall suppose that m : ̂ Q -^ L(X, Y) is an operator valued measure countably 
additive in the strong operator topology of L(X, У), i.e., for every x e X m(.) x is 
a countably additive vector measure. Let us remind that by the theorem of Orlicz-
Pettis, see 3.2.1 in [22], and IV. 10.1 in [15], countably additivity in the strong and 
in the weak operator topology are equivalent conditions. 

Let 6(J^o) denote the smallest ö--ring containing ^Q, i.e., the d-ring of all Baire 
subsets of Tin the sense of § 51 in [21]. By a J*o-siiTiple function on Twith values in X 

r 
we call a function of the form f = Y,^i • XEI where x^ G X, E^e ^Q and Ei n Ej = 0 

for i Ф j . Here XE denotes the characteristic function of the set E in T. Its integral on 
a set £ e <3( J^o) with respect to the measure m is obviously unambiguously defined 

r 

by the equahty J^ f dm = ^ m(£ n £,) x^. Denote by 3^ the set of all J^o'Simple 
i = 1 

functions on Twith values in X. For a function f : T -^ X and a set Л с Tput ||f |j^ = 
= sup \f(t)\ (I. I denotes the norm) and define on S{^Q) the non negative set function 

teA 

m, called the semivariation of the measure m, by the equality: m[E) = sup {JJE f dm|, 
f e 3 ^ , llfll^ ^ 1}, £66(^*0)- From this definition it is obvious that ik(0) = 0 and 
that m is a monotone and countably subadditive set function on ^{^o}^ see [10, § 4 
Proposition 3]. Further, for every function f e 3^ and every set E e S(J^o) we have 
the important inequality 

0) 
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Denote by 3^ the closure of 3^ in the norm [|. || j in the Banach space of all 
bounded X valued functions on Tand let ik(T) = sup m(£) < + oo. Then (i) enables 

_ £6^0 

US to extend the integral from 3^ to 3^. For this purpose it is enough for a function 
fe^^ and for a set E G 6 ( J 'Q) to define 

f dm = lim f„ dm 
JE «-^OOJJÇ; 

where f„ e 3^, n = 1, 2, ..., and ||f„ — Г||т ~̂  0- For the extended integral, (i) is 
clearly valid again. Let us note that since Co(T, X) c= 3^, see Theorem 8 in [13], this 
elementary theory of integration is sufficient for representing a wide class of bounded 
linear operators U : CQ{T, X) -> У in the form Uf = [̂  f dm with such a measure m, 
see § 2 below. But for investigations of properties of such operators the substantially 
wider theory developed in [13] and the subsequent parts is needed. 

Let K[T) denote the set of all scalar valued continuous functions on Г with compact 
supports and let ф G K{T). Then by Theorem D of § 50 in [21] there is a compact Ĝ  
set С such that ф(г) = 0 for every t e T — С Denote by 3s the analogue of 3^ for the 
scalar valued functions and let ||v|| denote the scalar semivariation of a vector mea­
sure V, see IV.10.3 in [15]. Since for every x G X sup ||m( ) x[| {C n É) < + oo, see 

EeMo 

IV.10.4 in [15], and since Ф G C()(T') C: 3S, see Theorem 8 in [13], the function ф is 
integrable with respect to every measure m( ) x, x G X. Let us finally denote by Q the 

r 

set of all functions of the form f = ^ ф . . x^ where ф̂  G Х(Т) and x^ G X. Then by 

the assertion just stated every function f G Q is integrable with respect to the mea­
sure m. Moreover, we have: 

Theorem 1. Q is a dense subset of CQ[T, X) and for every set E e <3(^o) 

m{E) = sup (IJ^f dm|, fe^i, ||f||̂  й 1}. 

Proof. That Q is dense in CQ(T, X) follows from Proposition 1 of § 19 in [10]. 
The inequality m{E) ^ sup {...} is evident from the inclusion Q cz 3^ and from the 
definition of the semivariation in. It remains to prove the converse inequality. 

Let us have an г > 0. By the definition of the semivariation m choose x^ G X, 
|xf| ^ 1 and disjoint Ei e ^Q, E^ CZ E, i = 1, 2, ..., r in such a way that ih[E) — г ^ 

r 

= I Z '"(^f) ^i|- ^y Theorem D of § 50 in [21] there is a relatively compact open 
i = l r 

Baire set U such that \J E^ cz U where Ei is the closure in T of the set Ê -. Let ^ i 
/ = i 

denote the tr-ring of sets of the form I/ n £, £ G ^o- Since for every i = 1, 2, ..., r 
m()x^ is a countably additive vector measure on ^^, Theorem IV.10.5 in [15] 
implies that for every i there is a finite non negative countably additive measure Я̂  
on ^ 1 with the properties: Я^(£) ^ ||m() х̂ Ц (£) and lim ||m() х̂ Ц (£) = 0, 

Xi{E)-*0 
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£ 6 5^1. But the measures li, i = 1, 2, ..., r are regular on the measure space (U, ^ i ) , 
see Theorem G of § 52 in [21], and therefore for every i there is a compact in the 
relative topology of U set Ci <=• Ei and an open (in T since U is open) set 1/̂ , Ei с 
cz Ui cz и with ||'п() xJI (Ui — Ĉ ) ^ e/2r. Since the sets C; are relatively closed 
subsets of U, there are closed subsets Fi с T with Ci = U n Fi for every f. But 
Ci cz Ei cz 17, so Ci — Ein Fi, and this is a compact Baire subset of Г. According 
to Theorem В of § 50 in [21] for every i there is a function ф; e К{Т), 0 ^ ф̂ (̂ ) ^ 1 
for every t e T, such that ф (̂г) = 1 for ^ e Ĉ  and ф (̂г) = 0 for t e T - Ui. But then 
for every i = 1, 2,,.. , r 

Ф̂  diTi( ) Xi - m{C,) xJ - Ф; dm( ) x̂  
J E I \j EniUi-Ci) 

< 

^| |ф, |1^. | |т( )х,1| (С7,->С,)^ 
2r 

and therefore if we put f = X! Ф̂  • ^ь then f e Q and 

fd f i i -X 'n(Q)x , 

On the other hand, since Cj с Ei a Ui, 

\ 1 HE.) X.- - Z »"(c..) x..| g z i'"() ^i|| (Ui - c) й 

Hence 

m(£) - 2e ^ I Z "»(Ei) x̂ ] - 6 ^ I f dm 

Since g > 0 was arbitrary, the theorem is proved. 
By Theorem 8 in [13] CQ{T, X) c: 3^ and therefore we immediately have the 

following 

Corollary. Let ih{T) = sup ifi(£) < +oo. Then every function feCo(T, X) is 
£6^0 

integrable and for every set E G S(J 'O) 

m{É) = sup fdm , fGCo(r,X), llfll^^l 

For the rest of this section we may suppose that T is an arbitrary non empty set, 
^ a (5-ring of subsets of T, 6(^) the smallest cr-ring containing ^ and m : ̂  -^ L{X,Y) 
an operator valued measure countably additive in the strong operator topology. 
Denote by cabv(^{0^), X*), X* being the dual of X, the Banach space of all countably 
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additive vector measures \i : S ( ^ ) -> X* with bounded variations, |ц| = v{fi, T) = 
~ sup v{yL, É).. The assertion a) of the next lemma is evident from the paragraph 

following Theorem 7 in [13], while assertion b) follows from the principle of the 
uniform boundedness (Banach-Steinhaus Theorem), see [17, Prop. 1, III]. 

Lemma 1. a) For every functional y* G Y'^^for every function feZs^ and for every 
set EeS{^) we have the equality y* J^f dm = f̂  f dy*m. / / т(Т) < +oo, then 
y*m e cabv(S{^), X*) for every functional y* G У*, and ih(E) = sup i?(y*fn, E) for 
every set Ее Ц^). 1̂*1 = ^ 

b) / / i;(y*m, £) < + oo for every functional y* G У*, then also fn{E) — 
= sup г;(у*ш, £) < +oo, £ G 6(.^). 

We say that the semivariation m is continuous on (5(^) iff for any decreasing 
sequence of sets £ „ \ 0 , £„ G 8 ( ^ ) , n = 1,2, ..., there is lim m(£„) = 0. From the 

n->oo 

theorem of Orlicz-Pettis it follows, see Theorem 5 in [35] and Theorem 5 in [37], 
that if У is weakly complete (more generally, if У contains no subspace isomorphic 
to the space CQ, see [6]) and m is bounded on S ( ^ ) , then m is continuous on 8 ( ^ ) . 
In § 4 we use the following result: 

Lemma 2. The semivariation m is continuous on S{ßP) if and only if there is 
a finite non negative countably additive measure X on (5(^) y^ith the properties: 
À{E) й II m II (£) and lim m{É) = 0, E e S ( ^ ) . 

Proof. Let the semivariation m be continuous on (5(^). Since ||m|| (£) ^ m[E) 
for every set E e S ( ^ ) , the measure m is countably additive in the uniform operator 
topology on 8(.^). Thus by Theorem IV.10.5 in [15] there is a finite non negative 
countably additive measure Я on 0(£^) with the properties: À(E) ^ ||mj| (£) and 

lim II mII (£) = О, Е e 8(.^). If now À{N) = О, N e 8 ( ^ ) , then ||m|| (iV) = 0 and 

therefore also tn(N) = 0. Suppose that lim m{E) Ф 0, £ G 6 ( ^ ) . Then there is an 
л(Е)-^0 

e > 0 and a sequence of sets Aj, e (5(^), к = 1,2,..., with X{Ä,,) < 1/2^ and m{Äj^) > 
•X oo 

> £., Put Bi, = {J Ai and В = f) В J,. Then, since Я is a finite non negative countably 
i=k k=l 

additive measure on 6 ( ^ ) , Я(Б) = 0, while т{В) ^ ifi{Bj,) — m{Bj, ~ B) > e for 
sufficiently large к is implied by the monotonocity and continuity of m on S ( ^ ) , 
a contradiction. Thus we proved the existence of the A required. The converse asser­
tion is obvious. The lemma is thus completely proved. 

Let us note that in the preceding lemma we do not assume the boundedness of the 
semivariation m on 6 ( ^ ) . In fact, the boundedness of m on S ( ^ ) follows from the 
continuity of m on 6 ( ^ ) by this lemma, see the Corollary of Theorem 5 in [37]. 

Finally, in § 3 we use the following general result: 
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Lemma 3. Let m„ : ^ -^ L(X, У), n = 1,2,,.., be a sequence of operator valued 
measures countably additive in the strong (uniform) operator topology and let for 
each set E e ^ and each к e X the limit lim m„(£) x = m(£) x eY exist. (For each 

И-*СХ) 

set Ее 0^ there exists the limit hm m„{E) = m(E) e L{X, У).) Then m is a L(X, Y) 

valued measure countably additive in the strong {uniform) operator topology on ^ 
and for each set E e ^ ( ^ ) ih{É) ^ lim sup m„{E). If m„(T) < + oo for every n and 

(ni„^ — m„^) ( T ) -> Ofor min (п^, П2) -> oo, then ifi{T) < + 00 and lim (ITÎ„ — т)(Т} = 
n-^oo 

= 0. At the same time, if for every n the semivariation w„ is continuous on 0^, then 
the semivariation m is also continuous on 0. 

Proof. The first assertion of the lemma follows from the theorem of Vitah-Hahn-
Saks, see IV.10.6 in [15] and from the Banach-Steinhaus Theorem (uniform bounded-
ness principle). The remaining assertions of the lemma are obvious. 

2. REPRESENTATION THEOREMS 

In this section we prove the basic theorems on representation of bounded linear 
operators on Co(T, X) in the form of an integral with respect to a Baire operator 
valued measure. Theorem 2 is derived from the following known result, which is in 
fact its scalar version: 

(A) A bounded linear operator U : CQ(^T) -^ Y is weakly compact if and only if 
it can be uniquely expressed in the form Uf = jj f dfi, f e CQ(T) where ц : S(J^o) ~^ 
-^ Y is a countably additive vector measure. In that case \U\ = ||ц|| (Т) and U^y^ = 
= у*ц e ca{S{^o)) /^^ every functional y* e У*. 

Let us note that by J j fd\i we understood the integral jp (ац where F = {t e T, 
\f{t)\ > 0} G 6(J*o)' For compact Tthis is Theorem YI.7.3 in [15], see also [2] and 
[19]. For locally compact T i t was extended in [24, Lemma 2]. Although in these 
papers Ц is considered to be a regular Borel measure, each function f e CQ(T, X) is 
Baire measurable and therefore it is sufficient to consider Baire measures. 

Theorem 2. A bounded linear operator U : CQ{T, X) -^ V can be uniquely expres­
sed in the form 

(1) Uf= f f d m , feCo{T,X) 

where m : в (^о ) ~̂  L[X, У) is a Baire operator valued measure countably additive 
in the strong operator topology with ik{T) < -i-со, if and only if for every x EX 
the bounded linear operator U^ : CQ{T) -> Y defined by и̂ ф̂ = С/ф. x, ф e Со(Т) 
is weakly compact. In that case U'^y^ = y'^m e cabt;(S(J'o), X'^)for every functional 
y* 6 r* and \U\ = ifi{T) = sup ü(y*iTi, Г). 
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Proof. Suppose that the condition of the theorem is fulfilled. Then by (A) for 
every X G X there is a uniquely determined countably additive vector measure m^ : 
: 6(J'o) ~^ ^ such that С/̂ ф = Jr Ф dm^ for every function ф e Со(Г), and |U^j = 
= ||m^|| ( T ) ^ I tf| . |X|. For every set E e 6(J*o) ^^^ every x G X let us put m(É) x = 
= mJ^E). Then by the preceding inequality m(£) G L ( X , У) for every set E e Sf/^o)-
Thus by definition m is a uniquely determined Baire operator valued measure count-
ably additive in the strong operator topology and for every x G X and every function 
Ф G CQ{T), офх = J j Ф . X dm. From here we immediately obtain the equality 
Uf = jV f dm for every function feS!^, see the notation introduced before Theorem 1. 
But by Theorem 1 т{Т) = sup{ | J r fdm| , feQ, \\(\\т ^ 1} = sup {|af|, feQ, 
| |f| |j ^ 1} = \U\ < +00, since Q is a dense subset of Co(T, X). Thus by the Corollary 
of Theorem 1 every function fe CQ(T, X) is integrable. Since Uf = J j f dm for the 
dense subset Q of CQ(T, X), this expression is vahd by inequality (i) for every function 
fGCo(T, X). The relations ü*y* = y*m G cabt;(6(J*oX-^*). Y^eY^, and m(T) = 
= sup t;(y*m, T) follow from Lemma 1. The converse assertion of the theorem is 

| y* l^ i 
obvious from the elementary properties of the integral and from (A). Thus the theorem 
is proved. 

The following theorem is a generaUzation of Theorem 2. It may be proved in just 

the same way. Let us note that K(D), D a T denotes the set of all continuous scalar 

functions on D which have compact supports in D. 

Theorem 2\ A bounded linear operator U : CQ{T, X) -> У can be uniquely expres­
sed in the form 

(1') Uf^^fdm, feCoiZX) 

where m : ̂ Q -^ L(X, У) is a Baire operator valued measure countably additive in 
the strong operator topology with i^(T) < +oo i/ and only if for every x G X and 
for every G^ compact set D аТ the mapping U^ : K[D) -^ Y defined by the equality 
^хФ — ^Ф- ^? Ф ^ ^ ( ^ ) ^^ weakly compact. In that case ü*y* = y*nn e 
G cabv{^Q, X*) = cabv(S{Mo), X*) for every functional y* G У* and \Щ = 
= ih{T) = sup v{y'^m, T). 

\y*\ui 
The identical transformation of the space CQ into itself is a simple example which 

fulfils the condition of Theorem T but not that of Theorem 2. Namely, the measure m 
corresponding to this operator by (Г) has no countably additive extension from ^Q 
to S(^o) . 

Obviously the condition of Theorem 2 is fulfilled for every weakly compact linear 
operator U : CQ{T, X) -> У. Below in Theorem 3 we prove that a necessary condition 
for the weak compactness of an operator of the form (l) is the continuity of the semi-
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variation nt on S(J'o)- We now consider two examples of bounded linear operators 
of the form (l) where the semivariation m is not continuous on S(^Q); see also 
examples in [35] and [36]. 

Let T be the set of natural numbers with the discrete topology. The measure m 
from example 6 in section 1.1 in [13], which is countably additive only in the strong 
operator topology defines by (1) a bounded Hnear operator U : CQQI) -» CQ which is 
not weakly compact. At the same time it is easy to see that for each x e X the operator 
U^ : Co -> Co is compact and that for each set E e 6(J^o) '"(£^) e L{1^, CQ) is also 
compact. Thus in Theorem 2 compactness of operators U^ : Co{T) -> У, x e X 
together with compactness of values of the measure m do not imply in general even 
the countable additivity of the measure m in the uniform operator topology. 

Similarly the measure m from example 7 in section 1.1 in [13] defines by (l) 
a bounded linear operator U : Co(/i) -> CQ which is not weakly compact since the 
semivariation m is not continuous on 6(J'o)- ^ t the same time the measure m is 
countably additive in the uniform operator topology, its values are compact operators 
and the operators U^ : CQ -^ Co, x G X are also compact. It is even more remarkable 
that the set {m(£), E e 6(J^o)} is relatively compact in the Banach space L(X, Y) = 

It is not difficult to find whole classes of similar examples. Thus the condition of 
Theorem 2 is fulfilled in general for a considerably wider class of bounded hnear 
operators than is the class of linear weakly compact operators. 

According to [27] a bounded linear operator V : X -> Y is called unconditionally 
converging if it transforms weakly unconditionally convergent series into (strongly) 
unconditionally convergent ones. Obviously the class of all unconditionally con­
verging operators from L(X, У) forms a closed Hnear subspace in L(X, У). Further, 
a composition of a bounded hnear operator with an unconditionally converging 
bounded linear operator (in any order) is an unconditionally converging bounded 
linear operator. By the theorem of Orlicz-Pettis, see 3.2.1 in [22], every weakly 
compact linear operator is unconditionally converging. If У is a weakly complete 
Banach space (more generally, if Y contains no subspace isomorphic to CQ), then every 
bounded hnear operator from X to У is unconditionally converging. Let us note also 
that according to [38, Proposition 1.9] every completely continuous operator (not 
the same as compact), see § 6 below, is unconditionally converging. A. PELCZYNSKI 
in [27, Theorems 1 and Г] proved that for a reflexive Banach space X a bounded 
linear operator U : Co(T, X) -> У is unconditionally converging if and only if it is 
weakly compact. The next representation theorem for unconditionally converging 
bounded linear operators on CQ{T, X) is based on this result and on Theorem 2. This 
theorem obviously generahzes Theorem 5 in [35]. 

Theorem 3, Every unconditionally converging bounded linear operator U: 
: CQ(T, X) -> У can be uniquely expressed in the form (l) of Theorem 2 where the 
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values of the measure m are unconditionally converging operators from L(X, Y) 
and its semivariation wt is continuous on S{^Q). 

Proof. Since a bounded linear operator U^ : CQ{T) -^ У is unconditionally con­
verging if and only if it is weakly compact, see Theorem 1 in [27], from Theorem 2 
we immediately have the representation (1). That the values of the measure m are 
unconditionally converging operators from L(X, У) follows from the facts stated 
before Theorem 1. By Lemma 1 for each set £ e 6(^*0)5 »^(£) = sup v(y'^m, É), 

y* e y*. Suppose that the semivariation ih is not continuous on 6(J*o)- Then the 
variations i;(y*in, .), y* e У*, |y*] ^ 1, are not uniformly countably additive on 
S(J'o). But this would yield a contradiction in just the same way as in the proof of 
Theorems 1 and Г in [27]. 

It remains an open problem if the conditions of Theorem 3 are sufficient in general 
for и to be unconditionally converging. 

R e m a r k 1. The first version of this paper contained results on the representation 
of weakly compact and compact operators U : CQ{T, X) -> У, which however coin­
cided with the recent results of J. Batt and J. Berg, see [35] and [36]. We only note 
that replacing in the preceding Theorem 3 the unconditional convergence by the 
weak compactness, we obtain the representation theorem for weakly compact opera­
tors on CO(T, X). The conditions obtained on the representing measure m are suf­
ficient for the weak compactness of the operator Ü in the cases: 1. X is reflexive, 
2. X** is separable, and 3. Tis discrete, and as Example 3 in [36] demonstrates these 
conditions are not sufficient in general. 

R e m a r k 2. As C. FOIAS and L SINGER in [17, Theorem 1] deduced, every bounded 
linear operator U : C{T, X) -^ У, T compact can be uniquely represented as a weak 
integral respect to an additive L(X, У**) valued measure with certain properties, 
called the representing measure of U. Theorem 2 in [35] gives necessary and suf­
ficient conditions for the representing measure to have values in L(X, У). We note that 
the condition of our Theorem 2 is also a necessary and sufficient condition for this 
(if m has values in L(X, У), then the regularity impHes that v{y'^m, .) is countably 
additive, so m is countably additive in the weak, equivalently strong (see IV. 10.1 
in [15]), operator topology of L(X, У), and thus the condition of Theorem 2 is 
fulfilled). Hence we have the following result, see also Theorem 3 in [35]: 

Proposition. The representing measure m : S(^o) -^ ^{X, У**) of a bounded 
linear operator U : C(T, X) -^ У has values in L(X, У) if and only if it is regular in 
the weak operator topology of L(X, У**). 

Proof. If m is regular in the weak operator topology of L(X, У**), then m is 
countably additive in this topology, so it is countably additive in the strong operator 
topology of L(X, y**). By Theorem 2 the operator U^ : С{Т) -^ У** is weakly compact 
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for every x e X. But UlC{Ty] c= Y for every x G X, so again by Theorem 2 m has 
values in L(X, У). The converse assertion is obvious, since every countably additive 
Baire measure (scalar or vector) is regular, see Theorem G of § 52 in [211 and Lemma 
l i i i [ 2 4 ] . 

3. IDEALS OF INTEGRAL OPERATORS 

In this section we show that various classes of our integral (integrally expressed) 
operators over CQ(T, X) form closed left (in general only left) ideals in the algebra of 
all bounded linear operators over CQ(T, X). 

We say that w is a left sided operator ideal functor if for any two Banach spaces X 
and Y UL(X, Y) is a closed linear subspace of L(X, У) such that if Z is a Banach 
space и G wL(X, Y) and V e L(Y, Z) then VU e uL{X, Z). Examples of such functors, 
even two sided, are: a) the identity functor e, eL{X, Y) = L(X, У), b) the weakly com­
pact functor w, wL{X, y) is the subspace of all weakly compact operators in L(X, У), 
see VI.4.4 and VL4.5 in [15], c) the compact functor c, cL{X, У) is the subspace of 
all compact operators in L(X, У), see VL5.3 and VI.5.4 in [15], d) the unconditionally 
converging functor uc, ucL{X, У) is the subspace of all unconditionally converging 
operators in L(X, У), see the end of § 2, e) the completely continuous functor cc, 
ccL(X, y) is the subspace of all completely continuous operators in L(X, У) (not the 
same as compact), see § 6 below. 

Let us have a closed left sided operator ideal functor и and denote by/^L(Co(T, X), 
y), ? = 1, 2, 3 those operators from L{CQ{T, X), У) which can be expressed in the form 
(1) of Theorem 2 where the values of the measure m are operators from wL(X, У) 
and for i = 1 the measure m is countably additive in the strong operator topology, 
for i = 2 the measure m is countably additive in the uniform operator topology and 
for I = 3 its semi variation fh is continuous on S(J'o)- If instead of the representation 
(l) we have the representation (L) of Theorem 2', we shall write Г^Ь{С^{Т, X), У). 
Using this notation we have 

Theorem 4. Let и be a closed left sided operator ideal functor. Then for every 
i = L 2, 3 IIL(CO{T, X), y) and V^L{CQ{T, X), У) is a closed linear subspace of 
L{CjT,XlY). If Z is a Banach space, V e L{Y, Z) and U ellL{Co{T,X),Y) or 
и G /ГЬ(Со(Г, X), У), then VU e l!,L{Co{T, X), Z), VU G r^L{Co{Z X), Z) respectively 
for every i = 1, 2, 3. 

Proof. The first assertion of the theorem follows immediately from Lemma 3, 
Theorems 2 and T and from the fact that wL(X, У) is a closed linear subspace of 
L(X, y). The second assertion of the theorem follows from the facts: a) if Uf = 
= j r f dm, fe Co{Z X), then VUf = J^ fàVm, \Vm{E)\ й \У\ • \m{É)\ and УШ(Е) S 
^ \v\ .nt(É), £ G 6 ( J ^ O ) . see the paragraph following Theorem 7 in [13], and b) 
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Vm{É) 6 uL(X, Z) for every set E e 6(J*o)' since м is a closed left sided operator 
ideal functor. 

Corollary. Let и be a closed left sided operator ideal functor. Then for every 
i = 1, 2, 3 KL{CQ{T, X), Co(T, X)) and 1Ць{Со{Т, X), Со{Т, X)) is a closed left 
ideal in the algebra of all operators L(CQ(T, X), CQ(T, X)). 

The identity functor e is a closed two sided operator ideal functor. Nevertheless, 
in the following simple example we show that IIL(CQ[1^), CQQ^)) is not a two sided 
ideal in the algebra L(co(/i), CQ(II)). 

Example . Let us define the bounded linear operator V, V : Co(/i) -> Co( î) î i the 
following way: if x = [x^, X2,..., x„, . . . ] e/^ and ф = [a^, «2» •••? ^̂n? •••] ^ ô» 
then we put Ухф = \|/ e Co(/i), \|/ = [\|/i, i|/2,..., \|/„,...] where \|/î  = [х^а^, 0 ,0 , . . . ]e 
e 11, ̂ 2 = [0, ^i«2» 0, 0 , . . . ] G / 1 , . . . , \|/„ = [0, 0 , . . . , 0, xia„, 0, 0, . . .] G /1. Obvious-

r 
ly ¥ may be linearly extended to the set D^ of all functions of the form f = YJ ^t^^ ^^ 

i = l 

finite, and \Vf\ ^ ||f||r for every function feQ^. Since ^^ is a dense subset of 
^o( î)» we may extend V to the whole CQQ^) without increasing its norm. 

Further we define a bounded linear operator U : CQ{1^) -> Co(/i) in the following 
way: for x = [x^, X2,..., x„, . . . ] e/^ and (^ = \_a^, aj,'•-, a„, ...^e CQ we put 
Uxcp = X . ф' where ф' = [x^a^, X2a2,..., x„a„, . . .] G CQ. Obviously U may be extend­
ed to a bounded linear operator on Q^ with |U| g 1, and therefore also onto 
Co(li) without increasing its norm. Clearly for every x el^ the operator U^ : CQ -> 
"^ Co(/i) defined by the equality СУ̂ф == С/хф, ф G Co is weakly compact. Therefore 
by Theorem 2 U ellL{co{h), COQS 

We now show that U V ^ / ] L ( C O ( / I ) , CO(/I)). In view of Theorem 2 it is enough to 
find an Xj G X for which the operator (^¥)xi • ̂ 0 "~̂  ^o(li) is not weakly compact. 
Let Xi = [1, 0, 0 , . . . ] G/i and let us have a ф = [а^? 2̂» •••? «̂» •••] ^ ^o- Then 
УУх^ф = [öl, Ö2, ..., cr„, . . .] G Co(/i) where 0^ = [a^, 0, 0, . . . ] G Z ,̂ ..., Ö„ = 
= [0, 0, ..., 0, a„, 0 , . . . ] G/1. If we now take the sequence ф^ = [1, 0, 0, . . .] G 

и 

G Со,..., ф„ = [1, 1 , . . . , 1, О, О, . . .] G Со, then every ф„, и = 1, 2 , . . . is in the unit 
sphere of CQ, but the sequence и^х^ф« G CO(/I), n = 1, 2, ..., by Theorem 9 below 
obviously contains no weakly convergent subsequence in Co(/i). Hence the operator 
(^Юх1 • ̂ 0 -^ ^o{h) is not weakly compact, which is what we wanted. 

We say that w is a closed operator functor iff for any two Banach spaces X and Y 
uL{X, Y) is a closed linear subspace of L(X, У). Obviously each left sided closed 
operator ideal functor is a closed operator functor. Examples of such functors were 
given before Theorem 4. Using this notion we have: 

Theorem 5. Let À be a finite or infinite countably additive scalar measure on 
e(J^o)> ^̂ ^ и be a closed operator functor and let F : T -^ uL{X, У) be a measurable 
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function (ш the norm topology of wL(X, У)) with JV |^| di;(A) < + OD. Then the 
mapping U : CQ{T, X) -> У defined by the equality Uf = Jĵ  Ffd/, f e CQ{T, X) fs 
an element of UL[CQ[T, X), У) an^i |U| ^ J j |F| df(A). 

Proof. If we put ni(£) = J^ F d/l, £ G ^(^o)> then clearly m is an operator valued 
Baire measure with a finite variation, m(É) ^ i;(m, É) = J^ |F| di;(l) < + сю for each 
set E G 3(J*o)- Thus by Theorem 2 U is a bounded linear operator on Co{T, X) with 
|U| ^ ^j |F| dt;(A). In view of the elementary properties of the Bochner integral, for 
every n = 1, 2, .. . there is a 6(J^o)~siniple function F„ with values in ML(X, У) such 
that Jr l̂ n ~ f̂ l di;(l) < l/n. But for every n the operator l/„, ^„f = Jr^nf^^^^r 

fe Co(T, X) is an element of uL{Co{Z X), У) (if F„ = ^ ''n,̂  • ZE.. ^. ,I e wL(X. У), 

Ei e 6 (^o) being disjoint, then UJ = Ĵ ^ F„f dA = ^ F̂ ^̂  Ĵ .̂  fdÀ, fe Со(Г, X), see 
i = i 

the paragraph after Theorem 7 in [13]), and for every M |U„ — U| ^ Jj, |F,j — F| dt;(A) < 
< l/n. Since WL(CO(T, X), У) is a closed linear subspace of L{CQ{T, X), У), Ü is an 

element of wL(Co(T, X), У). Thus the theorem is proved. 

4. ON ALMOST DIFFUSE OPERATORS 

C. Foias and I. Singer introduced in [18] interesting classes of so called almost 
diffuse and countably almost diffuse operators U : CQ[T, X) -> У. According to Defi­
nition 1 in [18] a point ^ G Tis a diffuse point of an operator U : Co(T, X) ~> У, if 
the infimum over the open sets F, teVa Tof sup {|üf|, feK^V, X); j[fЦ̂ л ^ 1} is 
equal to zero. Here K(F , X) denotes the set of all X valued continuous functions on V 
with compact supports in V. We denote by D(U) the set of all diffuse points of an 
operator U : CQ(T, X) -> У. A point t e T — D(U) is called a point of concentration 
of the operator U. An operator U : CQ(T, X) -> У is called almost diffuse or countably 
almost diffuse, if D{U) is a dense subset of T or if T — D(^U) is a countably set, 
respectively. 

Let now m be a Baire operator valued measure. Then a point t e Tis called a diffuse 
point of the measure m, if inf m(F) = 0 where the infimum is taken over all open 
Baire sets F containing t. For example, if Я is a finite non negative countably additive 
Baire measure, then each point t e Tfor which À{{t}) = 0 where I is the regular Borel 
extension of A, see Theorem D of § 54 in [21], is a diffuse point of л. This follows 
from the regularity of I and from Theorem D of § 50 in [21]. In this example the 
points of concentration of À are exactly the atoms of I , of which there is at most 
a countable number. 

Let a bounded Hnear operator Ü : CQ{T, X) -> У be represented in the form (1) of 
Theorem 2 or in the form (Г) of Theorem 2'. Then by Theorem D of § 50 in [21] 
a point ^ G Tis a diffuse point of the operator U if and only if it is a diffuse point of 
the corresponding representing Baire measure ш. 
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Theorem 2 in [18] states that each compact and each majorable linear operator 
Ü : Co(r, X) -^ V is countably almost diffuse. The following theorem substantially 
extends this result, see its Corollary. 

Theorem 6. Each bounded linear operator U : Co(T, X) -^ У which can be re­
presented in the form (l) of Theorem 2 where the semivariation m of the measure m 
is continuous on <3(J*o) ^̂  countably almost diffuse. 

Proof. We follow the idea of the Remark of A. Pelczynski on p. 441 in [18]. 
Namely, if the semivariation m is continuous on 6(^o)? then by Lemma 2 there is 
a finite non negative countably additive measure A on 6(^o) with lim m[E) — 0, 

A(£)->0 

E e S( J^o)- Hence it is obvious that a point ^ e T is a diffuse point of the measure m 
if it is a diffuse point of the measure Д. But the concentration points of the measure Я 
are exactly the atoms of its Borel extension I, of which there is at most a countable 
number. This proves the theorem. 

From here and from Theorem 3 we obtain the next 

Corollary. Every unconditionally converging bounded linear operator, particular­
ly each weakly compact linear operator U : CQ{T, X) -^ У is countably almost 
diffuse. 

By this occasion let us note that the operator и from Example 2 in [18] is a bounded 
linear operator with one concentration point that cannot be represented in the form 
(1) of Theorem 2, which in this case reduces to Theorem (A). Supposing that this 
were possible we obtain that м is a weakly compact operator, so by Theorem VL7.5 
in [15] its square u^' is a compact linear operator, a contradiction. 

In a similar way as Theorem 6 we may prove 

Theorem 7. Every bounded linear operator U : Co(T, X) -> У which can be repre­
sented in the form (Г) of Theorem T where the semivariation m of the measure m 
is continuous on ^Q is almost diffuse. More precisely, each set E e в (^о ) contains 
at most a countable number of concentration points of the operator U. If T is 
a G-compact set, then the operator U is countably almost diffuse. 

The main result of [18] is the following theorem, Theorem 3 in [18] (its proof 
remains valid for locally compact Hausdorff T): 

( B ) T contains no isolated points if and only if for each alnwst diffuse bounded 
linear operator U : Co(T, X) -> Со(Г, X) the equality |l + ü | = 1 + \U\ holds. 

From here and from the Corollary of Theorem 6 we immediately have the im­
portant: 

Theorem 8. Т contains no isolated points if and only if for each unconditionally 

25 



converging bounded linear operator, particularly for each weakly compact linear 
operator, U : CQ{T, X) -> CQ(T, X) the norm equality |l + U| = 1 + | ü | holds. 

In [18] this is proved for compact and majorable operators, see the Corollary 4 
in [18]. In this occasion see also [25]. 

5. WEAK CONVERGENCE IN CQ(T, X) 

As it is well known, see [30], and as it also follows immediately from Theorem 2, 
the dual of Co(T', X) is isometrically isomorphic to the space cabv{(B(^o), X*) of 
countably additive X* valued vector measures with bounded variations. Hence we 
have the following result: 

Theorem 9. A. sequence f„ e CQ(T, X), n = 1,2,.. . weakly converges to a function 
(Q e CO[T, X) if and only if it is bounded in CQ(T, X) and lim x* f„{t) = x* fo(^) for 
each point t e T and each functional x* e X*. "^"^ 

For T being a compact interval of reals this theorem was first proved in [7, Theorem 
4.3]. For X reflexive or separable it is stated in [8, Theorem 5]. The general case can 
be reduced to the case when X is separable. Since no proof is given in [8] we note 
that a proof may be given using the deep result of VL8.7 in [15]. 

Let us denote by ^ the cr-ring of all countable subsets of Tand let cabv{ß, X*) 
denote the set of all those measures from cabv{^{ßoj, X*) which are of the form 
m = ^ xf . ^i, where E e ^ , xf G X* and /х (̂Л) = xJ^t) for A e 6(J*o)- Then similar-

teE 
ly as Theorem 4.4 in [7] we may prove the following interesting 

Theorem 10. Let f„e CQ[T, X), n = 1,2,. . . and let for every measure me 
e cabv(ßt, X^), lim f j f„ dm == 0. Then the sequence {f„}^=i weakly converges to 

n-> 00 

zero in CQ{T, X). 
From here and from Eberlein-Smulian's Theorem, see [34] or V.6.1 in [15] we 

immediately obtain 

Theorem 11. A subset F с Со(Г, X) is weakly relatively compact if and only if 
it is sequentially compact in the weak topology a{Co{T, X), cabv{ß, X*)). 

Concerning the CQ{T, X) convergence of sequences in its dual, similarly as Theorem 
IV.9.15 in [15] we now prove its following generalization, see also Theorem 6 in [8]. 

Theorem 12. Let {m„}̂ ==o ^^ ^ bounded sequence in the space cabv{^{ß^, X*) 
and let lim mJ^G) x = mJ^G) x for each xeX and each open set G e 6(J^o) ^Щ 

n-*oc 

v{mQ, G — G) = 0 where G is the closure of G in T. Then lim J^ fdm„ = J^ f^^o 
for every function fe Co{T, X). """* 
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Proof. In view of the boundedness of the sequence {m„}^^o in the dual space 
Co(r, X) = саЬи(^[^о), X*) it is sufficient to prove the theorem for the dense 
subset D, с CQ{T, X) (p, was defined before Theorem 1). But for feQ the assertion 
of the theorem may be proved in a similar way as Theorem IV.9.15 in [15]. 

6. ON THE DUNFORD-PETTIS PROPERTY OF CQ(T, X) 

We say that a bounded linear operator V : X -> У is a completely continuous opera­
tor, shortly a cc operator, if it transforms weakly fundamental sequences into con­
vergent ones. It is easy to see that the cc functor is a closed two sided operator ideal 
functor. Evidently each compact linear operator is a cc operator. By definition, see 
[9] and [19], we say that a Banach space X has the Dunford-Pettis property, shortly 
the D-P property, if each weakly compact linear operator V : X -> У, У being arbitrary, 
is a cc operator. If U : Z -> X is a weakly compact hnear operator and У : X -> У 
is a bounded hnear cc operator, then by Eberlein-Smulian's Theorem, see [34] or 
V.6.1 in [15], their product VU is a compact linear operator. Therefore, if X has the 
D-P property, the product of two weakly compact linear operators U : Z -^ X and 
V : X -^ y, y u is a compact linear operator. Particularly for X with the D-P property 
the square of any weakly compact linear operator over X is a compact operator. 
These facts make it important to estabhsh that a given Banach space has the D-P 
property. As it is well known any space of scalar functions CQ{T) has the D-P pro­
perty, as well as any scalar space L^, see [9], [19] or VI.7.5 and VI.8.12 in [15]. The 
following theorem may be considered as the first very partial result on investigation 
of the D-P property of the space Co(T, X). 

Theorem 13. a) Let T be a discrete topological space and let X have the D-P 
property. Then Co{T, X) has also this property, b) Let the weak and the strong 
convergences of sequences coincide in X (then evidently each bounded linear opera­
tor V : X -^ Y is a cc operator), for example let X — l^. Then for any locally com­
pact Hausdorff topological space T CQ{T, X) has the D-P property. 

Proof. Let f„eCo(r , X), и = 1,2, ... be a weakly fundamental sequence, let 
\\(п\\т й K,n = 1, 2 , . . . for some finite X, and let U : Со(Г, X) -> У be a weakly com­
pact linear operator. By Remark 1 in § 2 U can be represented in the form Uf = 
= jVfdm, feCo(T, X) where m is a Baire operator valued measure on 6(J^o) 
with Jfh(T) = \U\ whose values are weakly compact operators from L(X, У) and its 
semivariation m is continuous on S{^Q). Using this representation we extend the 
operator U from CQ(T, X) onto 3^ without increasing its norm, see the beginning 
of § 1. Let г > 0 and put 

"'.y.h^^W'i-ïôTM)}-
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Then A e 6(J*o) ^"^^ ^^^^ elementary properties of the integral we obtain the 
inequality |üf„.Xr-^| й ф for every n, 

a) In this case A is clearly a countable set, A = [t^, t2, . . . } . Since the semivaria-
tion m is continuous on 6(^0) . there is a feo such that for Bj,^ = {tk^ + i, h^ + i^ •••}> 
and for every n |JB^ f„ dm| ^ е/б. Thus for every «, p = 1, 2, ... we have the inequali­
ty \^fn " ^fp| й %u,..,t,^) {fn " fp) àm\ + 2e/3. Since for every i = 1, 2, , ^̂ 0 

the sequence {f„(^j)}^=i is weakly fundamental, see Theorem 9, since m({rj) is 
a weakly compact operator from L(X, Y) and since X has the D-P property, there is 
an По such that for n, p ^ YIQ it is |Uf„ — Uf̂ ,| < e. Thus we proved that in this case 
Co(r, X) has the D-P property. 

b) Since the semi variation ih is continuous on 6(^0)? Lemma 2 impHes that there 
is a finite non negative countably additive measure X on S(^o) with lim m{E) = 0, 

Я(£)-*0 

£ G 6(J'o). Choose <5 > 0 such that X{E) < Ô, E e S{^o) implies m(£) < e/6X. Since 
the sequence {f„}r=i is weakly fundamental in Co(T, X), by Theorem 9 for each 
functional X* e X* and each point t e T there is a finite hmit lim x* f„(^). But by the 

и-> 00 

assumption the weak and the strong convergences of sequences coincide in X, and 
therefore for each point t e T there exists a limit lim f„(r) = f(t) e X. By Egoroîï's 

«-* 00 

Theorem for the measure Я there is a set F G S ( , ^ O ) with /1(F) < ô such that on Л ~ F 
the sequence {f,J,r=i converges uniformly to the function f. Choose «o such that 
for n,p ^ По it is \\f„ — (PWA-F = ^l\ß{^ + ^ ( ^ ) ) ] ' Then from the inequality 
jUf„ - UfJ ^ |J^_,. (f„ - Q dm| + IJf (f„ - Q dm\ + г/З, n, p = 1, 2, . . . we im­
mediately obtain that for n, p ^ UQ it is |Uf„ — Uf̂ ,| ^ e. Thus we proved that in 
this case Со(Г, X) has the D-P property. 

The theorem just proved is a very partial solution of our perhaps most important 
and at the same time most difficult problem, which reads as follows: If X has the D-P 
property, has also Co(T, X) this property? We note that the affirmative answer, 
besides the cases just proved, is obtained obviously also when X is isometrically 
isomorphic to some CQ[T^), since then Co(T, Co(Ti)) = Co(T x T^), see Example 1 
on p. 89 in [20]. 

Let us note that from the proof of assertion b) of Theorem 13 it is evident that if 
an operator U : Co(F, X) -» У can be represented in the form (l) of Theorem 2 
where the semivariation ih of the measure m is continuous on 6(^0)5 then this opera­
tor transforms bounded and almost everywhere m convergent sequences in Со(Г, X) 
into convergent ones in У. In this respect see also Theorems 15 and 16 in [13] and 
[37]. 

Finally, from Theorem 5 we immediately have 

Theorem 14. Let us have a weakly compact linear operator U : Co{T, X) -*̂  
-> Co(T, X) defined in Theorem 5 and let X have the D-P property. Then U^ = UU 
is a compact linear operator. 
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