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INTRODUCTION

Let T be a non empty set and £ a §-ring (a ring closed with respect to the forming
of countable intersections) of subsets of T. Let further X and Y be (real or complex)
Banach spaces and denote by L(X, ¥) the Banach space of all bounded linear opera-
tors from X to ¥. We say that a set function m : 2 — L(X, Y) is an operator valued
measure countably additive in the strong operator topology, if for every x € X the
set function E —» m(E) x, E € 2 is a countably additive vector measure. Our purpose
is to develop a Lebesgue type integration theory for functions on T with values in X
with respect to such measure. This part I contains the theory of so called integrable
functions. In part II, see [8], we develop the theory of L, spaces. The need of
this integration theory arises, among other, from [9], where we represent a wide class
of bounded linear operators, including weakly compact operators, on a space CO(T, X )
as integrals with respect to such measures. Here T is a locally compact Hausdorff
topological space and Co(T, X ) denotes the Banach space of all continuous X valued
functions on T tending to zero at infinity with the usual supremum norm.

§ 1 is preparatory. An important continuation of section 1.1 is § 1 of [9]. The basic
quantity of the theory is the semivariation i of the measure m. This concept has its
origin in [11]. Suppose that the semivariation # is finite on 2. Then the 2-simple
functions on T with values in X are called simple integrable functions, and a function
f: T— X is called measurable, if there is a sequence of simple integrable functions
converging pointwise to it.

In § 2 with the help of Egoroff-Lusin’s Theorem, see section 1.4, we extend the
notion of the integral from simple integrable functions to a substantially wider class
of functions, which we call integrable, see Definition 2, and investigate their properties.
The obtained class of integrable functions satisfies the following characterization:
The class of all integrable functions is the smallest class of functions containing the
class of simple integrable functions for which the fundamental Theorem 16 on
interchange of limit and integral is valid.
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In § 3 we compare the introduced intégral with some well known integrals. Our
integral substantially generalizes the countably additive case of the general bilinear
vector integral of R. G. BARTLE from [1]. The basic generalization is that our measure
is countably additive in general only in the strong operator topology, while Bartle
supposes countable additivity in the uniform operator topology. Further, our ap-
proach, which is quite different from that of Bartle, gives in general a wider class of
integrable functions also in the case when the measure is countably additive in the
uniform operator topology, see Example 7” and the last paragraph of the paper. On
the other hand, in the important special case when 2 is a g-algebra and the measure m
satisfies the #-condition of Definition 2 in [1], which always happens when Y is
a weakly complete Banach space, see the *-Theorem in section 1.1 below, our and
the Bartle’s integral coincides.

Much material about vector and operator valued measures and on integration with
respect to them, however, under the assumption of finite variation, can be found in
the book [6]. To the important problem of extending a vector measure from a ring
of subsets to the generated o-ring we refer the reader to papers [15], [16] and [17].

§ 1. PRELIMINARY

1.1 OPERATOR VALUED MEASURES AND SIMPLE
INTEGRABLE FUNCTIONS

Let 2, be a 6-ring of subsets of a set Tand let m : 2, — L(X, Y) be an operator valued
measure countably additive in the strong operator topology. Let us note that by the
Orlicz-Pettis theorem, see IV. 10.1 in [10], the countable additivity in the strong and
in the weak operator topology are equivalent conditions, and as Example 6 below
demonstrates, they do not imply the countable additivity in the uniform operator
topology. :

Let us denote by S(2,) the smallest o-ring containing Z,. It is easy to show, see
[6, § 1 Prop. 9 and Cor. 1], that each set E € (2,) can be written as a union of
a countably many disjoint elements of 2,. From here immediately follows that if
A€ P, and Ee &(2,) then A n E € 2,,

If E = T'then yg always will denote its characteristic function on T. By a 2 -simple
function on T with values in X we mean a function of the form

f= .lei - XE;

where x;€ X, E;e P, and E;nE; = 0 for i + j, i,j = 1,2,..., r. Its integral on
a set E € S(2,) with respect to the measure m is defined by equality

fdm =) m(EnE)x;.
E i=1
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If Z is a Banach space and z e Z, then |z| denotes the norm of z. Naturally the
question arises how to extend the integral to a wider class of functions. For this
purpose for a function f: T— X and a set A = T put ||f], = sup |£(1)], and define

ted

on &(2,) a non negative set function i, which will be called the semivariation of the
measure m, by equality
f fdm
E

E € &(#2,). From this definition we immediately have, see [6, § 4 Prop. 3], that
rﬁ((?)) = 0, that # is monotone and countably subadditive, and further, that for each
2,-simple function fand each set E € S(2,) the following inequality holds:

dem
E

If now r(E) is finite, then by this inequality we may extend the integral on E
from 2,-simple functions to their closure in the norm || . ”T in the Banach space of
bounded X valued functions on T. As we shall see later, it is in this simple inequality
where the importance of the semivariation for our theory of integration lies.

#(E) = sup{

, fis Py-simple, |f||; < 1},

< |fle- m(E).-

From now on 2, will denote the class of those sets from &(#,) which have finite
semivariation. It is easy to verify that £, is a §-ring and that for each sets 4 € 2, and
E e §(2,), A n E € 2,. In examples below we demonstrate that between 2, and 2,
all possible set relations may occur.

Definition 1. Put # = P, n P,. Elements of P will be called integrable sets.
A P-simple function on T with values in X will be called simple integrable function.
The set of all simple integrable functions will be denoted by 3,.

From this definition it is obvious that £ is a é-ring and that for each sets 4 € 2
and E€ 6(9’0), A n E € 2. The basic properties of simple integrable functions and
their integrals will be collected in Lemma 2 below. Now we prove

Lemma 1. S(2) = &(2,), and for each set E € S(%)

fle = 1}.

® (E) = sup {‘ f Efdmt , fe3,.]

Proof. If Ae 2,, then A can be written as a union of countably many disjoint
A, € Py, n =1,2,.... Since m is monotone, 4, € #, and thus 4, £ for each n.
Therefore A € (), which proves that S(2,) = &(2). The inclusion &(2) = &(2,)
is obvious since Z = Z#, N 2.
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IfEe 2, thenf. xp € I, for each 2,-simple function £; so in this case (1) is proved.
Suppose now that E e S(#) and m(E) = +co. Then there is a sequence f,, n =
=1,2,... of ?,-simple functions with “Ef,, dm| > n for each n. Since E can be
written as a union of countably many disjoint E, € 2, k = 1, 2, ..., and since for
each n the integral ]f, dm as a set function is a countably additive vector measure on

the g-ring 6(.4") for each n there is a positive integer k, such that |[f, . x5, dm| > n
where F, = U Ek But F,e 2 for each n, and therefore f, . xr, €3, for each n.

Since J;isa subset of the set of all 2,-simple functions, the lemma is proved.

From now on we shall be interested only in the d-rings 2 and £, and in the
o-ring S(2) = &(2,).

Let now T be a locally compact Hausdorff topological space. By 4, and Z we shall
denote the d-rings of relatively compact Baire and Borel subsets of T respectively. In
other words, %4, and # are those Baire and Borel subsets of T in the sence of § 51
in [12] whose closures are compact subsets of T. &(%,) and &(%) denote the cor-
responding g-rings. We say that m is a Baire operator valued measure if T'is a locally
compact Hausdorff topological space and 2 = %, or Z = &(%,). Let us note that
each Baire operator valued measure is regular in the strong operator topology, see
[7, Theor. 4]. We say that m is a regular Borel operator valued measure if T is
a locally compact Hausdorff topological space, # = % or # = &(%), and the mea-
sure m is regular in the strong (equivalently weak, see [18, Cor. 2 of Lemma 1])
operator topology.

The scalar semivariation of the measure m, which will be denoted by ||m||, is the
non negative set function on S{#) defined by the equality

”m“ (E) = sup Ii;ai .m(ENE)|, Ee&(2)

where the supremum is taken over all finite collections of scalars a,, |a;| < 1, and
over all finite collections of disjoint E; € 2, see [10, IV. 10.3]. Clearly ”m” @ =0
and Hm” is monotone. Since for each x € X the set function “m( )x” is countably
subadditive on &(#), see [10, IV.10.4] the scalar semivariation | m]| is also countably
subadditive on &(#). If the measure m is countably additive in the uniform ope-
rator topology then moreover, for each set 4 € 2 there exists a finite non negative
countably additive measure A, on ©&(#) such that A,(E) < [lmn (AN E) and
lim |m| (4 E) =0, Ee &), see [10, 1V.10.5].

A4(E)>0

It is obvious from the definitions that ||m” (E) = m(E) for each set E € S(2). It
may happen, see Example 5 below, that || m| (E) < + co and at the same time i(E) =
= +00. A set N e &(2) is called a m zero set if || m| (N) = 0. Clearly |m|| (N) =0
if and only if m(N) = 0, N € S(2), and the collection of all m zero sets is a g-ideal
in the o-ring G(2).
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Further let us introduce a concept of absolute continuity. We say that an additive
set function v : (5(9) — Z is absolutely continuous with respect to a set function
p: S(2) - Z, where Z and Z, are Banach spaces, if for each ¢ > 0 thereisa 6 > 0
such that sup {g|(4)|, 4€ &(?), A = E} < & implies |v| (E) < &, E e S(2).

The basic properties of simple integrable functions and their integrals are collected
in the following lemma, the proof of which is evident.

Lemma 2. The set 3, of all simple integrable functions is a linear space. For
a fixed set E e &(P) the mapping f— [pfdm, fe 3, is linear, and for a fixed
Sfunction fe 3 the set function E — [pfdm, E € &(P)is a countably additive
absolutely ||m|| and m continuous vector measure on 6(9’) with values in Y.If m is
a Baire or a regular Borel operator valued measure, then this measure is regular
on &(%,) or on S(AB), respectively. Further, for each set E € S(#) and for each
Sunction fe3, [pfdm = [of Xzdm.

In [5, Theorem 5 and section 6] the validity of the theorem of Orlicz, see 3.2.1 in
[14], was extended from weakly complete Banach spaces to spaces containing no
subspace isomorphic to the space ¢,. We use this result in thé proof of the first
assertion of the below stated important *-Theorem. The second assertion immediately
follows from Lemma 2 in [9]. Let us note that the first assertion of this theorem for
the particular case T = [0, 1], # = # was recently proved in a different way by J.
BATT in [3, Satz 6]. However, the construction used in our proof is needed for the
proof of the interesting Theorem 18 in part II, see [8].

*-Theorem. Let Y contain no subspace isomorphic to the space c,, for example
let Y be a weakly complete Banach space, see pp. 160 and 161 in [5]. Then the
semivariation m is continuous on Py, i.e., if E,e ?, E, \ 0, n = 1,2, ..., then
lim m(E,) = 0. In general the continuity of the semivariation i on 2, is equivalent

to the following property: for each set A € P there is a finite non negative countably
additive measure ., on &(2) such that 2,(E) < |m|| (E n A) and hm tﬁ(A NE)=
=0, Ee &(2).

Proof. Let Y contain no subspace isomorphic to the space ¢, and suppose that the
semivariation i is not continuous on £,. Then there is an ¢ > 0 and a decreasing
sequence of sets A, N 0, A, € 2, withm(A4,) > & foreveryk = 1,2, . Owingto
the definition of the semivariation i, for 4, there are x; € X| [x ] =< 1 and dlsjomt

E,e?, i=1,2,...,r, with |Zm(AlmE)x|>s Since A4, \ 0, the coun-
table additivity of the measure m in the strong operator topology implies
lim m(A, N E)x; = 0 for every i=1,2,..., r;. Hence there is a k, with

k- o

}i m[(4; — 4,,) n E;] x;| > &. Continuing in this manner, for every n = 1,2,...
i=1
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'n

thereis a y, € Y of the formy, = 3 m[(4,,_, — 4,) " E]x, x;e X, |x| = 1,
1

i=rp-y
disjoint E, € 2, with |y,| > . On the other hand, since for every sequence of real
numbers {a,}, |a,| £ 1, n = 1,2, ... by the definition of the semivariation i we
o0 0
have |Y a,p,| £ m(T) < +c0, Lemma 2 in [5] implies that the series Y y, is
n=1 n=1
weakly unconditionally convergent. But by the assumption of the theorem ¥ contains
no subspace isomorphic to the space ¢, so according to the extended Orlicz theorem

(see Theorem 5 in [5]) the series ) y, is (strongly) unconditionally convergent, and
n=1

thus lim |p,| = 0, a contradiction. This proves the first assertion of the theorem.

n— oo

The second assertion of the theorem immediately follows from Lemma 2 in [9].

The latter property in the just proved theorem is in fact a localization on 2, of the
x-property od Definition 2 in [1]. Thus we see its equivalence with the continuity of
the semivariation m on £, and also that for a weakly complete Banach space it is
always fulfilled. In Example 7 below we construct a measure m countably additive
in the uniform operator topology whose semivariation i is not continuous on the
corresponding 2.

Examples. Let us have now few examples of operator valued measures. Examples
1,2, 3 and 4 are starting points of well known integration theories and will be met
again in § 3 below. Examples 5, 6 and 7 are more or less illustrative and will be used
in§2in [9].

1. Let X = Y be the space of real or complex numbers, let m be a real or a complex
countably additive measure on a é-ring 2, and let m(E) x = x . m(E) for E€ 2,
and xe X. Then clearly |m| (E) = m(E) = v(m, E) < + oo for each set E e 2,.
Here v(m, E) denotes the variation of m on E. In this way 2, o 2,. It is not difficult
to find cases where 2 + £,. From this situation the classical theory of scalar
Lebesgue type integration starts, see for example [12].

2. Let X = Y be a Banach space, let m be a countably additive finite scalar measure
on 2, and let m(E)x = x. m(E) for E€ 2, and xeX. Then again |ml|| (E) =
= m(E) = v(m, E) < + oo for each set E € 2,, and therefore 2, > 2,. This is the
starting point of the well known Bochner integral, see for example § 3.7 in [14].

3. Let Y be a Banach space, X be the space of scalars of ¥, m a countably additive
vector measure on %, with values in ¥, and let m(E) x = x . m(E) for E e #, and
x € X. Then for each set Ee€ 2,, m(E) = ”m]] (E) < +oo, see [10, 1V.10.4], and
therefore again 2, o 2. From this point the theory of integration of scalar func-
tions with respect to a vector measure starts, see § IV.10 in [10] and [15].

4. Let #,, X and Y be arbitrary and let the measure m be countably additive in the
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uniform operator topology on 2,. R. G. Bartle in [1] starts from this point. On
page 339 fifth line from above he wrongly asserts that 2, o 2, see the following
Example 5.

5. Let X be a Banach space, Y be the space of scalars of X, and let m: 2, —
- L(X, Y) = X* be an operator valued measure countably additive in the strong
operator topology of X*, i.e., in its X-topology. Then from definitions of the variation
v(m, .) and the semivariation  and from Hahn-Banach’s theorem we immediately
have the equality m(E) = v(m, E) for each set E € S(Z,). At the same time the varia-
tion v(m .) is obviously a non negative, not necessarily finite, countably additive
measure on S(2,). Let us demonstrate now on a simple example that the situation
Py > Py, Py + P, may occur. Let T be the set of natural numbers, 2, the o-algebra
of all subsets of T'and X the Hilbert space /,. Let further e, el,, k = 1,2, ... be

k

e N,
the orthonormal system of vectors in Z, of form e, = [0,0,... 0,1,0,...], and put
m({k}) = 1]k . e,, m(E) =Y m({k}), E e 2,. Then by Riesz-Fischer’s theorem the
keE

measure m is countably additive in the uniform operator topology of &5 = I, i.e.,
in its norm topology. On the other hand its variation v(m, E) = Y 1/k is not finite
for E = T. Thus 2, > #, and 2, + 2. kek

6. This is an example of an operator valued measure countably additive in the
strong operator topology which is not countably additive in the uniform operator
topology on the corresponding £.

Let T be the set of natural numbers, 2, the g-algebra of all subsets of T, X the real
space /; and Y the real space ¢,. For x € [, of the form x = [x,, x5, ..., X;, ...] and
k=1,2,...,letus put m({k}) x = [0,0,...,0, x,,C,...] € ¢o, and m(E) = Y m({k})

keE
for E € 2,. Then it is obvious that m is an operator valued measure countably additive

in the strong operator topology, that 2, = 2, and that for each non empty set
Ee?,, |m(E)| = m(E) = 1 In this way m is nol countably additive in the uniform
operator topology on Z.

7. This is an example of an operator valued measure countably additive in the
uniform operator topology, the semivariation m of which is not continuous on the
corresponding 2.

Let T, #,, X and Y be the same as in the preceding example 6 and let y, € ¢,
k =1,2,... be the following sequence of vectors:

y1=[1,0,0, .......... ],
)’z=y3=[0,%,0,0, ........ ],
Ve =rs =¥ =[0,0,4,0,0,......],
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For xel;, x =[x, X3, ..., X, ...] and E€ P, let us define m(E)x = th Ve

Then it is easy to see that for a non empty set E € 2,, |m(E)| = Sup ¥] and m(E) =

= | Y. »|. From these equalities it is clear that m is an operator valued measure
keE

countably additive in the uniform operator topology on &, = 2, and that the semi-

variation i is not continuous on 2 since m({k, k + 1, k + 2,...}) = 1 for each
k=1,2,....

1.2 MEASURABLE FUNCTIONS

Proofs of the assertions stated below about measurable functions and about the
convergence in measure and in semivariation are classical and well known, so they
are omitted.

A function f: T — X is called measurable if fhere is a sequence of simple integrable
functions {f;},%; such that llmﬁ,(t) f(t) for each te T. From the properties of

scalar measurable functions, sce [12, § 20 Theor. B], it is obvious that for each
measurable function f there is a sequencs of simple integrable functions {g,},% such
that lim g,(t) = f(¢) for each t € T and the sequence {|g,|};~, is non decreasing for

eachte T.

The set of all measurable functions is a linear space and if in addition X is a Banach
algebra, then this space is an algebra of functions. It is obvious that if ¢ is a scalar
measurable function and f is a measurable function, then ¢ .f is a measurable
function. If fis a measurable function, then [f] is a scalar measurable function and
{te T,|f(1)] > 0} € &(2).

It may be shown, see Theor. 3.5.3 in [ 14] that a function f is measurable if and only
if is separable valued and weakly measurable, i.e., for each functional x* € X* the
scalar function x*f is measurable. Asa consequence we immediately have that the set
of all measurable functions is closed under the formation of pointwise limits of
sequences, i.e., if {£},%, is a sequence-of measurable functions and for each t e T,
lim £;(t) = f(t) € X, then f is a measurable function.

Another useful criterium of measurability of a function is the following theorem,
see [10, IT11.6.9]. A function f'is measurable if and only if it is separable valued and for
each open subset G of X, f7'(G) n {te T, | f(t)| > 0} € S(#). As a consequence we
have that if m is a Baire or a Borel operator valued measure, then each weakly
continuous function f for which {te T, |f()| > 0} € &(#) is measurable. Thus for
such measures each function fe Co(7, X) is measurable.
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1.3 CONVERGENCE IN MEASURE AND SEMIVARIATION

Analogously to the classical definition, we say that a sequence of measurable
functions {ﬁ,},‘:”=1 converges in measure or in semivariation to a measurable function f;
if for each § > 0, lim |m| ({te T, |£,() — f(1)] > 6}) = 0 or lim i({te T, | £(t) —

— (1) > 6}) = O respectively. Similarly as in [12, § 21] we introduce the concept of
the almost uniform convergence in measure and in semivariation. In the same way
as in § 22 in [12] it may be proved that if a sequence of measurable functions {f,},~,
is fundamental in measure or in semivariation, then there is a measurable function
and a subsequence {f; };°, converging to falmost uniformly in measure or in semi-
variation respectively, and therefore also almost everywhere m. At the same time the
sequence {f,,},‘f’:l converges in measure or in semivariation respectively to the func-
tion f. )

If a sequence of measurable functions {f,},> converges on each set E€ Z in
measure or in semivariation to a measurable function £, then there is a subsequence

{f}i=1 converging to f on the whole T almost everywhere m. (Put F = G {teT,
|£(t)] > 0}. Then F e &(2), so there is a non decreasing sequence of setnsz}k €2,
k=1,2,..., with GFk = F. For each k choose from the sequence {f,,k‘u N
Joo. =t 2 subseqkuzelnce {j:,k"_}}‘:l converging almost everywhere m on F, to f and
put f,, = f,  for k =1,2,..).

If the measure m is countably additive in the uniform operator topology on £,
and generally only in this case, then on each set E € 2 the Egoroff theorem is valid
for ”mn Similarly, if the semivariation i is continuous on £, and generally only
in this case, then on each set E € #; the Egoroff theorem is valid for m, see the
=-Theorem in section 1.1 above. Let us note that the convergence in semivariation
always implies the convergence in measure. If the semivariation # is continuous
on Z,, and generally only in this case, then the converse is also true for each set

Ee2,.

Let us also state analogs of Lusin’s Theorem, see [ 12, § 55 exerc. 3]. Let a Baire ora
regular Borel operator valued measure m be countably additive in the uniform operator
topology on £ and let f be a measurable function. Then for each set E€ % and each
& > O thereis a compact G, set C such that C < E, ||m]! (E — C) < e and the restriction
of fon C is continuous. At the same time if fis Borel measurable, then there is a Baire
measurable function f; such that f = f; almost everywhere m, see [4, § 68 Theor. 1].
Quite analogously, if the semivariation # is continuous on 2, then for each set
A e 2, and each ¢ > 0 there is a compact G, set C; = A4 such that m(4 — C,) < ¢
and f'is continuous on C,, see the *-Theorem in section 1.1 above.
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1.4 EGOROFF-LUSIN’S THEOREM

Our procedure of extending the integral from the class of simple integrable functions
to the substantially wider class of integrable functions is based on the simple con-
sequence of Egoroff’s theorem stated below, which we call Egoroff-Lusin’s theorem.
This name is borrowed from [19, Chapter II, exerc. 5 and 6]. This theorem is of
fundamental importance for our theory of integration.

Egoroff-Lusin’s Theorem. Let p:&(#) > Y be a countably additive vector

measure, let a sequence of measurable functions {ﬁ, +_y with values in X converge

almost everywhere p to a measurable function f and put F = \) {te T, |£,(t)] > 0}
n=0

where f, = f. Then there is a set N € &(2) and a non decreasing sequence of sets

F,e?,k=1,2,...withUF, = F — N such that N is a p zero set and on each set

k=1 :
F, the sequence { f,},°_, converges uniformly to the function f.

Proof. Since p is a countably additive vector measure on the o-ring &(#), there is
a finite non negative countably additive measure 4 on &(2) such that A(E) < |u| (E)
and lim ||u“ (E) = 0, E € &(#), see [10, IV.10.5]. Hence it is enough to prove the

A(E)-=0
theorem for the measure A. But for the measure 1 the theorem follows easily from

Egoroff’s theorem, see [ 12, § 21 exerc. 3], and from the fact that for each set E € S(2),

particularly for E = F, there is a non decreasing sequence of sets G, e Z, k = 1, 2, ...,
with U G, = E.
k=1

§ 2. INTEGRABLE FUNCTIONS AND THEIR PROPERTIES

Warning. Since all properties of simple integrable functions and their integrals
remain valid also for general integrable functions and their integrals, in theorems we
shall use the following formulation: ... (simple) integrable functions.... On one
hand by this formulation we want to emphasize that the theorem has an importance
by itself for simple integrable functions, while on the other hand we want to emphasize
that the theorem is valid for general integrable functions. We prove them first for
simple integrable functions and at the same time we point out their proofs for general
integrable functions.

Observe that in the procedure of extending the integral from simple integrable
functions to integrable functions we substantially use the fact that the integral from
a simple integrable function as a set function is a countably additive vector measure
on the o-ring S(2). The following theorem is an easy consequence of this fact and of
Egoroff-Lusin’s Theorem.
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Theorem 1. Let a sequence of (simple) mtegrablefunctwns {f.}n=1 converge almost

everywhere m to a measurable function f. Put F = U {te T, |f(t)] > 0} where
=0
fo =f Then there is a set N 6(@) N < F, and a non decreasing sequence of
sets Foe?, k=1,2,... with UFk =F — N, so that [, f,.xydm =0 for every
k=1

EcS(?) and n = 1,2,..., and on each set F\, k = 1,2, ... the sequence {f,}_,
converges uniformly to the function f. If the measure m is countably additive in
the uniform operator topology, then the set N can be chosen to be an m zero set.

Proof. For E € (%) put

HE = 5 : dfmf a

1 4+ sup
AeG(2)
Then p is a countably additive vector measure on the ¢-ring S(#). From the con-
struction of p and from the definition of a n zero set it is obvious that for each p zero
set Ne &(2), [pf,.xyndm = 0 for every set Ee S(Z)and everyn = 1,2, .... Now
the assertion of the theorem follows directly from Egoroff-Lusin’s theorem.

The assertion of the theorem for the case when the measure m is countably additive
in the uniform cperator topology follows from the fact that F can be written as a union
of a non decreasing sequence of sets from £ and on each such set instead of the
measure p we use the measure m in the preceding proof.

Let a sequence of countably additive vector measures v, : §(2) - ¥, n = 1,2, ...
be uniformly countably additive on 6(@) Then from Hahn-Banach’s theorem, see
Lemma IV.10.4 in [10], and from the definition of the scalar semivariation we
., are uniformly
continuous on &(2). We use this fact in the proof of the next theorem.

Theorem 2. Let a sequence of (simple) integrable functions {f,}, converge
almost everywhere m to a measurable function f and let the integrals | f,dm,
n = 1,2,..., be uniformly countably additive on 6(5") Then there exists the limit
lim [ f, dm = v(E) € Y, uniformly with respect to E e S(2). This limit is unique

n— oo
for the function f in the sense that if a sequence of (simple) integrable functions
{g.}n=1 converges almost everywhere m to f and their integrals g, dm,n = 1,2, ...

are uniformly countably additive on (%), then again lim {£9u dm = V(E) for each

set E € S(2P). Moreover, v is a countably additive absolutely nm‘] and w continuous
vector measure on 6(9’) If mis a Baire or a regular Borel operator valued measure,
then v is a Baire or a regular Borel vector measure on &(%,) or S(4B), respectively.
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Proof. The following proof is based on these facts: a) for each integrable function f
the integral [fdm is a countably additive vector measure on &(2), and b) for each
integrable function fand each set E e &(2) the inequality |[pfdm| < |f]; . Mm(E) is
valid. Until now we have verified these facts only for simple integrable functions.
However, Theorems 3 and 14 below will prove their validity for general integrable
functions.

The proof itself runs as follows. Let us preserve the notation of Theorem 1. Then
for each n, p, k = 1,2, ..., and each set E € S() the following inequality holds:

Uf" dm — pr dm1 | = folle - m(F) +
E E

ljj;, de (F-N-F)+

+ HJf,,de (F—-N-Fy.

Let us have an ¢ > 0. Since the sequence F;, k = 1,2, ... is non decreasing and
UF, =F — N, and since the scalar semivariations [lff,, de (), n=1,2,... are
k=1

uniformly continuous on &(2), see the paragraph before this theorem, the sum of the
second and third term on the right hand side is smaller then }¢ for sufficiently large
k = ky. Since on each set F, the sequence { [i}el converges uniformly to f, see
Theorem 1, and since for each k, m(F,) < + w0, the existence (¥ is complete) and also
the uniformity of the limit lim [ f, dm = v(E) € Y is proved.

The unicity of the limit v follows from the just proved existence by the fact that the
sequence of (simple) integrable functions {f, gy, fs: 925 - > fps Gus ---} CONVErges
almost everywhere m to the function f and their integrals are uniformly countably
additive on S(2).

The countable additivity of v follows from the uniform countable additivity of
integrals [f,dm, n =1,2,..., on &(%). Let A be such a countably additive finite

non negative measure on &(#) that A(E) < |v| (E) and lim |[v|| (E) = 0, E e &(2),
A(E)—0
see [10, IV.10.5]. Then the absolute ||m” continuity of v is equivalent to the absolute

”m” continuity of 1. Suppose that Hm“ (N) = 0, N € (). Then from the definition
of v and from the absolute |m” continuity of the integrals f/;, dm,n =1,2,..., see

Lemma 2 and Theorem 3 below, it is obvious that Hv” (N) = 0 and therefore dlSO
A(N) = 0. Suppose that the measure A is not absolutely ]|m|| continuous. Then there
is an ¢ > 0 and a sequence of sets E, € 65(97‘) n = 1,2,... such that for each n,

[[m] (E) < 12" and A(E,) > e. For each k =1,2,... let us put F, = U E,,, and
F = n F,. Then by the countable subadditivity and monotonocity of ”mu it is
“m’ (F) = 0, while by the countable additivity of the measure 4, A(F) > e. This is

a contradiction which proves the absolute “m“ continuity of A and therefore also of v.
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Since |[m| (E) < m(E) for each set E e &(#), the absolute |m| continuity of v
implies its absolute i continuity.

If m is a Baire operator valued measure, then the regularity of v on S(4%,) follows
from its countable additivity, see [7, Theor. 4]. Let now m be a regular Borel operator
valued measure. Since the integrals (f, dm. n = 1,2, ... are regular on &(%), see

Lemma 2 and Theorem 3, their uniform countable additivity implies their uniform
regularity on S(2) (the measure A constructed in the proof of Theor. 1V.9.2 in [10]
is regular). In this way the regularity of v on 6(%) and also the theorem is proved.

Owing to this theorem the following definition of the integrable function and its
integral is correct.

Definition 2. A measurable function f: T — X is called integrable, if there exists
a sequence of simple integrable functions {f,},% converging almost everywhere m

to f for which the integrals [f,dm, n = 1,2, ... are uniformly countably additive

on &(2). In that case the integral of the function f on a set E € &(2) is defined by
the equality [pfdm = lim [ f, dm. Here, as we know from Theorem 2, this limit

n— oo

is uniform with respect to E € &(2).

It is not hard to see that in the preceding Definition 2 we may replace the conver-
gence almost everywhere m by the convergence everywhere without changing the
class of all integrable functions (in this case fis automatically measurable).

From Definition 2 and Theorem 2 we immediately obtain the validity of the fol-

lowing theorem which collects the basic properties of integrable functions and their
integrals, compare with Lemma 2 from section 1.1 above.

Theorem 3. The set of all integrable functions, which will be denoted by 3, is
a linear space. For a fixed set E € &(2) the mapping f— [ fdm, fe 3 is linear,
and for a fixed function fe 3 the set function E — [ fdm, E € &(2) is a countably
additive absolutely ”m” and e continuous vector measure on S(2) with values in Y.
If m is a Baire or a regular Borel operator valued measure, then this measure is
regular on S(%,) or on S(%B) respectively. Further, for each function fe3 and
cach set Ee &(P), [pfdm = [ f. yzdm.

As a corollary we immediately have the validity of Theorem 1 for general integrable
functions.

Let us note that from Theorem 1 § 68 in [4] and from 1V.10.5 in [10] we immedia-
tely obtain that it m is a regular Borel operator valued measure, then for each simple
integrable Borel function f there is a simple integrable Baire function f; such that
J&(f — f1) dm = 0 for every set E € &(2). From this fact, using the proof of Theorem
1 it is easy to see that to each Borel integrable function f there is Baire integrable
function f; such that [,(f — f,) dm = 0O for every E € &(2). In the case when the
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measure m is countably additive in the uniform operator topology we may find even
a function f, such that f = f, almost everywhere m, see the end of section 1.2.

The following theorem is a useful one.

Theorem 4. Let f be an integrable function and let ¢ be a bounded scalar measur-
able function. Then ¢ . f is an integrable function.

Proof. Without loss of generality we may suppose that |¢(f)] < 1 for each te T.
Let us choose a sequence of scalar #-simple functions {¢,},>., converging on the
whole T to ¢, for which ]] (p,,HT =< 1 for each n. According to Definition 2 choose
a sequence of simple integrable functions {f,},>, converging almost everywhere m
to f, for which the integrals [f, dm, n = 1,2, ... are uniformly countably additive
on &(2). Then {¢, . f,},2, is a sequence of simple integrable functions converging
almost everywhere m to ¢ . fand from the definition of the scalar semivariation we
have the inequality | [f, dm| (E) = | [¢,. f, dm| (E) for each n and each set Ee &(2).,
But the uniform countable additivity of the integrals [f, dm, n = 1,2, ..., on &(2)
implies the uniform continuity of their scalar semi\;ariations, see the paragraph

before Theorem 2. Thus the integrals [¢,. f, dm, n = 1,2, ... are uniformly countably
additive on &(#), which proves the integrability of ¢ . f.

Let us remind the *-Theorem from section 1.1 and proceed to the following
important theorem.

Theorem 5. Let the semivariation m be continuous on P, let A€ P, and let f
be a bounded measurable function. Then the function f. y, is integrable.

Proof. Let us have a sequence {f,},=; of simple integrable functions such that
{£, - Xa}nzy converges on the whole Tto f. x, and |f,| 4 < | f] 4 for each n. Then
the uniform countable additivity of the integrals [f, .y, dm, n = 1,2,... on (%)
follows from the inequality | [, f, . x4 dm| < | f] 4 ..rﬁ(A NE)y,n=12,..Ee&?)
by the continuity of the semivariation it on 2, since 4 € 2. This proves the theorem.

As the following simple example demonstrates, without the assumption of con-
tinuity of the semivariation # on £, the preceding theorem is not valid even when the
measure m is countably additive in the uniform operator topology.

Example 7'. Let us consider Example 7 from section 1.1 and define the function f
as follows:

FO) =[L0,0, .......... Jel,,
) =£3) =1[0,1,0,0, ...... e,
@) =£(5) =£(6) =[0,0,1,0,0, ...... I
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Then f is a measurable function and ||f]|; = 1. Clearly for each finite set E =
= {ky, ks, ..., k,}, f. x is a simple integrable function. Further, from the definition
of the measure m we have the following equalities

fdm =1[1,0,0, .......... Jeco,
{1}

fdm =10,1,0,0, ........ Jeeco .
2,3}

Since the series formed by summing the terms of this sequence is not converging in
the space ¢,, the function f cannot be integrable since the integral of an integrable
function is a countably additive vector measure on G(_@), see Theorem 3.

Let us remind that the variation of the measure m, which we denote by v(m, .),
is the non negative, not necessarily finite, countably additive measure on &(2)
defined by the equality

v(m, E) = sup ,Z;xlm(E NE)|, Ee&(2)

where the supremum is taken over all finite collections of disjoint E; € #. Clearly
for each set E e &(#) the inequality m(E) < v(m, E) holds. It is not hard to find
examples where m(E) < + oo and v(m, E) = + co. Similarly as Theorem 5 we can
prove:

Theorem 6. Let f be a measurable function and let [¢|f| dv(m, .) < +oo where
F = {te T, |f(t)] > 0}. Then f is an integrable function and for each set E € &(%)
the inequality v([fdm, E) £ [4|f| dv(m, E) holds.

Let us note that there are functions f with o([fdm, E) = 0 for each set E € S(2),
and at the same time it may happen that [;|f] do(m, .) = + 0.

Let {v,},>, be a sequence of countably additive vector measures on S(%) with
values in ¥ and let the limit lim v,(E) = v(E) € ¥ for each set E € (%) exist. Then

the scalar semivariations ”v,,“ (.), n = 1,2, ... are uniformly continuous on &(%),
see the proof of Theorem IV.10.6 in [10]. From this fact and from Definition 2 we
immediately obtain the following criterium of integrability of a function.

525



Theorem 7. A measurable function f: T — X is integrable if and only if there
exists a sequence of simple integrable functions {f,} -, converging almost every-
where m to f, such that for each set Ee &(P) the limit lim [y f,dm = v(E)e ¥

exists. In this case [gfdm = lim [ f, dm for each set E e S(2) and this limit is

n—> oo

uniform with respect to E € &(2).

Let now Z be a Banach space and let U be a bounded linear operator from Y to Z.
Then clearly the set function Um, Um(E) = U[m(E)], E € 2 is an operator valued
measure countably additive in the strong operator topology of the space L(X, Z).
If m is countably additive in the uniform operator topology, then Um has the same
property. Since Um(E) < |U|. m(E) for each set E e S(2), each simple integrable
function fis a simple integrable function also with respect to the measure Um and
U[pgfdm = [ fdUm for each set Ee S(#). From this, using Theorem 7 we
immediately obtain that each integrable function fis also integrable with respect to
the measure Um and U [ fdm = [;fdUm for each set E e S(2).

As we know, I, denotes the set of all simple integrable functions. Denote by J;
the closure of J; in the norm |.||; in the space of all bounded X valued functions
on T. Let us remind further that for a locally compact Hausdorff topological space T,
Co(T,X ) denotes the Banach space of continuous X valued functions on T approaching
zero at infinity with the usual supremum norm. In other words, a function fis in
Co(T, X) if and only if fis continuous and for each ¢ > 0 there is a compact set C,
by [12, § 50 Theor. D] a compact G; set C, such that |f]r_¢, < & Using this nota-
tion we have:

Theorem 8. A function fis in 3, if and only if the following conditions are fulfilled:
a) f is measurable, b) {f(¢), te T} is a relatively compact subset of X, and c) for
each ¢ > 0 there is an A € P such that hf”r 4 <& Partzcularly, if mis a Baire or
a Borel operator valued measure, then Co(T, X) =

Proof. Let conditions a), b) and c) be fulfilled for a function f. For each n =
= 1,2,...take A, € 2 such that | f]|;_, < 1/n, and let x,, x5, ..., X, be a 1/n — net
for the relatively compact set {f(f),te 4,}. For k=1,2,...,k, put B, = {te
) — xk! < 1/n}. Then by the measurablllty of fB.e? for each k. If we now

put B, = B, — U B, k=1,2,..., k,, and f, = Zxk Xp then for each n it is
k=

f,e3, and | f j;,”T < 1/n. Hence fe3J,. The other assertions of the theorem
are obvious.

Denote by B3 the set of all bounded integrable functions and let B3 be its closure
in the norm ” . ”T in the space of all bounded X valued functions on T. Then we have:
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Theorem 9. Let A€ 2, and let fe 3, or more generally, let fe BS. Then f. y, €

€ B3. Particularly, if sup m(4) < + oo, then I, = B3 and BI = BJ.
Ae?Py

Proof. If fe 3, thenthe integrability of f. y, follows from the inequality
|[zfdm| < |f]s. m(E) by Theorem 7. If feBS, then the integrability of f.x,
follows from the same inequality, which is proved for general integrable functions
in Theorem 14 below, by Theorem 16 below. The other assertions of the theorem are
now obvious.

In the following simple example we construct such a bounded integrable function f
that f¢ 3,. At the same time Te & and v(m, T) < +oo. Thus in general the contents
of the preceding theorem cannot be reduced to its contents for simple integrable
functions.

Example. Let T be the set of natural numbers, let 2, be the set of all subsets of T
and let X = Y = I,. Define m({k}) x = 1/k*. x, xe X, k = 1,2, ..., and m(E) x =
=Y m({k}) x for E€ #,. Then 2, = 2 and the function f defined by f(1) =

keE

=[1,0,0,...], £/(2) = [0,1,0,0,...], £(3) =[0,0,1,0,0,...], ... is a bounded

integrable function, and clearly f¢ J,.

Let us note that if sup m(4) < + oo, then for the extension of the integral from J
Ae?

to 3, the elementary theory based on the inequality |[, fdm| < ||f]z . m(E), fe 3,
i.e , on the definition of the semivariation it is completely sufficient. At the same time
this elementary theory, due to the inclusion Co(T, X) = J, for a Baire measure m, is
sufficient to represent a wide class of bounded linear operators U : C,(T, X) - Y in
the form of an integral Uf = [ fdm, see § 2 in [9]. But for the investigation of the
properties of such operators the general theory, which we are developing, is necessary.

From definition of the measurable function and from Theorems 1 and 8 we
immediately have:

Theorem 10. Let f be a measurable function and put F = {te T, |f(t)] > 0}.
Then there is a set N € S(#), N = F and a non decreasing sequence of sets F, € 2,

k=1,2, ... with U F, = F — N, so that [pf.yydm = 0 for every E € &(%) and
k=1

for each k, f. yi €3, In other words, each measurable function f can be written
in the form f=f.yr_n + f. gy where f. xy_y has a relatively o-compact range
in X and [,f. yydm =0 for every Ec &(2). Wher the measure m is countably
additive in the uniform operator topology, then the set N can be taken to be an m
zero set.

In connection with the following theorem see also Example 7" below and Theorem 3

in [1].
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Theorem 11. Let Ae P, and let f be a bounded measurable function. If there

exists a sequence of (simple) integrable functions {f,}s, converging in the semi-
variation m to the function f. x4, then f. y, is an integrable function.

Proof. For each k = 1,2,... take an n, so that m({te 4, |f, () — f(1)| >
> 1/2}) < 1/2*, and denote the set in brackets by 4,. Let us put B, = U 4;, k =
i=k

= 1,2,..., and let B = () B;. Then by the countable subadditivity of the semivaria-
k=1
tion m B is an m zero set, and therefore [ f. x5 dm = 0 for every set E € S(2).

For each k = 1,2, ... let us put fi = f, . x4—p. Then {£};=, is a sequence of
(simple) integrable functions converging at each point t e T to the function f. y,_p
and at the same time “/}{ HT < ||f”7 + 1for each k =1, 2, .... Further, (for general
integrable functions by Theorem 14 below), for each set E € (%) and each natural

numbers k; < k, the following inequalities hold:

j (fr, — fo) dm +
En(A-By,)

E

fi, dm —Jﬁ;dm‘i <
E

|
|

1

<
- 2k1

| |
+ i S, dm! + ,} fi,dm — - (m(4) + |f]r + 1).

EnBy, 1) EnBy,

From these inequalities, since m(4) + n f ||7 is by the assumption of the theorem
finite and since Y is complete, the existence of the limit lim [, £ dm = v(E)e ¥
k= 0

follows for each set E € &(2). From here the integrability of f. y,_ 5 and consequently
of f. y, follows in the case of simple integrable f,, n = 1,2, ... from Theorem 7,
while in the general case from Theorem 16 below.

We say that a measurable function f has an i almost relatively compact range, if
for each ¢ > 0 there is a set A € S(2) such that 1(A4) < ¢ and the function f. x;_ 4
has a relatively compact range in X. If m is a Baire or a Borel operator valued measure,
then for the measurable function the concepts of the i almost continuity and of the it
almost compact support are defined in a similar way. With these concepts, as a corol-
lary of Theorems 8, 9 and 11 we immediately have.

Theorem 12. Let A € 2 and let f be a bounded measurable function. If the function
f- x4 has m almost relatively compact range, then it is integrable. Particularly,
if m is a Baire or a Borel operator valued measure and the function f. y, is M
almost continuous and has an m almost compact support then it is integrable.

Let A€ 2,, let the semivariation rt be continuous on £,, see the *-Theorem- in
section 1.1 and let f be a bounded measurable function. Then owing to Egoroff’s
theorem for the semivariation i there is a sequence of simple integrable functions
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converging in the semivariation s to the function f. x,. In connection with this fact,
with Theorem 11 and also with the integral of R. G. Bartle in [1], see in detail the end
of the paper, the following example is interesting.

Example 7”. In this example we construct a bounded integrable function for which
there is no sequence of simple integrable functions converging to it in semivaria-
tion . At the same time the measure m is countably additive in the uniform operator
topology and Te Z.

Let us modify the Example 7 from section 1.1 as follows: T, Z,, X, Y and the
sequence { yk},f‘;l remain as before. On the other hand we define a new measure m: for
xeX=1,x =[xy, x5 ..., X ...] Wwe put

1{m({1}) x = [x,, 0 R 0 R
m({2})x=~0,%x2+(% —)x3, .0 R
2 _

m({3}) x = o,—x4+(; o

(@) x =0, 0 ,1x6+(i—1)x7,...

]
0]
]
]

It is again easy to see that for a non empty set 4 € &(2,) = 2,, |m(A)| = sup |y
keA
and m(A) = l Zyk’ just as in Example 7 in section 1.1. Thus the measure m is coun-
keA

tably additive in the uniform operator topology on 2 = 2, and its semivariation
m is not continuous on #, = 2.

Define now the function fas follows:

) =[10,0,..cccoeiiii. .. 1,
) =[0,1,1,0,0............... 1,
f(3)=1[0,0,0,1,1,0,0, .......... 1.
f(4)=1[0,0,0,0,0,1,1,0,0, ...... 1.
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Then fis a bounded measurable function and the following equalities holds:
1{f;fdm =[1,0,0, ........ 1

(| fdm = 0,13,0,0,....],
2 L 2

P
fdm = 0,2—3,0,0,‘...],

3} L

Since the series formed by summing the terms of this sequence is absolutely con-
vergent in ¥ = ¢,, fis a bounded integrable function. Let us demonstrate now that
there exists no sequence of simple integrable functions converging to the function f
in the semivariation .

Letg = Z X; . 1z, be a simple integrable function, put 4 = {tre T, [f(r) — g(t)| >
> l} and suppose that rﬁ(A) < 4. Then from definitions of 4 and f it is clear that

U E; o> T— A. If some E; — A contained two distinct points ¢, and t,, then we

i=1

should have 1 = |f(t,) — f(t,)] < [f(t,) — x| + |f(t2) — x| < 3, which is impos-
sible. Hence T — A is a subset of some set {t;, f5,..., 1}, s < r. Let us put ¢, =
=maxt,i=12..5 Then 4> {1ty + 1,1, + 2,...}, and therefore m(4) =
which is a contradiction with the assumption m(A) < 4. Thus we proved that there
exists no sequence of simple integrable functions converging in the semivariation i
to the function f.

Let us note that in a similar way, starting from Example 6 in section 1.1, the
measure m being countably additive only in the strong operator topology, it is possible
to construct a bounded integrable function that there exists no sequence of simple
integrable functions converging in measure to it. This fact shows that if we had ex-
tended the integral by means of the Theorem 13 below, then in general, when the
measure m is not countably additive in the uniform operator topology, we should
not have obtained all integrable functions.

Theorem 13. Let f be a measurable function and let a sequence of (simple)-in-
tegrable functions {f,}-, converge on each set E € S(%) in measure mto the func-

tion f. Then the following conditions are equivalent: a) The integrals ff,, dm,
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n =1,2,... are uniformly countably additive on &(#). b) For each set E € S(2)
there exists the limit lim j'Eﬁ, dm = v(E) € Y. If these conditions are fulfilled, then

n—» oo

the function f is integrable, [ fdm = lim [y f, dm for each set E € &(P) and this

n—ow

limit is uniform with respect to E € &(2).

Proof. From each sequence of measurable functions converging in measure m
on each set E € 2 to the measurable function f we may select a subsequence conver-
ging almost everywhere m on the whole T to the function f, see section 1.3. From
this fact, by indirect proof we easily obtain the validity of the theorem, following
in the case of simple integrable functions from Definition 2 and Theorem 7, while in
the general case from Theorems 15 and 16 stated below.

By the definition of the semivariation #, for each set E e &(2), m(E) =
= sup {|[pfdm|, fe 3, f”E < 1}, see Lemma 1 in section 1.1. The following im-
portant theorem asserts that this supremum does not increase when we replace
simple integrable functions by general integrable functions.

Theorem 14. For each set Ee &(2), m(E) = sup {|[rfdm|, fe3, ||f]: = 1}.
Hence for each integrable function f and each set E € &(%) the inequality

j Lfdmll < s - w(®)
holds.

Proof. Let us have an E € (%) and let f be an integrable function with Hf”,; <1
Since the function fis measurable, there is a sequence of simple integrable functions
{fi}1 converging on the whole Tto fand such that for each t€ T, | £(1)| = |£(2)|
foreachn = 1, 2, ..., see section 1.2. Let us use the notation of Theorem 1. Then for
eachnm k=12,...,

jfdm f fdm
E En(F—-N—-Fy)

Let us have an ¢ > 0. Since the integral f fdm is a countably additive set function

on &(2), for sufficiently large k = k, the first term on the right hand side is smaller
then 1e. Since lim | f — £,||, = 0, by Theorem 7 the second term with F, = F is for

= +

EnFx

f (f~j:,)dm%+J. f,,dm:.

sufficiently large n = n, smaller then ¢ as well. Since f,, is a simple integrable func-

tion with | £, Ilz = 1, this proves the theorem.
As a consequence of this theorem and Theorem 3 we have the validity of Theorem 2
for general integrable functions f,, n = 1, 2, .... The following theorem shows that

we obtain no further extension of the integral when we apply again the extension
procedure to general integrable functions.
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Theorem 15. Let {ﬁ,},‘f:l be a sequence of integrable functions converging almost
everywhere m to a measurable function f and let the integrals (f,dm,n = 1,2, ...,

 be uniformly countably additive on G(ﬂ). Then the function f is integrable,
[efdm = lim [pf, dm for each set E € &(#) and this limit is uniform with respect

n— oo

to E € S(2).

Proof. By Theorem 2 for each set E € (%) there exists the limit lim [ f, dm =

= v(E) € ¥, and this limit is uniform with respect to E € &(#). Hence it is enough
to prove that the function f is integrable and that v(E) = [ fdm foreachset E € &(2).
Since fis a measurable function, by definition there is a sequence of simple inte-

00

grable functions {A,},-, converging on the whole T'to the function f. Let us consider
the sequence {f}, ks, fo, bay ..., foo By ...}, UL F = G{te T, |£,(t)] + |h(2)] > 0}
and apply Theorem 1. Then there is a set N € G(g”), nlillc F and a non decreasing
sequence of sets F,e?, k=1,2,... witthIFk =F — N, so that [pf,.ydm=

= [gh,.xydm =0 for every E€ &(?) and n=1,2, ..., and on each set Fy, k=
=1,2,... the sequence {f,hy,f>, by, ..., [, b, ...} converges ‘uniformly to the
function £. Let us choose a subsequence {n,};~, such that for each k it is "h,,k - f,,k” Fre -
.m(F,) < 1/k and put g, = h,, . xy + My, - Xr, for each k. Then {g,};, is a sequence
of simple integrable functions converging on the whole T to the function f and by
Theorem 14 for each k and each set E € &(2)

v(E) — Jgkdml} <

E

J S dmi +
En(F—N~-Fg)

From here it is clear that lim [z g, dm = v(E) for each set E e &(#). Thus by
k— o

L (@« — £2) dm% +

| NFy

+ <1k + ...

v(E) - I Sindm

Theorem 7 the function £ is integrable and [ fdm = v(E) for each E € &(#). This
proves the theorem.

From the definition of integrable functions and from the preceding theorem we
immediately have the following characterization of the set of all integrable functions:
The set of all integrable functions is the smallest set of functions containing the
set of all simple integrable functions for which Theorem 15 is valid.

From Theorem 15 and from the theorem of Vitali-Hahn-Saks, see [10, 1v.10.6],
we obtain the following fundamental theorem:

Theorem 16. Theorem on interchange of limit and integral. Let a sequence of in-
tegrable functions { f,} -, converge almost everywhere m to a measurable function f
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and let there exist the limit lim [ f, dm = v(E) e Y for each set E e &(#). Then

n- oo

the function f is integrable, [y fdm = lim [, f, dm for each E € &(#) and this limit
is uniform with respect to E€ &(#). "%

As a consequence of Theorems 14, 15 and 16 we obtain the validity of Theorems 9,
11 and 13 for general integrable functions.

From Theorems 7 and 16 we have the following characterization of the set of all
integrable functions: The set of all integrable functions is the smallest set of func-
tions containing the set of all simple integrable functions for which Theorem 16
on interchange of limit and integral is valid.

We say that a measurable function f: T — X is weakly integrable iff for each func-
tional y;" € Y* the function fis integrable with respect to the measure y*m : 2 — X*.
From the paragraph following Theorem 7 we immediately have that every integrable
function is also weakly integrable. The following simple example shows that the
converse is in general not true.

Example. Let T be the set of positive integers, 2, the d-ring of all finite subsets
of T and X the real Banach space ¢,. Let further m({k}) x = x and f(k) =

k

— e\
=1[0,0,...,0,1,0,...]ec, for each k = 1,2,... and each x e ¢,. Since the dual
of ¢, is the Banach space /;, the function fis clearly measurable and weakly integrable,
but it is not integrable. ’
Nevertheless, from the generalization of Orlicz’s theorem, see Theorem 5 in [5],
we have the following interesting result.

Theorem 17. Let Y contain no subspace isomorphic to the space ¢, for example
let Y be a weakly complete Banach space, see pp. 160 and 161 in [5]. Then every
measurable and weakly integrable function f: T — X is integrable.

Proof. According to Theorem 10 thereisaset N e &(2),N = F = {te T,|f(1)| >
> 0} and an increasing sequence of sets F, e 2, k = 1,2,..., U F, = F — N such
k=1

that [y fdm = 0 for each set E € S(2), and f. 35, € 3, for each k. Since m(F,) <
< +oo for each k, by Theorem 9 the function f. y, is integrable for each k. We
now prove that for each set E € &(#) the limit lim fEf. «r, dm exists, which owing
k=0
to Theorem 16 will prove the integrability of the function f.
Suppose that for some set E e S(2) the limit lim [ f. xp, dm does not exists.
k— o0

Then there is an ¢ > 0 and a sequence of positive integers k; < k, < k3 < ky < ...

such that
|
fdm| =
En(Fiy;=Fiy; o)

> ¢

j‘f. XF.,, dm — jf. xr,, dm
E E
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for every i = 1, 2, .... But this is impossible, since owing to the weak integrability of

0
the function f the series ) _fEh(Fk yfdm is weakly unconditionally conver-
i=1 2

“Fryioy
gent, and therefore, since Y contains no subspace isomorphic to the space ¢,, this
series is (strongly) unconditionally convergent, see Theorem 5 in [5]. Thus the theorem
is proved.

§ 3. SOME SPECIAL CASES

In this section we compare the obtained integral with a few well known integrals.
The examples treated below are continuations of the corresponding examples
from section 1.1.

1. Let us show that the obtained integral in this case coincides with the classical
Lebesgue integral on a general measure space, see for example [12].

By Theorem 6 each Lebesgue integrable function is integrable in our sense. Con-
versely, let f be an integrable function and according to Def.2 let { f,} . ; be a sequence
of simple integrable functions converging almost everywhere m on T to f for which
the integrals [f, dm, n = 1,2, ... are uniformly countably additive on &(#). Then
their scalar semivariations [|£] dv(m, .), n = 1,2, ... are uniformly countably ad-

ditive on &(2) as well, see the paragraph before Theorem 2. Let us use the notation
of Theorem 1. Then for each n, k = 1, 2, ... we have:

Lk|f| du(m, .) < Lk|f‘ﬁ.l dv(m, .) + Lklﬁ,[ dv(m, .) +J | f] do(m, .) .

F—-N-Fg

By Fatou’s lemma

J | f| dv(m, .) < lim ian |f;| dv(m, .),
F=N-Fy F-N-Fy

n

and this holds for sufficiently large k, owing to the uniform countable additivity of
the integrals [[f;| dv(m, .), n = 1,2, ..., on &(#) smaller then a given ¢ > 0. This
proves the infegrability of the function fin the classical sense. Further, it is not dif-
ficult to prove that | [fdm| (E) = [,|f| du(m, .) for each set E € &(2).

Let us note that by the isomorphism of all n dimensional Banach spaces the result
just proved can be easily extended to the case when X and Y are finite dimensional
Banach spaces.

2. By Theorem 6 each Bochner integrable function is integrable in our sense.
By Theorem 7 our integral in this case coincides with the so called second Dunford
integral, see [13, pg 128]. Since each integrable function is by definition strongly
measurable, each integrable function is integrable in the sense of Pettis, see the para-
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graph after Theorem 7 and [14, 3.7.1]. The converse is in general not true since there
are functions integrable in the sense of Pettis which are not strongly measurable. At
this occasion see also Theorem 17.

Let us now introduce a simple example of an integrable function which is not
integrable in the sense of Bochner. This example also shows that in general Theorem
16 on interchange of limit and integral is not valid for the Bochner integral.

Example. Let T be the set of all natural numbers, 2, the set of all finite subsets of T
and let X = Y = I,. Define m({k}) x = x for each k € Tand each x e I, and m(E) =
=Y m({k}) for Ee 2,. Define further the function f by f(k) = 1/k.e, where

keE k

—_

=[0,0,...,0,1,0,...]e€l, k =1,2,.... Then the function f is not integrable
in the sense of Bochner since [r|f] dv(m )= Z 1/k = + oo. On other hand,
since Z 1/k* < + oo, by Riesz-Fischer Theorem the series Z f(k) is unconditionally

convergent for each subset E < T. Hence fis an integrable functlon. Let us note that
if we define the function g by g(k) = (1/k).e,, k = 1,2, ..., then |g(k)| = | f(k)| for
each k, and at the same time the function g is clearly not integrable.

3. Theorems 7 and 16 and Theorem 2.7 in [15] show that in this case our integral
coincides with that in [15]. At the same time, if 2 is a o-algebra, then this integral
coinsides with that given in [2] or in [10, IV.10].

4. Let us compare the obtained integral with the general bilinear vector integral
of R. G. Bartle [1] (of course, only for the countably additive case of [1]). First,
what Bartle calls convergence in measure is in our terminology convergence in the
semivariation m. Since from each sequence of measurable functions converging in the
semivariation m we can draw a subsequence converging almost everywhere m on the
whole T, from Theorem 1 in [1] and from Theorem 7 we immediately have that each
function integrable in the sense of Bartle is integrable in our sense. On the other hand,
in Example 7" we constructed a bounded integrable function which is not even
measurable in the sense of Bartle. Hence Theorem 16 on interchange of limit and
integral is in general not valid for the integral of Bartle. However, in the important
particular case when the semivariation # is continuous on £, see the #-Theorem in
section 1.1, and when £ is a g-algebra, our integrals coincide, see Theorem 7 and
Theorem 9 in [1].
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