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Let @ = {ay, a,, ..., a,} be a finite set with n > 1 different elements. By a binary

relation on Q we mean a subset of Q x Q. The empty relation will be denoted by z.
The diagonal is denoted by 4, = 4.

Let By, be the set of all binary relations on Q. If ¢ € B,, we denote

a0 = {erl(a,.,x)eQ},
0a; ={yeQ|(y,a)ee},

n n
pry (@) = Uea;, pra(e) =Uage.
i=1 i=1

If M is a subset of Q, then Mg is defined as the union | a;0. The relation g' is defined
a;eM

by the requirement (a;, a;) € @' <> (a;, a;) € o. Finally, we denote I1(¢) = pr, (¢ L

v ') =pry(eva')

In B, the usual multiplication of binary relations is introduced so that B,, becomes
a semigroup containing z as the zero element and 4 as the unit element.

If 9, N 0, = z, we shall say that the relations g4, ¢, are disjoint.
The following is easy to prove:

Lemma 1. If card Q = n, then the transitive closure of g isguU @*uU ... U ¢"
In other words: For any integer t = 1 we have o' =« guU g* U ... U "
Let ¢ € B,,. Consider the sequence of powers

(1) ‘ 0, 0% 0%, ...

This sequence contains only a finite number of different elements (relations). Let
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k = k(g) be the least integer such that g* = o for some I > k. Let further I = k + d

be the least integer satisfying this equality. Then the sequence (1) is of the form
[l I SR b I SR LAl IO

It is well known from the elements of the theory of semigroups that the set G(g) =

= {0" ...,@"** '} is a cyclic group. The unit element of this group is ¢", where

k<r=k+d-— 1 More precisely: Let B be the uniquely determined integer

suchthat Kk £ pd < k +d — 1. Then r = pd.

In a series of papers (see e.g. [6]—[8]) I have dealt with some properties of non
negative matrices. If A = (a; ;)is an n x n non-negative matrix, we have studied the
distribution of zeros and non-zeros in the sequence 4, 4%, A%, .. To any non-negative
A we can associate a “matrix” C, with elements 0 and 1 by writing O or 1 on the
place (i, j) according as a;; = 0 or a;; > 0. Such a “matrix” can be considered in an
obvious meaning as the “matrix representation” of some binary relation on an
indexed set Q = {ay, ..., a,}.

In the set of all such 0—1 “matrices” a multiplication can be introduced which
corresponds to the multiplication of the associated binary relations. The methods I
used in the papers mentioned above have been of such a manner that many of the
results obtained can be directly formulated as results concerning binary relations.
We shall use therefore in the following a limited number of results obtained in these
papers. (See also the forthcomming paper [9], where these results together with
a series of new results are proved in terms of binary relations.)

Note, for further purposes, that an n x n non-negative matrix A4 is called reducible
if there is an n x n permutation matrix P such that PAP ™! is of the form (Al 0 ) .
Otherwise it is called irreducible. B 4,

A non-negative n x n matrix A is irreducible iff A + A% + ... + A" is positive.
This motivates the following definition.

Definition. Suppose that ¢ € B and card H(Q) = n. Then g is called irreducible iff
. QUQElU...UP"=Qx Q.

It is the purpose of this paper to find a sharp estimation for the number k = k(o)
in the case of an irreducible relation. This problem has been open for some years.

We note that for an irreducible ¢ we always have 1 < d = d(p) < n.

If d = 1itis know taat k(¢) < (n — 1)* + 1 and this result is the best possible.
This goes back to a statement of H. WIELANDT ([ 10]) and has been proved by several
authors in the last ten years. (See e.g. [1].) '

Suppose next d > 1 and write n = ad + s, where o > 1 is an integer and 0 <
ss=d=ile o v
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It follows from the results of Ju. I. Lyusi¢ ([5]) that k(o) < n?/d — 2n + 3d.

I have proved in [8] that k() < («* — 2 + 3)d + s — 1 if « = 2 (which implies
k(o) £ n*ld —2n +3d —s — 1), and k(o) < s + 1 if ¢ = 1.

B. R. Heap and M. S. LYnNN ([3]) proved by graph-theoretical methods a slightly
sharper result namely k(g) < («® — 20 + 2)d + 2s.

In this paper we prove that k(¢) < (> — 2 + 2)d + s for & = 2, and k(g) <
< max (1, s) for « = 1. This result is the best possible. It implies also an affirmative
answer to my conjecture (see [8]) that for any irreducible relation ¢ with card I1(g) =
= n we have k(Q) < n?/d — 2n + 2d. The fact that this result cannot be sharpened
follows from an example given in [5].

As to the result proved in this paper I should like to mention the following. At the
International Congress in Moscow (1966) V. S. GRINBERG (Donetsk) annouced me
(oral communication) that he obtained the same result. Since I am not aware of his
proof (it has been never published) and my proof is most probably quite different
it seems to me to be worth to publish it.

1. PRELIMINARIES

In this section we give some Lemmas the proofs of which can be found (in a some-
what other form) in the papers [6]—[9].

The group G(e) is cyclic. There exists therefore an integer u, k S u < k +d — 1
such that G(o) = {¢" 0 ..., ™}.

In what follows we shall choose u = r + 1. This is possible, since (r + 1,d) = 1.
Further we denote § = ¢"+1,

We then have

§2 = §2r+1) QrQr+2 = Qr+2’ 8 = Qr+3, caey 8! "

so that
G(e) = {5, 52, ..., 6“’} .

We now give some informations concerning the behaviour of the “rows” of o.
Let a; be any element € Q and consider the sequence

2 ao, a;0%, a;0°, ...
(2) 0, ai0’, a0

The elements of this sequence are subsets of Q (including eventually the empty set).

Denote by k; = ko) the least integer such that a,0*' occurs in (2) more than once.
Let further d; = d o) be the least integer >1 such that a,0** = a;0**%. Then (2)
is of the form

ki+di—1 | a

ki—1 k k
ag,...,a0" [aig e, a0 00 ...

Clearly k; < k(g), d; < d(e), and for any integers u 2 k;, v 2 k; we have a;0" =
= a;" iff u = v (mod d;).
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It follows immediately from the definition of k; and d; that

k ki+1 ki+di—1
G; = {a", a ™", .. a0 =

={a; 0"t a0t .., a0} = {ad, a,8%, ..., a8} .

We also have:

Lemma 2. For any binary relation ¢ we have
a) k(e) = max ki(o);
b) d(Q) = l_'c‘m' [dp dyy ..., d,,]

Remark. All these results hold independently whether g is reducible or irreducible.
We now quote some results concerning irreducible relations.

Lemma 3. A binary relation ¢ with I1(¢) = Q is irreducible iff

dudu..ud=0xQ.

Lemma 4. For an irreducible relation ¢ we have:

a) di(0) = ... = d(0) = d;

b)1<d=n

c) g =, 0= d..., 00 Y

d) The relations 8,82, ..., are pairwise disjoint. More generally, any d con-
secutive powers @', o'*1, ..., 0'*47 1 are pairwise disjoint;

e) 4=, whileAn(duUd*u...ud 1) =z

Remark. None of the properties a)—e) is necessarily true for a reducible relation.

Let now be n = ad + s, where o > 1 isanintegerand 0 < s <d — 1. If s = 0,
denote in the following Lemma 5 0° = ¢? and 6° = &%

Using Lemma 4 and the fact that g U ... U ¢" = § U ... U §* we obtain:

Lemma 5. With the notations just introduced (for any irreducible relation @)
we have:

Q U Qd+1 U QZd+1 U...uU Q(a‘-l)d+l U Qad+1 — 5 s

Qs U Qd+s v Qld+s U...uU Q(a—l)d+s U Qad+s - 5s,
(3) Qs+l U Qd+s+1 v Q2d+s+1 U...U Q(a—l)d+s+1 — 6S+1 ,

Q‘ v de u Q3d U...uU Qad = 54
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With respect to Lemma 4d) the relations in two different rows of (3) have no element
in common.
Taking account of the fact that for an irreducible ¢ we have

v
apuaetu...uaQ" =aduadtu..uad=Q,
we may state:

Lemma 6. If ¢ is irreducible, then to any a; e Q there exists a least integer h;,
I < h; < n, such that a; € a" and d | h; (hence h; < ad).
We shall also need the following

Lemma 7. If ¢ is irreducible and M is a proper subset of a;8', then Mg* contains
at least one element € a;6' not contained in M.

Proof. Let a; be any element € M. Then since a; U a0 ... U a;" = Q and

a;€ a;8', we have (with respect to Lemma 5) a; U a;0* U a;0*' U ... U a;0 = a;8".
The more
(4) MU Mg*u Mgy ...u Mg™ = a'.

To prove our Lemma it is sufficient to show that Mg? = M cannot hold. If it were
so, we would have M o> Mg? > Mg* > ... o Mo™, hence [with respect to (4)]
M = a,8', a contradiction to our asumption.

2. PROOF OF THE THEOREM

In this section g is supposed to be irreducible and II(g) = Q.
We begin the proof of our Theorem with the following almost trivial statement.

Lemma 8. Let a; € Q. Then at least one of the sets a;0, a;5, ..., a;0% contains <a
elements.

For, if all sets contained at least & + 1 elements, the union Q = a;6 U ... U a;6*
would contain (« + 1)d = ad + d > ad + s = n elements; which is impossible.

By Lemma 6 to any a; € Q there is an integer h;, d < h; < od, such that a; € a;o"".
This inclusion immediately implies the validity of the following chains:

hi A . _
a; < a0 < a,o™™ ... ca@ Dk < a0
hit1 ; 1)k .
aQ < agQ ca@tl o coa@TOmtL o ggthitt
+ . _ .
(5) a® <a""t caE™ts ... calTMts < gttt
a-1 hitd—1 - - _ rd—
a’! < ag" C ahtil o gl Dhita-1 ¢ ggehitd=l
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Denote in all what follows a;6° = a,6°. With respect to Lemma 8 we shall distin-
guish (for a fixed a;) two mutually excluding cases.
Condition S,.
min {card (a,6°), card (a,0), ..., card (a,0’~ ')} = card (a;8') < «,

forsomel,0Z1=<d— 1.

Condition S,.
min {card (a,0°), card (a,8), ..., card (a;6°~")} = card (a;6') = «,

forsomel, 01 <d—- 1.
The following two lemmas are in certain sense essential.

Lemma 9. Suppose that for a given a; Condition S, is satisfied. Denote by | = I,
the least integer 1, 0 £ 1 < d — 1, for which a8 contains exactly « different

elements € Q. Then I; < s.

Proof. If I; = 0, there is nothing to prove so that we may suppose /; > 0.
By definition of the number /; (and by Lemma 4d) the set
ad®uadtu... uadi!
contains at least (ex + 1) 1; different elements € Q, while
ad v .. v a;et!

contains at least a(d — I;) different elements € Q. Since a;0° U ... U ;0! = Q,
we have (by Lemma 4d)

(c+D)L+o(d=1)sn=uad+s,

which implies /; < s, q.e.d.
It follows from Lemma 5 that with = [, as defined in Lemma 9 we have:

(6) a" U aettt UL U alT VI gt = g,6" .

Lemma 10. Suppose that (for a given a;) Condition S, is satisfied and h; = od,
o = 2. Then
a; 0" U .. U a4 g 80,

Remark. This means that in this (in some sense “worst") case the last two
members on the left hand side of (6) cannot be omited.
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. Proof. Suppose for an indirect proof that
aini U aigli+du Y aiQI.-+(u—2)d - aiah .

Multiplying by o, 02, ..., 0! we get:

i+d+ i+ (a— Li+
Li+d+1 Lit(@-2)d+1 a;8" t

v ag U...uape

U...Ualtte-Data-1

By summing we have

Q=ad"u...uast =gl u .. U agElitETDITITL

Now

L+(@=2)d+d—-1=s+(@—-Nd-1=ad+s—(d+1) <ad.

This would imply that there is an integer h, I; < h < ad, such that a; € a;". This is
a contradiction to h; = ad.
We first settle the case o = 1 (in which case necessarily Condition S, holds).

Lemma 11. If n = d + s, then k(o) < max (1, s).

Proof. In this case we have 1 < h; £ d, d | h;, hence h; = d (for i=1,2,..., n).
By Lemma 8 (for every a; € Q) at least one of the sets a;6°, a9, ..., a;6°” " contains
exactly one element. Let I; has the meaning defined in Lemma 9. If [; = 0, a;6¢
contains exactly one element and since [by (5)] a; € a,0® < a;8° we have a; = a;0",
hence a,0 = a;0%*!, ie k; = 1.

If I; > 0, ¢ < §' implies a,0"" = a,6", so that (by Lemma 9) k; < [; < 5. By
Lemma 2 we finally have k() < max (1, s).

From now we shall suppose « > 1 and we shall distinguish three cases.

Case 1. Suppose first that (for a given a;) Condition S; holds.
Consider the chain

(@—2)h;+1 (@=1)hi+1
>

a0t ca"tlc ... cayp c ap

0 =1 £d — 1, where for I = 0 the symbol a,0' means the element a;.

thi+l (a—2)hi+1

Then either there is an integer 7, 0 £ © < a — 2, such that a;0 = a;
or a® P"*! contains exactly @ — 1 different elements € Q. Hence in both cases
a0 P+t = q8'. Therefore k; < (¢ —2)h; + 1 < (a —2)ad +d — 1 = (o —
— 20+ 1)d — 1.

In the following Cases 2 and 3 the integer I; is the same as defined in Lemma 9.
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Case 2. Suppose that Condition S, is satisfied and h; < ad [hence h; < (o« — 1) d].
Consider the chain

a,'Q“ c aiglﬁ-h; c...c ain‘+(“_1)h" ,
where if I; = 0, a;0'' means the element a;.
Here either there is a 7, 0 £ 7 < « — 1, such that a™*" = a,® P"*h or

a;0'"* @~ DM contains exactly « different elements € Q. In both cases we have a,6'" =
= q,0@" M+l Therefore

k(- Dhi+ L <@—1)(e—1)d+s=(2—2a+1)d+s.

Case 3. Suppose that Condition S, is satisfied and h; = ad. Put again a'' =
=aq;if I; = 0.

A) We first show that in this case a 0" cannot have more than one element. For,
suppose that ;0" contains at least two elements € Q. By Lemma 7 if a;0" + a,6",
then a,0" U a""**" contains at least three elements € Q. Again by Lemma 7 if
a0 U aht? # a8", then a' U ap'"t! U 0"t contains at least four different
elements, etc. Repeating this argument we obtain that

a " U a'tttu .. U alite
contains at least « elements € Q. Hence this union is equal to a;6"". This is a contradic-
tion to Lemma 10. ‘

B) We next show that in this case a,0"*" (fort = 1, 2, ..., « — 1) contains exactly
one element not contained in a;0'* U ;0" u ... U a T = T,

We know that a,0'' contains exactly one element € Q. If a;0" # a;5", then by
Lemma 7 a;0" U a;0'*** contains at least two different elements € , etc. Repeating
this argument we have: For any integer t, 1 < t £ «, the set T, contains at least t
different elements € Q. Suppose now that a,'*** for some ¢ (with 1 <t < o — 1)
would contain at least two elements not contained in 7,. This would imply that T, U
U a;0""*" contains at least ¢ + 2 different elements € Q. Repeating the same argument
as sub A) we obtain that a'"U ap'"" U ... U a,e"""* " contains o different
elements € Q, hence it is equal to a;6". This is a contradiction to Lemma 10.

C) Consider now the finite sequence of sets

li+d

(7) ap", a"t, .. a0

(a—1)d+1; ad+1;
5 .

a;g

li+(a—1)d

and recall that T, = a;0"'u ... U ayp = a,6". We have to distinguish two

cases:
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a) Suppose that each member of the sequence (7) contains exactly one element.
Then since a0" < a;0%" = a"*", we have a;0' = a;e**", whence k; <
< max (1, ;) < max (1, s).

li+1tod

b) Let 79, 1 = 7y < a, be the least integer such that a0 contains more than

one element.

If 7o = «, then since a;0'" & a,0™*'* and

ad+1; li+(z—1)d

a, capiuaeittu...uap
(where each summand contains a unique element eQ), thereisa 8, 1 < B < a, such
that a;0""*# < a,0" 7t

If 7y < o, then each summand of T, = a;0" U ... U a;0"" "~V contains a unique
element € Q while a,0" "™ contains at least two elements € Q exactly one of which is
not contained in T,,. Hence there is a y 2 0, 0 < y < 74, such that a;plitr

P ainH-md.

[

In the first case we have

1:+pd li+ad litad+(a—p)d litad+(@=p)(a=2)d —

aQ < ae < ae c...c0

This chain is of lenght at most « so that
kislh+ad+(—p)(a—2)d<s+od+(x—1)(a—2)d =
=(® =20 +2)d+s.
In the second case we get

I;+yd 1;+10d littod+(ro=7)d — . Littod+(ro=y)(@=2)d —

a0 < ae < ae - cae
and since again this chain cannot have more than « different members, we get

kil +td+(to—p)(@—2)d<s+(x—1)d+ (x—1)(a —2)d =
=(?—20+1)d+s.

By Lemma 2 (taking account of the results obtained in the Cases 1—3) we have
for o = 2

k(o) < max {(«® — 2« + 1)d — 1, (¢* = 20 + 1)d + 5, 1,5,
(> =20 +2)d +s, (> — 20 + 1)d + s} .

With respect to Lemma 11, we have proved:
Theorem 1. Let ¢ be an irreducible relation with card I1(¢) = n and card G(g) = d.
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Write n = ad + s, where o = 1 is an integer and 0 £ s < d — 1. We then have:

L S(?—2e+2)d+s, for a2,
(@) < max(l,s), for a=1.

3. CONCLUDING REMARKS

A) There are examples which prove that the estimates of our Theorem cannot be
sharpened.

Take, e.g., @ = {a;, a,, ..., a,} and the binary relation ¢ given by means of the
oriented graph on Fig. 1.

¥

Fig. 1.

[This is a special case of a class of oriented graphs considered by B. R. Heap and
M. S. Lynn in [3], [4].] Here n =7, d = 2, so that « = 3 and s = 1. By direct
computation it can be shown that k, = (¢ — 22 + 2)d + s = 11. The cor-
responding matrix representation of g is

/O 100000
0010000
0001001
0000100
0000010
1000000
100000 0}
We have

a0 =das, ‘14@2 = dg >

a,0® =ay, a0* = a,,

a0’ =a,, 0496 = {‘14’ a7} >

0497 = {(11, as} 5 aAQs = {ab a6} 5

a0’ = {‘11, aa} > a0’ = {02, Qs a7} s

a0t = {a,, as, a5} , a0’ = {az, ay, dg, a7} s

as0" = ase', as0'* = ase™*.
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B) With respect to « = (n — s)/d we can write (for « = 2):
k(g)_s_(az—2oc+2)d+s=§(n—d)2+d—sg[(2a——3)d+s].

If o =1, we have k(¢) < max(l,s) < max(l,d — 1) £ (n — d)*/d + d. If
«22 20—-3)d+s=2d+s>0.
We can state therefore:

Theorem 2. For any irreducible binary relation ¢ with card H(g) =n and
card G(o) = d, we always have

ko) < (n — d)ld + d.

Here the sign of equality can hold only if d [ n.
This result is again sharp. Take any n and d such that d ! n. Put n = ad. Denote
by W the 0—1 matrix of order «

010 ...0\
001...0
000 ...1
110...0)

and construct the 0—1 matrix of order n = du

(0 EO ... 0\
00E..O
(8) ,
000 ... E
woo ..o

where E is the “unit matrix” of order a. Then a direct computation shows that the
(irreducible) relation ¢ corresponding to the 0—1 matrix (8) satisfies k(o) =
= (n — d)?/d + d. [This example has been considered by Ljubi& [5].]
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