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SOME REMARKS CONCERNING STABLE ATTRACTORS¥*)

PAuL R. FALLONE, Jr., Storrs
(Received July 7, 1969)

Introduction. In [1] the following theorem is established: Let (X, 7) be a dynamical
system on the locally compact metric space X. If M = X be compact, invariant, and
(positively) asymptotically stable, then there is a real valued continuous mapping,
v: A(M) - R*, from the region of attraction of M into the non-negative reals which
is uniformly unbounded on A(M) and, in addition, satisfies:

(1) v(x) = 0 iff xe M;
(1) v(n(x, 1)) = e™*. v(x) for every (x,t) € A(M) x R.

We wish to establish some consequences of this theorem in the basic notation of [2].
All attracting is positively.

Definition 1. Let (X , ) be adynamical systemand let M = X be attracting. A subset
N < X is called pre-admissible for M if N is a neighborhood of M in 4(M.) A subset
N < X is called admissible for M if N is pre-admissible for M and N is positively
invariant.

Note that A(M) is always admissible for M and if N is pre-admissible for M,
then y*(N) = N* is admissible for M.

Theorem 1. Let (X, n) be a dynamical system on a locally compact metric space
and let M = X be compact, invariant, and asymptotically stable. If N < X is
admissible for M, then there is a compact subset N' = N which is admissible
for M and which is a (strong) deformation retraction of N.

Proof. Let W be open in X with M ¢ W< W< N with W compact. Let
v: A(M) > R* be as above. We wish to select k > 0 so that v™'[0, k] = W. Sup-
pose no such k exists. Since v is uniformly unbounded on A(M), there is a compact

" *) The author was partially supported by the National Science Foundation under Grant No.
NSF-GE-7938.

599



subset K; ¢ A(M) such that v(x) 2 1 for every x € A(M)\ K,. Then for each integer
n =2,3,... there is an x, € v™'[0, 1/n] n (X \ W) and, hence, a subsequence con-
verging to x, € K; N (X \ W). Since v is continuous on A(M), we must have v(x,) = 0
which contradicts (1). Therefore such a k > 0 exists.

Now let xe N\v™'[0, k) and for each real ¢ define n,(f) = n(x, 7). Then the
composite mapping v (r, | R*) : R* — R* is continuous with [v (r, | R*)] (0)
>k and [vo(m,|R*)](f) > 0 as t - 0. Hence, there is a t, e R* such that
[vo(n, | R*)] (t,) = k and ¢, is unique by (}).

Define a mapping p : N\v~'[0, k) > R* by p(x) = t,. The uniqueness of ¢,
insures the continuity of p.

Finally, define a mapping H : N x [0, 1] —» N by

A (v, s)ev™'[0, k] x [0, 1]
H.5) {n(y, s.p(»), (v, s)e(N~v7'[0, k)) x [0,1].

Then H(y, 0) = y for every ye N, H(y, s) = y for every (y, s)ev™'[0, k] x [0, 1],
H(N x {1}) = v™'[0, k], and H is continuous. Hence, v™'[0, k] is a (strong)
deformation retraction of N. Put N’ = v~ '[0, k] and the proof is complete.

Theorem 2. Under the same hypothesis as Theorem 1, if N < X is preadmissible
for M, then there is a compact subset N' = N which is admissible for M and which
is a retraction of N.

Proof. Let W< X and k > 0 be chosen as in Theorem 1. Define a mapping
r:N - v [0, k] by

_(n(x, p(x)), xeN~v7'0, k)
x) = {x , xev [0, k]

where p : N\ v~ '[0, k) > R* is the mapping constructed in the proof of Theorem 1.
Put N’ = v7'[0, k]. Then r is continuous, r is the identity mapping on N', N’ is
positively invariant by (1), and v7'[0, k) = N'. Hence, N’ is admissible and the
proof is complete.

If X is a compact (Hausdorff) space, G an {R-module, compact abelian group},
G’ an R-module, and r an integer 20, then {H,(X), H'(X)} denotes the r-dimensional
Cech {homology, cohomology} group of X over {G,G'}. Also {H(X), H(X)}
denotes the 0-dimensional augmented Cech {homology, cohomology} group of X
over {G, G'}. If G is a vector space over a field, then we denote the dimension of H,(X)

by B(X).

Theorem 3. Let (X, ) be a dynamical system on a locally compact metric space.
Let M = X be compact, invariant, and asymptotically stable. If N < X is compact
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and admissible for M, then, for every integer r = 0, H(M) ~ H,(N) and H'(M) ~
o~ H’(N).

Proof. Choose N’ = N such that N’ = v™![0, k], k > 0, and N’ is a (strong)
deformation retraction of N. Then for r 2 0, H(N’') ~ H,(N) and H'(N') ~
~ H'(N). It suffices to show H/(M) ~ H/(N') and H'(M) ~ H'(N’). Let V" =
={V, =v7'[0,k/n] |n = 1}. Then {¥",f} is an inverse sequence of compact
spaces over the positive integers, Z*, where f,, :V, = V,, is an inclusion mapping
whenever m < n in Z*. Then V,, is homeomorphic with V' = (¥, = M. Hence,
H/(M) ~ H/(V,,) and H'(M) ~ H'(V,)). .

Now if me Z*, V,,,, is a (strong) deformation retraction of V,,. To see this, note
that for each x € ¥,,\v™'[0, k/m + 1) there is a unique ¢, = 0 such that v(n(x, t,)) =
= klm + 1. The mapping p : ¥,,\v™*[0, k/m + 1) - R* determined by p(x) = .
is continuous and we may define H : ¥, x [0,1] - V,, by

H(x,s) = {x’ (x,5)e o0, k/m + 1] x [0, 1]
n(x,s.p(x)), (%, 5)€ (V07 1[0, klm + 1)) x [0, 1]

to obtain the desired deformation.

Hence, whenever m < n in Z%, f,,, :V, = V,, induces isomorphisms onto f,:
: H,(V,) > H(V,,) and fsx : H'(V,,) = H'(V,,). Therefore, lim {H'(.), fux} =~ H'(V1) =
= H'(N") and lim {H,(.), f«} ~ H(V;) = H(N’). But by the continuity axiom,
lim {H'(.), fux} = H'(V,,) and lim {H,(.), fs} ~ H/(V,). Hence, H,(M) ~ H,(N’)
and H'(M) ~ H'(N’) and the proof is complete.

Corollary. Under the hypothesis of the theorem, if N = X is preadmissible for M
and contractible, then H(M) = 0 for r + 0, H(M) = 0 for r * 0, FIO(M) =0
and H°(M) = 0.

Proof. By Theorem 2 there is a compact admissible N’ = N with is a retraction
of N. Hence, N is contractible. Hence, H(N") = 0 = H'(N') for r + 0 and Hy(N') =
= 0 = H°(N'). By Theorem 3 these are the same for M.

Corollary. Under the hypothesis of the theorem, M is connected if and only if
A(M) is connected.

Proof. Suppose A(M) is connected. Then there is an N = A(M) which is compact,
admissible for M, and a retraction of 4(M). Hence, Bo(N) = 0. Therefore, ﬁO(M) =0
and M is connected. The rest of the proof follows directly.

Note that if X = R"+1, n=1, and A(M) = Rn+1, then M and R**1 (M are
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connected. For M disconnects R**! if and only if H,(M; R,) + 0 where R, is the
compact abelian group of real numbers modulo 1.
Finally, under the hypothesis of Theorem 3, there is a continuous mapping of A(M)

into the non-negative real number, v : A(M) — R*, such that M is the zero-set of v
and each level set of v is the same homotopy type as A(M) \M.
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