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In this paper we continue the investigation of biregular semigroups started in [3]
In section one we consider two types of prime ideals and using M. PETRICH’s results
of [6], we show that in a biregular semigroup these two types coincide if and only if
the semigroup is a semilattice of 0-simple semigroups. In the following section O-
minimal one-sided and maximal ideals are considered and it is shown that they
correspond to primitive and maximal idempotents, respectively. Finally, it is shown
that if a biregular semigroup without zero admits a faithful transitive representation
as the semigroup of mappings on a set, then it is simple.

A semigroup S is said to be biregular if every principal two-sided ideal of S is
generated by an idempotent in the center of S. Throughout this paper we shall use,
ideal, for two-sided ideal. The standard terminology and notation used is that of [2];
and for biregular semigroups that of [3].

If S is a biregular semigroup then E = E Z(S) will denote the semilattice of central
idempotents of S and for each element a of S, e(a) will denote the unique central
idempotent generator of J(a).

The most natural examples of biregular semigroups are simple semigroups with
identity and semilattices.

We shall now consider a class of biregular semigroups built from these two natural
ones.

1. BIREGULAR p-SEMIGROUPS

A proper ideal I of a semigroup S is said to be completely prime if S — I is a sub-
semigroup of S. A proper ideal I of S is said to be prime if whenever AB < I then
A < I or B < I for any two ideals 4 and B of S.

It is clear that a completely prime ideal is prime; and if S is commutative, these
two concepts coincide. We shall say that a semigroup S is a p-semigroup if every
prime ideal of S is completely prime.
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The following can be easily 'proved for arbitrary semigroups; the proof of the
corresponding results for rings can be seen e.g. in N. H. McCoy’s Prime ideals in
general rings, Amer. J. Math. 71 (1949).

Lemma 1.1. The following conditions are equivalent for a proper ideal 1 of
a semigroup S.

(1) I is prime.
(2) IfaSb cIthenaelorbel foralla,beSs.
(3) 1f J(a) J(b) <1 then ael or bel forall a,beS.

Let us note that if S is a biregular semigroup then E is commutative and thus in E
the concepts of prime and completely prime coincide.

Theorem 1.1. If S is a biregular semigroup .and E is its semilattice of central
idempotents then an ideal P of E is prime if and only if SP is a prime ideal of S.

Proof. Suppose P is a prime ideal of E. Let 4 and B be ideals of S such that
AB < SP and A ¢ SP. Let a € A be such that a ¢ SP; thus e(a) € A and e(a) ¢ P.
Let b € B, then ¢(b) € B and (a) (b) € AB < SP, say, e(a) e(b) ='sg for some se S
and g € P. Then, e(a) e(b) = sg = sg* = e(a) e(b) g € EP = P and since P is prime
in E and e(a) T¢ P, we have e(b) € P; hence b = b ¢(b) € SP; thus B < SP and so SP
is a prime ideal of S.

Conversely, suppose that P is a prime ideal of S and let J = E n P. Clearly J is
a proper subset of E. Let e € E and f € J, then ef = fe e E and also ef € P, so J is an
ideal of E. Suppose A and B are ideals of E such that AB =< Jand A & J;sayee 4
and e¢ J. If fe B, then ef € AB = J, thus ef € P, therefore (eS) (fS) = efS = P
and since e¢ J, e¢ P and so eS & P. Hence since P is prime in S, fS < P, thus
f e Pandso f e J and therefore J is a prime ideal of E.

Moreover, SJ < P since J < P; if x € P, then e¢(x) e J and so x = x e(x) € SJ;
hence P = SJ.

In the remainder of this section we will assume familiarity with the notation and
results of [6].

Let e € E = E Z(S), where S is a biregular semigroup. If S, = {x e S : e(x) % e},
then in [3] we have shown that S, is an ideal of S. This can be strengthened to

Lemma 1.2. S, is a prime ideal of the biregular semigroup S for all e E.

Proof. Suppose a, b € S are such that aSb < S,. Then S(aSb) = S, or SaS.b =
c S,, therefore e(a) b € S,. Let x, y € S be such that xby = e(b), then x e(a) by € S,,
but x e(a) by = xby e(a) = e(b) e(a). If a, b ¢ S,, then e(a) = e and ¢(b) = e hence
¢(a) e(b) = e and so e(a) e(b) ¢ S,, a contradiction.
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For each ecE, let T, =S — S, and let E* be the maximal semilattice homo-
morphic image of S. Asin [6], a face N of a semigroup S will denote the complement
of a completely prime ideal of S and N(x) the intersection of all faces of S containing
the element x of S.

Lemma 1.3. If o is a congruence on the biregular semigroup S then (x, y)eo
implies that (e(x), e(y)) € o for all x, y € S.

Proof. Let (x, y)e« and let a, b,c, de S be such that e(x) = axb and e(y) =
= cyd. Then, (axb, ayb) and (cxd, cyd) € o, i.e. (e(x), ayb) and (cxd, e(y)) € 0. Now,
(e(x), ayb) € « implies that (e(x) e(y), ayb) € a and so by transitivity (e(x), e(x) e(y)) €
€ a. Similarly, (e(x) e(y), e(»)) € a; hence (¢(x), e(y)) € o

Theorem 1.2. The following conditions are equivalent for a biregular semigroup S.

(1) S is a p-semigroup.

(2) E = E*

(3) # is a congruence on S.
(4) S is intraregular.

Proof. Suppose S is a p-semigroup. Since by lemma 1.2 S, is a prime ideal of S,
then S, is a completely prime ideal of S and so T, is a face of S. Let x € S and let N
be a face of S containing x, then x = x ¢(x) e N and so ¢(x) e N. Let y € T,,), then
e(y) e(x) = e(x) e N and so e(y) € N and thus y € N. Therefore T,y = N and since
T, is itself a face of S, T,,, = N(x).

Let N, = {y € S : N(x) = N(y)}. By theabove N(x) = N(y)ifand onlyif (x, y) € #
and so N, = J, and since E* = {N, : x € S} we have that E = E*.

Conversely suppose that E = E*. Then in particular ¢ is a congruence. If (x, y) e
€ 7, then (x, y)enon~?*, where n denotes the natural homomorphism of S onto
E* = E. Let P be a prime ideal of S, then by theorem 1.1 P’ = E n P is a prime
ideal of E and so by corollary 3.7 of [6], n7*(P’) is a completely prime ideal of S.
But, P = SP’ and so n(P) = n(SP') = n(S)n(P’) = E*P' = EP' < P', thus P <
< n~(P’). Now, let x € n~*(P’). Then since .7 ' = #n(e(x)) e P’ and since 7 is
the identity on E we have ¢(x)e P’ and so x = x e(x) e SP’ = P. Therefore P =
= n"*(P’) and so P is a completely prime ideal of S, proving the equivalence of (1)
and (2).

Since whenever E = E*,non~"' = #,(2) implies (3). Now, if x, y € S are such that
(x, y) e 7, then (n(a), n(b)) € # in E* and since E* is a semilattice this implies that
n(a) = n(b), therefore # < non~*. If ¢ is a congruence, since E* is the maximal
semilattice homomorphic image of S, we must have # = o x~ ! and thus E = E*.
Proving the equivalence of (2) and (3).

By theorem 4.3 of [6], N, = J_ if and only if for all x e S, N, is simple and by
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theorem 4.4 of [2], this is equivalent to intraregularity of S. This proves the equi-
valence of (3) and (4).

From this theorem we can derive a characterization of biregular p-semigroups
similar to A. H. Clifford’s description of inverse semigroups which are union of

groups, (see [1]).

Corollary 1.2. Let E be a semilattice. To each element o€ E assign a simple
semigroup S, with identity e, such that S, " Sy = ® if « + B. For every a, € E
such that o = B assign a homomorphism @, g of S, into Sy such that

(1) eaﬁ”a,ﬂ _S. eﬂ’
(2) (pa,ﬁ(pﬂ,y = ‘pa,yfor all ot g ﬂ ; Y in Ea
(3) @u,q is the identity automorphism of S,.

Let S be the union of the S, and define
(4) aby = (2,04 up) (bp@p o) for all a, € S, and by € S,.

Then, S is a biregular p-semigroup and conversely every biregular p-semigroup
can be obtained in this way.

Proof. The proof is straightforward and similar to the proof of the corresponding
result in [1].

Note. If S is an arbitrary semigroup and I is a semiprime ideal of S (i.e., for all x
in S, x% eI implies x eI) and I # S, then the ideal M of S, maximal among ideals
of S that are disjoint from <{b) where b € S — I, is a prime ideal of S (not necessarily
completely prime) and thus: every semiprime ideal of S is the intersection of prime
ideals of S. In particular, if S is a biregular p-semigroup then every ideal of S is
the intersection of prime ideals of S.

2. MAXIMAL AND MINIMAL IDEALS IN BIREGULAR SEMIGROUP

Theorem 2.1. Let S be a biregular semigroup. If R is a 0-minimal right ideal
of S then R = eS where e€ E Z(S) is a primitive idempotent of S. In particular,
R is also a O-minimal left ideal of S and a 0-minimal two-sided ideal of S and thus
a group with zero.

Proof. Let R be a O-minimal right ideal of S. Let a be a non-zero element of R and
set e = e¢(a). Now, since a =+ 0, aS = 0, thus aS = R. Let f € E be such that f < e.
Since afS < aS = R either afS = 0 or afS = R. If afS = 0, then afe = af = 0 and
if e = sat for s,te S, then f = ef = satf = saft = 0. If afS = a8, then a = afu
for some u € S and hence af = fa = a, therefore e = sat = satf = ef = f. Thus,
e is primitive in E and so J(e) is 0-minimal.
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Now, R? # 0 since e € R, thus there is a b € R such that bR + 0, hence bR =
= R = bS. Let e = e(b) and x, y € S be such that e = xby. If f = byx, then f? =
= fe bS = Rand since e = xbyxby = xfby, f + 0, thus fS = R. Suppose g € E(S)
is such that g < f, then by an argument similar to above g = 0 or g = f and so f is
primitive and since f € J(e) which is a 0-minimal two-sided ideal of S and thus
a O-simple subsemigroup of S, J(e) is a group with zero and so e = f e E. Since
R = J(e) is a group with zero it is also a 0-minimal left ideal of S.

Corollary 2.1. A biregular semigroup S has minimal one-sided ideals if and only
if it has primitive idempotents in the center.

Proof. The necessity follows from the theorem. If e € E is a primitive idempotent
of S, then for a € J(e), a # 0, if e(a) = xay, then f = ayx is an idempotent in a$
and thus f < e(a) = e. Hence f = 0 or f = e. If f = 0, then e = xfay = 0 thus
f = eandsoaS = eS = J(e) is a 0-minimal right ideal of S.

Let S* denote the right socle of S, i.e. the union of the 0-minimal right ideals of S.

Then by theorem 2.1 S* is also the left and two-sided socle of S and is a O-direct
union of groups.

In section one we saw that S, is a prime ideal of S for all e € E. If e is primitive we
can state moreover:

Theorem 2.2. If e is a non-zero idempotent in the socle S* of S, then S, is a com-
pletely prime ideal of S.

Proof.LetxeS — S, = T,. If xe = 0, then since x # 0 ¢(x) = sxt for somes, t €
€S and hence e = e ¢(x) = esxt = sxet = 0, a contradiction. Thus for all xe T,
xe % 0.

Let x, y € T, be such that xy = 0, then xey = 0, but since xe #+ 0, xe € H, and so
there is a z € H, such that z . xe = e. Thus z. xey = ey = 0, a contradiction. Now,
xy # 0 implies that e(xy) + 0. But, e(xy) < ¢(x) e(y) and so e.e(xy) < e.e(x).
. ¢(y) = e and since ¢(xy) . e + 0 [for otherwise xey = 0], we must have e < e(xy)
and so xy € T,.

We can easily derive from this theorem the following
Corollary 2.2. The left annihilator S*A of S* in S is-also the right and two sided
annihilator of S* in S and is the intersection of completely prime ideals of S.

Note that S*4 need not be trivial. E.g. take S to be the 0-direct union of a group G
and the real interval I = [0, 1], where multiplication in I is given by x . y = min (x, y).
Then, S is a biregular semigroup with S* = G U 0 and S*4 = 1.
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Theorem 2.3.") Let S be a biregular semigroup. A proper ideal M of S is a maximal
ideal of S if and only if M = S — J,, where e is a maximal idempotent of S in the
center of S.

Proof. Suppose M is a proper maximal ideal of S; then S/M is a 0-simple biregular
semigroup with identity and the center Z(S/M) is therefore a group with zero. Hence,
S — M contains a unique central idempotent e (central in S — M). If e ¢ Z(S), then
there is an f € E such that J(f) = J(e) and so e = fe. If f € M, then e € M a contradic-
tion; thus f € S — M and therefore f = e. Now, if g € E is such that ¢ < g, then e =
= egand thusge S — M and so g = e. Therefore e is maximalin E.Letxe S — M,
then SxS = SeS and by maximality of M, M uU SxS = S and hence ee SxS;
therefore x € J,. On the other hand if x € J,, then e = sxt for some s, t € S and thus
x€S — M [for otherwise e e M]. Thus, S — M = J,.

Conversely, suppose that e is a maximal idempotent in E and let M = S — J,;
then it is readily verifiable that M is a maximal ideal of S.

3. PRIMITIVE BIREGULAR SEMIGROUPS WITHOUT ZERO

We use here the term primitive in the sense of Hoehnke [4], i.e. a semigroup
admitting a faithful transitive representation as a semigroup of mappings.

Let & denote the class of simple semigroups with identity. If S is a semigroup,
& — radsS be the intersection of all congruences ¢ on S such that S/g € &.

Lemma 3.1. Let S be a biregular semigroup without zero. Then & — radS =
= {(x, y) € SxS : ex = ey for some e € E}. In particular, ¥ — rads is the identity
congruence on S if and only if S is simple with an identity.

Proof. If ¢ is a congruence on S such that S/g € & then since the center of S is
mapped into the center of S/o by the natural homomorphism and Z(S/s) is a group.
We have for all e, fe E (e, f) € 0. Thus, (e, f) € ¥ — radS for all e, fe E. Let ¢ =
= {(x, y) e SxS : ex = ey for some e€ E}. Clearly ¢ is a congruence and for any
e,feE, (e, f)eo. Thus, Sloe & and s0 ¥ — radS < ¢. Now, let ¢ be a congruence
on S such that S/o € #; then if (x, y) € ¢, ex = ey for some e € E and since (e, ¢(x))
and (e, e(y)) e o, (x, y) €0 s0 ¢ = o and hence ¢ = ¥ — radS. Note, that g is the
least congruence on S such that (e, f) o for all e, fe E. Now, if & — radS is the
identity equivalence on S then e = ffor all e, f € E and thus S is simple with identity.
The converse is clear.

1) It was brought to the author’s attention that P. A. Grillet in his paper Intersections of .Maxi-
mal Ideals in Semigroups, Amer. Math. Monthly 76 (1969), 503— 509 has proved a more general
statement.
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Theorem 3.1. Let S be a biregular semigroup without zero. If S is primitive,
then S is simple with an identity.

Proof. If S is primitive then there is a modular right congruence ¢ on S such that
S/e is a transitive S-operand, i.e. every element of S is a right unit of S modulo .
Since ¢ is modular there is an i € S such that (ia, a) € ¢ for all a € S; thus (iae(i),
ae(i)) € g or (ia, (i) a) € ¢, i.e. (a, (i) a) € ¢. If ¢ is a right unit of S modulo g then for
all a € S there is an s € S such that (cs, a) € ¢. In particular for all e € E there is an
s € S such that (es, e(i)) € o, therefore (ese, e(i) e) € ¢ and by the above, (e(i) e, €) € ¢
so (es, ) € ¢ and hence (e, e(i)) € .

Now, let oL = {(a, b) € SxS : (sa, sb) e ¢ for all se S'}. If e, f e E, then for all
s €S, (se, e(i) s) € g and (e, ¢(i)) € g, so since (e(i) s, 5) € ¢ we have (se, s) € . Similarly
(sf, s) e o thus (e, f) e oL and so by lemma 3.1 gL 2 & — radS. Now, since S/g is
faithful, oLis the identity equivalence and thus S is simple.
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