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A convergence group Lis a group and a convergence space such that the mapping
xy~!on L x Lonto Lis sequentially continuous, i.e. if lim x, = x and lim y, = y,
then there is a sequence of naturals n, < n, < ... such that lim(x,y,,) = xy™*
[see 5]. O. ScHREIER published a paper [6] where the definition of L-groups is given.
According to this definition the group operation xy~! need not be sequentially con-
tinuous. Consequently the notions of L-groups and convergence groups differ from
each other. Nevertheless, there is a close connexion between both notions (see p. 365).

The present paper deals with convergence groups. In section 1 the necessary nota- _
tions, definitions and lemmas are given. Section 2 deals with convergence product of
two convergence spaces and some point-properties of convergence spaces are studied.
In section 3 the theory of convergence groups is developed. In section 4 some relations
between convergence topological groups and convergence groups are stated. A prob-
lem of E. CecH is solved concerning the existence of a convergence topological
group with uncountable point characters.

A closure space (P, v) is a point set P and a map v on the system 2 of all subsets
of P into 2” such that

W=0, AcvA and v(Adu B)=vAUvB foreach A <P and B<P.
The map v is called the closure and vA the v-closure') of the set A in P.

1y For the sake of simplicity the symbols of closures, topologies and convergences are some-
times suppressed and in the symbol (x) meaning a one-point set the parenthesis ( ) will often be
omitted. ' b
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If the axiom
(Ty) vx = x foreach xeP

is fulfilled, then P is called a T,-closure space and v a T -closure.
If the axiom

(F) vwA =vA foreach A< P

is true, then we speak of a topological space and the closure v is called a topology
for P.

Let L be a nonvoid point set. A sequential convergence class (or simply a con-
vergence) £ on L is the set of elements ({x,}, x) where {x,} denotes a sequence of
points of Land x a point of L, fulfilling the three axioms of convergence:

(Zo) If({x,}, x)e £ and ({x,}, y) € £, then x = y.
(#,) IfxpeLandx, = x,forn=1,2,..., then ({x,}, x,) € £.
(£,) If ({x,}, x) e € and {x,,} is any subsequence of {x,}, then ({x,}, x) € £.

If ({x,}, x) € £, then we say that the sequence {x,} converges to the limit x, in
symbols £-lim x,, = x or') simply lim x, = x.
The closure 14 of a set A < L is defined as

(D,) the set of all points lim x, € Lsuch') that Ux, < 4.

From this definition it follows that 4 fulfils the axiom (T,). In such a way the con-
vergence £ induces a T,-closure for L which will be called a convegence closure. The
T,-closure space (L, £, 1) is called a convergence space.

A convergence space (L, €, 1) need not be a topological space; it is possible to form
successive closures of a set A in L:

MNMAcMAcPAdc...cV¥4c...

where 1°4 = A, A'4 = 1A, 2°A = 11*"'A4 or = |J A"4 according to whether ¢ — 1
n<¢
exists or not. It can be easily proved that A° is a T,-closure for Land that 1°'4 is the

smallest A-closed set in L containing A4 as a subset. Therefore A*! is a topology for L
(fulfilling (F)). ‘

The notion of neighbourhoods in a T -closure space (L, v) is defined in such a way
that the following statement is true:

1) A point x € L belongs to the v-closure of a set 4 = L if and only if each
neighbourhood of x contains at least one point of A.
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From this postulate the definition of neighbourhoods in a convergence space
(L, £, 2) follows:

A set U(x) = Lis a A-neighbourhood") of a point x if
(D,) £-lim x, = x implies that x, € U(x) for nearly all n.

Inview of (#,), each neighbourhood of x contains the point x. From (£,) it follows
that the intersection of two neighbourhoods of a point x is a neighbourhood of the
same point x.

Let v; and v, be T-closures for the same point set P. We say that v, is finer than v,
or v, is coarser than v, if v;A < v,4 for each A = P. According to (1), v, is finer
than v, if and only if for each x € P and every v,-neighbourhood ¥, of x there is
a v,-neighbourhood V; of x such that V, < V,.

A convergence £ on Linduces on La convergence closure 4 in a unique way. The
convergence closure 4, however, can be induced by more than one convergence on L.

This is shown by the following example.

Example 1. Let R be the set of all rational numbers and R the usual convergence
on R. Let R’ be the set of all elements ({x,}, x), x € R, x, € R, where {x,} is a mono-
tone sequence of numbers R-converging to x. Then (R, R, ¢) and (R, R, ¢’) are two
convergence spaces such that R # R’ and ¢ = ¢'.

From this it follows that it is possible to classify convergences on the same point _
set L by means of the equivalence relation ~:

L ~ I whenever A =p.

It can be proved [3] that in every class [ €] of convergences on L there is a largest?)

convergence £* viz. 2*¥ = (J N. There is a one-to-one map of the system of all
Ne[L]

largest convergences on a given point set L onto the system of all convergence clo-
sures for L such that

2* <« M* ifand onlyif A4 < ud foreach A < L.
The largest convergence £* in the class [ €] is characterized by the axiom [3]:
(£5) If {x,} is a sequence of points in a convergence space (L, £, 1) and x a point
of Lsuch that in each subsequence there is a subsequence 2-converging to x,
then £*-lim x, = x.

From (D,) it follows

2) The largest convergence is usually denoted by an asterisk; the Greek letters 4, g, ..., are
used to denote convergence closures induced by convergences &, M, ... .
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Lemma 1. Let (L, 2, 4,), i = 1, 2, be convergence spaces on the same point set L.
Then Ay # A, and A, is finer than 1, if and only if 8% < % and there is a point
Xo € Land an infinite countable subset C = Lsuch that x, € A,C — 4,C.

Let ¢ be a map on a convergence space (L, £, 1) into a convergence space (M, Mm, ).
Then the following statements are equivalent [3]:
(2)  9(24) = p @(A) for each 4 <= L.

(3) If x is a point of Land V(¢(x)) a p-neighbourhood of the point ¢(x) in M,
then there is a A-neighbourhood U(x) of x such that ¢(U(x)) = V(¢(x)).

(4)  If 8limx, = x, then M-lim p(x,,) = ¢(x) where {x,} is a suitable subse-
quence of {x,}.

The conditions (2) and (3) concern the continuity and the condition (4) the sequen-
tial continuity of the map ¢.

Lemma 2. A map ¢ on a convergence space (L, €, 1) into a convergence space
(M, m, W) is continuous if and only if

(5) Z-limx, = x implies M*lim o(x,) = ¢(x)..
Proof. Let ¢ be continuous on L. If £-lim x, = x and if {¢(x,,)}s2, is any sub-

sequence of {¢(x,)},, then, in view of (4), M-lim ¢(x,, ) = @(x), {¢(x,, )} being
a suitable subsequence of {¢(x,,)}. Consequently (5) is true, by (%;). Now, suppose

that the condition (5) is fulfilled. Since MM* € [M], we have ¢(x) € u U ¢(x,). From

n=1

this it easily follows that ¢(x) = M-lim ¢(x,,) for a suitable subsequence {x,} of
{x,}. Therefore (4) is true.

The map ¢ is a homeomorphism if ¢ is a one-to-one continuous map on L onto M
such that ¢ ™! is also continuous.

.2

Let (L,, 8, 4,) and (L,, £,, 4,) be convergence spaces. Denote L; x L, the
Cartesian product of the sets L, and L,. We define a convergence £,, on L; x L,
as follows:]

(D3) (G 2} (9D € 212 i ({3}, x)e @y and ({1}, )€ Lz

In such a way we get a convergence space (L; x L,, £,, 4;,) Which is called the
convergence product, 1,, being a convergence closure for®) L, x L, induced by &,,.

3) The notation £, , and Ay, will be used also in the case when L; = L, = L.
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Notice that there is another T,-closure A; x A, for L; x L,; it is defined by means
of neighbourhoods as follows:

(D)) Aset We Ly x L, is a 4, x A,-neighbourhood of a point (X, yo) if there
is a A;-neighbourhood U of x, in L, and a A,-neighbourhood V of y, in L,
suchthat U x V < W.

From (1) it follows that the 1, x A,-closure of a set A < L, x L, consists of all
points ze L; x L, such that A n W(z) # 0 for each 1; x A,-neighbourhood W(z)
of z. It is easy to prove that the map A; x 4, fulfils the axiom (T,); it will be called
a product closure and always denoted by 4, x A,. Evidently A;, is finer than
Ar X A,

Let us notice that 4, x A, need not be a convergence closure even if both con-
vergence closures 1, and 4, are topologies (fulfilling the axiom (F)) [3].

Now we are going to find a condition under which the equality 4, x 1, = 4,
holds. For this purpose we shall define some local properties in a convergence space
by means of neighbourhoods, closures and double sequences.

Let N be the set of all naturals. Let Lbe a convergence space. A map ¢ on N x N
into Lsuch that ¢(m, n) = x,,, is called the double sequence and denoted {X,,}w .-
or simply {x,,,}. A sequence {z,} is a cross-sequence in {x,,,} provided that there is
a function f on N into N such that z,, = X,/ Each subsequence {z,,} of {z,} will
be called a cross-subsequence in {x,,,}.

Let (L, 2, 1) be a convergence space. Let x, be a point in L. We say that x, has
property o, B, v, & respectively if the condition is true:

(o) There is a decreasing sequence {V,,} of neighbourhoods of the point x, such that
each one-to-one sequence of points {x,}, x,, €V,,, contains a subsequence con-
verging to x,.

(B) If {x,} is a double sequence of points in Lsuch that lim x,, = x, for each m,

n
then there is a function f(m) on N into N such that each cross-sequence {X,,, }w_,
where n,, > f(m) contains a subsequence converging to x,.

(y) If {x,.} is a double sequence of points in L such that lim x,,, = x,, for each m,
then there is a cross-subsequence in {x,,} converging to x,.
(8) If {4,} is a decreasing sequence of subsets of Land x, € A4,, for each m, then

there is a sequence of points {x,,}, x,, € 4, converging to x,.

We say that the convergence space has property «, B, v, 8 respectively if each of
its point has the property in question. The property y will be called the cross-sub-
sequence property and the point x, in question a y-point.
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In [4] I defined the property @ of a point x, € Lby the condition:
(o) There is a double sequence of points in Lsuch that lim x,,, = x, for each m and
such that no cross-subsequence of it convergences to x,,.

A point with the property @ will be called a g-point.

Lemma 3. () = (B) = () < (8) < (non @).
Proof. (a) = (B). If {x,,} is a double sequence of points such that lim x,,, = x,

for each m and if {V,,} is a decreasing sequence of neighbourhoods of x, satisfying (o),
then, by (D), there is a function f,(m), m € N, such that n > f,(m) implies x,,, € V.

0 o0

If the point set |J U x,, is finite, then the proof is evident; if it is infinite, arrange

m=1n=1
all x,,, distinct from x, into a sequence {a,}7" and choose, for each m € N, a natural
f2(m) such that

m @

U ag N U Xmn = Q) .
k=1 n=f2(m)

Then put

f(m) = max {f,(m), f(m)} .

Hence (B) follows from (c).
The implications (B) = (y) = (8) and the equivalence (y)<>non (g) are clear.

(8) = (y) remains to be proved. Let lim x,,, = X, for each m. Denote 4, = U U X

n m=k n=1
In view of (8) there is a sequence of points {z,}, z, € 4,, converging to x,. Evidently it
contains a subsequence which is a cross-subsequence in {X,,,} e, - -

It is clear that the point x, has the property o if the character*) of x, is countable;
as a matter of fact, if {V,,} is a sequence of neighbourhoods of x, which form a base
at x, and if we choose any points x,, € V,,, then x, € A Ux,, so that (o) is true. On the
other hand, there are points which have the property o but fail to have a countable
character. This is shown by

Example 2. Let Lbe a point set having an uncountable power X,. Choose a point
zo € Land define: ({x,}, x) € € if x, = x for nearly all n or if x = z, and there is
no constant subsequence {y} of {x,}, y # z,. Evidently £ is a largest convergence
and the convergence space (L, £, 1) is a topological space each point of which —
except z, — is isolated and the character of the point z, is N,. From this it instantly
follows that L has the property a.

4) The character of a point x is the least cardinal m such that there is a base of neighbourhoods
at x of power m.
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The conditions (e) and (B) need not be equivalent. This is shown by

Example 3. Let X be a point set of an uncountable power ¥,. Denote F the system
of all finite subsets of X including §. Then (F, €, 1) is a convergence space the conver-
gence 2 being defined in the usual manners).

The space (F, £, 2) has the property B: Let {X,,,} be a double sequence of elements
X, € F and X, an element of F such that Lim X,,, = X, for each m. Since X,
and X,,, are finite, there exists a function f;(m) on N into N such that X, < X,,, for

all n > f,(m). Denote®) B=U U X,,, — Xo. If B =0, the proof is evident. If

m=1n=1
it is not the case, arrange all points of B into a finite or infinite sequence {b,} of
points and choose, for each m € N, a natural fz(m) such that X,,, n U b, = 0 for all

k=m
n > f,(m). Put

f(m) = max {f,(m), f,(m)} .

Let {X,,,. }m=y be any cross-sequence in {X,,} such that n, > f(m) for each
m e N. Since X, < X,,,,, and because every point of B belongs to X, for at most
a finite number of m, it follows that Lim sup X,,, — X, = @andso Lim X,,, = X,.

The space (F, £, 1) has not the property a: Let {V,,} be a decreasing sequence of
neighbourhoods of the element @ € F. There is a disjoint uncountable collection C of
countable infinite subsets C, of X. Choose a point ¢, in C, and denote ¢}, n =
= 1,2, ..., all remaining points of C,. In view of (D,), in the complement of every
neighbourhood V,, there is at most a finite number of one-point elements (x) € F and
at most a countable number of two-point elements (cf, c;) € F. Because C is un-

0
countable, ) V,, contains an element (c§) € F and all two-point elements (¢, c%) € F,
e

=1
m = 1,2,... Since Lim (c§, ck) = (c§), () is not fulfilled.

Notice that the subspace of (F, £, 1) consisting of @ and all one-point elements of F
is homeomorph to the topological space above (Example 2). Consequently the charac-
ter of the element @ in Fis = N,.

Theorem 1. Let (L;, &, 4)),i = 1,2, be convergence spaces. If L, has the property &
and L, the property o, then A; X A, = Ay,.

Proof. Let (xo, yo) be a point in L; x L,. Assume that, on the contrary, there is
a Agp-neighbourhood O(xo, ¥o) of (xo, ¥o) such that U x V ¢ O(xo, yo) for each

>3
DS

o ©

%) Lim 4, = A whenever 4 = U4,=U

k n=k =1

6) If the set operations () and {J are used, then the elements X,,, are considered as subsets
of X.

A,

1 k n=k
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A,-neighbourhood U of x, in L, and each A,-neighbourhood V of y, in L,. We shall
construct in the complement of O(xo, yo) a sequence of points £,,-converging to
(x0» Yo)- Let {¥,} be a decreasing sequence of A,-neighbourhoods of y, in L, having
the property a. Let A4,, be the set of all points x € L, such that (x, y) ¢ O(x,, y,) for
some ye€V,. Then A; o 4, o ... and each A,-neighbourhood of x, in L, contains
at least one point of each A,,; otherwise there would be a A,-neighbourhood U’
of X, in L; and a natural p such that U’ n 4, = 0 so that U’ x ¥, = O(x,, y,) and
this would be a contradiction. Consequently, x, € 1, 4,, for each m and, by (3), there is
a sequence {x,,}, X,, € 4, converging to X, in L;. Choose points y{" eV, such that
(%m ¥) ¢ O(x0, yo), m = 1,2, ... If there is a one-to-one subsequence or a constant
subsequence {y,} of {y’} then, in view of (c), the proof is finished. If it is not the
case, then — without loss of generality — we may suppose that the sequence { y

is constant, say y{" = y()_ Evidently y*) # y,. It is easy to see that the sequence of
neighbourhoods V,, — (y*’) of the point y, in L, fulfils the condition (x) and
xo€NAAY, AP being the set of all xe L, such that (x, y) ¢ O(x, yo), y€V,, — (yV).
Now, suppose we have just found sequences {(x?, y?)}»_,, i = 1,2, ..., k, such that
Q,-lim x{? = x, and y are distinct points of (\V,. Consider the sequence

0 (k+1)

k
Vo= U (b®)}2-; of neighbourhoods of y, and choose a sequence {(x{ ", y&* D)},
i=1

(k+1) k

such that lim x$*" = x, and {y*V}2_, is either a one-to-one or a constant se-
k

m
quence of points y& ™ eV, — U (»). If it is one-to-one, then the proof is finished.
i=1

If it is not one-to-one, then continue in constructing sequences {(x%, y™)}=_,,
n=1,2,..1fno {y™}e_, is one-to-one, we have a double sequence {x{’} and a one-
to-one sequence of points y™ e NV,,. Since the point x, has the cross-subsequence pro-
perty, there is, by (), a cross-subsequence in {x{, y™}» _, of points in the comple-

ment of O(xo, yo) which €, ,-converges to the point (xo, ¥o)-

Corollary 1. Let (L;, £, 2;), i = 1,2, be convergence spaces fulfilling the first
axiom of countability. Then A; X A, = Ay,.

Corollary 2. Let (L, 2, 1) be a convergence space having the property o. Let
(L x L, 8,,, A3) be the convergence product of the space L. Then . x A = Ay,.

The proofs of both corollaries follow instantly from Theorem 1 and Lemma 3.

Definition. Let (L, €, 1) be a convergence space. Let (L, .) be a group with a group
operation . on L. We say that (L, £, 4, .) is a convergence closure group or simply
a convergence group if the map &(x, y) = xy~* on the convergence product (L, £, 1) x
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x (L, 2, 1) onto (L A) is sequentially continuous, i.e. if the condition (SG) is
fulfilled [5]:

(SG) If glimx, = ¥ and g-lim y, = y, then there is a subsequence {n;} of {n}
such that £-lim (Xwmi ) = xy~ 1.

According to Lemma 2 the condition (SG) is equivalent to the condition
(S'G) If -lim x, = x and &lim y, = y, then 2*-lim (x,y, ') = xy~*.

If 2 is a largest convergence on L, then from (S'G) it follows that Lis a convergence
group if and only if

(S*G) @-limx,=x and Llimy, =y implies g-lim(x,y,')=xy ".

Example 4. (R, R, ¢, +) is a convergence group by (SG) (see Example 1). Since
the sequences {27" + (—4)™"},2; and {27"};2, %R’-converge to 0 and because
{(—4)7"}2 5 does not R'-converge at all, it follows that the condition (SG) is and
(S*G) is not fulfilled; therefore they are not equivalent.

Example 5. Let M be a set the elements of which are classes [ /] of B-measurable
functions f of real argument. Let 9 denote the convergence almost everywhere.
Define [f] + [g] = [f + g]- Then M is a commutative group fulfilling the condition
(S*G) and consequently also (SG). Therefore (M, 9, p, +) is a convergence group.
It is well known that the largest convergence IM* is the convergence in measure and
that M # M*. From this it follows that (S*G) need not imply & = £*,

Remark. In the literature ([6] and [7]) we find the following definition of a con-
vergence group (so called L-group):

Eine Gruppe heisst L-Gruppe, wenn in ihr ein Grenzbegriff definiert ist, der
folgenden Forderungen geniigt:

1) Istlima, = a und lim a, = b, so ist a = b.

2) Istlim a, = a und lim n, = o, so ist lim a,, = a.

3) Istlim a,.; = a, so ist lim a, = a.

4) Ist a, = a fir alle n, so ist lim ¢, = a.

5) Ist lim a, = a und lim b, = b, so ist lima, . b, = a . b.

6) Ist lima, = a, so ist lima, ' =a™".

The operation xy~* on an L-group defined by 1)—6) need not be sequentially con-
tinuous in the sense of the continuity defined by (4). For example, let (R, R, 0, +)
be the topological group of rational numbers, R being the usual convergence of ratio-
nal numbers. Define a convergence @ on R : &-lim x, = x if {x,},2 ; can be arranged
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into a nearly monotone”’) sequence {x .}, and lim (x, — x) = 0, f(n) being a map
on N into N such that lim f(n) = co. Denote ¢ the convergence closure induced by &.
It is easy to see that & e [R]. Hence ¢ = ¢. The operation x — y is continuous on
(R, R, o, +), however, it fails to be continuous on (R, S, o, +). As a matter of fact,
if we put x, =27"+ (—4)™" and y, = 27", then &limx, =0 = &-lim y,, but
the sequence x, — y, does not S-converge at all. From this it follows that the notion
of the L-group depends on the choice of the representative in the class of equivalent
convergences. This undesirable result makes the above definition of an L-group
unsuitable from the topological point of view. It can be avoided if the postulate 3) is
replaced by the axiom (%5) or if both 5) and 6) are replaced by (SG).

Lemma 4. Let (L, £, 2, .) be a convergence group. Let U(x) be a A-neighbourhood
of a point x € L. Let y be a point of L. Then the set y(U(x))™" is a A-neighbourhood
of the point yx~' and (U(x))~'y a A-neighbourhood of the point x~'y.

Proof. If {z,} is a sequence converging to yx~' and {z,} any subsequence of

{2} then, by (SG), there is a subsequence {z, } of {z,} such that lim (z, 'y) = x
k k Ik

and so z,,_i:y e U(x) and z,, € y(U(x))~* for nearly all k. From this it follows that

z, € y(U(x))™* for nearly all n. Hence y(U(x))™" is a neighbourhood of yx~* by (D).

The proof of the second assertion is analogous. (Cf. [2]).

Lemma 5. Let (L, £, A, .) be a convergence group. Let x, be a point of L. Then
the maps
hy(x) = xox, hy(x) = xxo, hs(x)=x"1, xeL

are homeomorphisms on Lonto L.

Proof. From (SG) it instantly follows that the operations h; and hj‘l, j=12,3,
are continuous.

Lemma 6. Let (L, £, 4, .) be a convergence group, A a subset and X, a point of L.
Then )
MxoA™Y) = xo(24)™" and A 'xo) = (A4)™" x,.

Proof. The maps g,(x) = xox~' and g,(x) = x™'x, are homeomorphisms on L

onto L. Therefore A g{(A4) = g;(AA), j = 1, 2. (Cf. [2]).

According to Lemma 5 a convergence group is topologically homogeneous, i.e. for
any two points a and b of Lthere is a homeomorphism h on Lonto Lsuch that h(a) =
= b. There is another notion of homogeneity in convergence groups viz. the homo-
geneity of a convergence, which is defined as follows:

7y {x,,},?‘; 1> is nearly monotone if there is a natural p such that {xn},‘,‘;p is monotone (either
increasing or decreasing).
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Let (L, £, 4, .) be a convergence group. We say that the convergence € is left or
right homogeneous if for each point a € Lthe condition (h,) or (h,) is fulfilled:

(hy) g-lim x, = e if and only if €-lim (x,a) = a
(h,) g-lim x, = e if and only if £-lim (ax,) = a.

The convergence £ is called homogeneous if it is both left and right homogeneous.
If it is so then we say that the convergence group Lis convergence homogeneous.

Lemma 7. Let (L, £, A, .) be a convergence group. If the convergence £ fulfiis the
condition (S*G), then L is homogeneous.

Proof. If ({x,}, ¢) € € and a € L, then ({x,a}, a) € £, and ({ax,}, a) € &, by (S*G).
If ({x,a}, a) € £ or ({ax,}, a) € £, then from (S*G) it easily follows that ({x,}, €) € L.

From Lemma 7 it instantly follows that every largest convergence defined on
a convergence group is homogeneous.

Lemma 8. Let (L, 2, A, .) be a convergence group. Then there is the smallest
homogeneous convergence " containing £ as a subset.

Proof. Denote & = (| H where $ are homogeneous convergences on L con-
U
taining  as a subset (fog example $ = £*). Since each $ fulfils axioms (Z,), (%)
and (&,) and satisfies conditions (h,) and (h,), it follows that £’ is a homogeneous
convergence. Consequently we may put " = €.

Since £* is a homogeneous convergence, we have £ = 2" = £* so that 2" e [€].
Hence A" = A.

Let us notice that a homogeneous convergence need not fulfil the condition (S*G).
This is shown by the convergence group (R, R, ¢’, +) in Example 4.

If a convergence group (L, 2, A, .) is convergence homogeneous, then it is possible
to investigate local convergence properties by studying convergence properties only
at one point, for example at the neutral element e of L. In this case it suffices to study
“neutral” sequences, i.e. the elements ({x,}, e) € €.

If G is a commutative group, then a homogeneous convergence on G can be defined
by means of zero sequences in the following way:

Theorem 2. Let (G, +) be a commutative group. Let ©(0) be the set of elements
({x4}, 0) where {x,} is a sequence of points of G, fulfilling the conditions:

1° G(0) # 0.
2° If ({x,}, 0) € 6(0), then ({x,,}, 0) € 6(0) for each subsequence {x,} of {x,}.
3° If ({x.}, 0) € ©(0) and a # 0, then ({x, + a}, 0) does not belong to &(0).
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4 If ({x,}, 0) € 6(0) and ({y,}, 0) € G(0), then there is a subsequence {n;} of {n}
such that ({x,, = y,.}, 0) € 6(0).

Let © be the set of elements ({x,}, x) defined as follows:
(D) (€6 Fandonly if ({3, — ,0)6(0).

Then © is a homogeneous convergence on G and (G, ®, 7, +) is a convergence
commutative group.

Proof. From 1° and 4° it follows that ({0}, 0) € 6(0). Therefore ({x}, x) € ® for
each x € G, by (Ds). If ({x,}, x) € 6 and ({x,}, ) € ®, then ({x, — x},0)e G and
({x, — x + a},0)e® where a = x — y. Therefore x = y, by 3°. If {x,,} is a sub-
sequence of {x,} and ({x,},x)e® then ({x,}, x)e®, by 2°. Therefore axioms
(Zo), (£,) and (£,) are fulfilled. The homogenelty of ® immediately follows from
(Ds), (h,) and (h).

Now, let ({x,}, x)e® and ({y,}, »)€6. Then ({x,— x}, 0) e G(0) and
({yn — ¥}, 0) € ®(0). According to 4° there is a subsequence {n;} of {n} such that
({xs; = x = (yu, = »)}, 0) € 6(0) and since + is a commutative operation, we have
({*n; = Yu}» x — ) €6®. Hence (G, ®, y, +) is a convergence commutative group.

It is well known that each topological group is a completely regular space. The
notion of complete regularity of topological spaces corresponds to the notion of
sequential regularitys) of convergence spaces. Now we shall construct convergence
groups which fail to be sequentially regular.

Lemma 9. Let (L, £, A, .) be a convergence group and {L,}T an increasing se-
quence of subgroups of Lsuch that \JL, = L. Let 2, be the set of all ({x }, x) with
the property

(De) ({x.},x)€ L and x, €L, for nearly all n where p is a suitable natural
(depending on {x,}).

Then (L, &,, A,, .) is a convergence group and 2, is finer than A.

. Proof. It can be easily proved that the axioms %, &, and &, are satisfied and
the condition (SG) is fulfilled. Since £, = £, 4, is finer than A.

Lemma 10. Let (L, 2, 4, ) be a convergence group. Let the convergence closure A
be a topology. Let {L,}., be a strictly increasing sequence of subgroups such that
UL, = L= AL,. Then the convergence group (L, £, A,, .) fails to be either regular
or sequentially regular. )

8) A convergence space (L, &, A) is sequentially regular if for each point X, and each seqdence

of points x, € L such that no subsequence of {x } converges to x, there is a (sequentially) con-
tinuous functnonfon L such that {f(x )} does not converge to f(xy).
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Proof. First prove that A % A,: Choose a point y,, in Lm+1 — L, for each m.
Since L= AL,, there is a one-to-one sequence {V,}ne1 Of points y,, € L; which
L-converges to y,. By (SG) there is a subsequence {ymymn.} =y of {ym Von }n 1
which @-converges to e. From (Dy) it follows that £, llm YV, = € for each m and

that no cross-subsequence of the double sequence 1 y,,. y,,.,.,.} £,-converges to e.
Consequently, e is a o-point in (L, £,, 1,). Hence, by the remark on the page 371, Ag1s
not a topology. Therefore 4 # 4,.

(L, 2,, A, .)is not sequentially regular: Since 4, is finer than Aand 4 # 4,, it follows
from Lemma 1 that there is a point x, and an 2-convergent sequence of points z,, in L
such that x, € A Uz,, — 4, Uz Then z,, # X, for each m and no subsequence of {z,,}
f,-converges to x,. Let g be a real-valued function which is sequentially continuous
on (L, £,, 2, .). We prove that lim g(z,,) = g(x,). By (&) it is sufficient to prove
that for any subsequence {x,,} of {z,} there is a subsequence {x,,,} of {x,,} such that
lim g(x,,,) = g(x,). Because L = AL,, there is a sequence {x,,}.~ of points x,, € L;,
Xmm 7 X, Which L-converges and, by (Dé), also £,-converges to x,, for each m
By (5) there is a natural k,, such that

(+) |9(s) = 9(%mn)] < m™* forall n > k,.

Denote 4 = U U Xy Since L-lim x,, = Xo, X # X, and because 1 fulfils (F),

m=1 n=kpy,

we have x,€14. Hence there is a cross-subsequence {x,,, 1}, in {xmn},":l,n:km .

which €-converges and consequently, by (Ds), also £,-converges to x,. Therefore

lim g(x,u,,, ) = g(Xo), by Lemma 2. Because n,, = k,, and in view of (+) we have
: i

lim g(x,,,) = g(xo)-

(L, 8,, 4, .) is not regular: Let {z,}, {x,} and {x,,} have the same meaning as
above. Since no subsequence of {x,} £,converges to x,, from (D,) it follows that
L — Ux,, is a A,-neighbourhood of x, in L. If there were a A -neighbourhood V of x,
such that 2,V = L— Ux,, then AV Ux, =0 and there would be, by (D,),
a function f on N into N such that no point x,,, n = f(m) would belong to V.

o0

[ee}
However xo€AU U X, This is, by (1), a contradiction.
m=1 n=f(m)

Example 6. Let (R, R, o, +) be the topological group of rational numbers (see
Example 1). Let R, be the set of all rational numbers of the form rs™! where r
k

denotes an integer and s = [] pI", p; being the i-th prime number and m; a non-
i=1

negative integer, 1 < i < k. Then {Ri}x=1 is a strictly increasing sequence of sub-
groups of R such that R = U R, and R = ¢R;. Therefore, by Lemma 10, (R, R,,

k=1
0. +) is a convergence group which is neither regular nor sequentially regular.
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Let (L, £, 2) be a convergence space. Then (L, A’) is a topological space [3]
where A®! is the finest topology coarser than 1. Let . be a group operation on L such
that (L, £, 4, .) is a convergence group. There arises a question whether (L, 1”*, .)
is always a topological group. The answer is negative. As a matter of fact, (R, R,

1

0., +) is a convergence group (see Example 6) in which the set P = U p; ' is €,
i=1

i=
closed; consequently it is g?'-closed in (R, ¢3"). Therefore R — P is a gj'-neigh-
bourhood of the zero-element 0 in (R, ¢5*). Suppose that U(0) is a ¢%'-neighbourhood
contained in R — P. Then U(0) is a ¢,-neighbourhood as well, g, being finer than ¢
Since P n g, U(0) # 0 and ¢, U(0) = ¢3* U(0), we have o2 U(0) ¢ R — P. There-
fore (R, ¢2') fails to be a regular topological space. For this reason (R, 03", +)
cannot be a topological group.

Let (G, u, .) be a topological group. Define a convergence 2, as follows: ({x,}, X) €
€ £, whenever each u-neighbourhood of the point x contains nearly all x,. Then £,
induces a convergence closure 4, which is the coarsest convergence closure for G finer
than u [3].

Lemma 11. Let (G, u, .) be a topological group. Then (G, £,, 4,, .) is a convergence
group.

Proof. Let 2,-lim x, = x and £,lim y, = y. Let W be a u-neighbourhood of the
point xy 1. Then there are u-neighbourhoods U and V of points x and y such that
UV~! « W.Hence x,y, ! € W for nearly all n. Consequently £,-lim x, . y; ! = x.y~*
and (SG) holds true.

Now we shall define the notion of a convergence subgroup. Let (L, 2, 4, .) be a
convergence group. Each A-closed subgroup of L will be called a convergence sub-
group of L. It can be easily proved that a non-empty subset H of a convergence
group is a convergence subgroup if and only if the following condition is satisfied:

(D;) If {x,} and {y,} are sequences of points of H such that lim x, = x and
lim y, = y, then xy~ ‘e H. :

Theorem 3. Let (L, g, 1, ) be a convergence group. Let H be a subgroup of Land &
an ordinal. Then A°H is a subgroup of L and A°'H is the smallest closed subgroup
containing H as a subgroup.

Proof. Suppose, the assertion is true for all ordinals & such that ¢ < «. Let x, y
be points of A*H. If a — 1 exists, then £-lim x, = x and &-lim y, = y where {x,}
and { Y.} are suitable sequences of points in A*~*H. Then x,y, ! e 2*~1H; consequently
xy 1e)*H. If « # 0 and « — 1 does not exist then A*H = |J A*H; therefore A*H

(<a .
is a group. From this it follows that A°*H is the smallest A-closed group containing H

as a subset.
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Let (L, L4, ) be a convergence commutative group and H an invariant conver-
gence subgroup of L. Define the convergence on the quotient group L/H as follows:

(Dg) If T, and T are cosets of H then lim T, = T whenever there is a sequence {b,}
of points b, € T, and a point b € T such that 2-lim b, = b.

The axioms (£,) and (&) are evidently fulfilled. Now, prove that also the axiom
(Zo) is true. Let (Dg) hold. Let c,eT, and ce T, and €-limc, = c. Since H is
closed, we have bc™* € H, by (SG). It follows c € Tand T = Ty,

It is easy to see that the convergence on the quotient group L/H fulfils the condition
(SG). Consequently L/H is a convergence group.

4

Now, consider the relation between convergence and topological groups. The
topological group (G, u, .) is a group and a topological space such that the map xy ™"
on the Cartesian product G x G onto G is continuous. This condmon is equivalent
to the following well known condition:

(TG) If x and y are points of G and W a neighbourhood of the point xy~*, then
there are neighbourhoods U of x and V of y such that UV~ « W.

In the definition of the topological group the topology u cannOtEbe replaced by
a T,-closure (espemally by a convergence closure) v which does not fulﬁl the axiom
(F). This is shown by the following

Lemma 12. Let (G, £, 1) be a convergence space and (G, .) a group fulfilling the
condition (TG). Then A is a topology.

Proof. Suppose that, on the contrary, there is a set A = G and a point a € 114 —
— AA. Choose a A-neighbourhood ¥(a) of a such that 4 N V(a) = 0. By (TG), there
are J-neighbourhoods U(e) of e and U(a) of a such that U(a). U(e) = V(a). Since
a € JAA, there is a point be A4 N U(a). Consequently, by Lemma 4, there is a point
ceAn(b.U(e). Hence, b.U(e) = U(a).U(e) = V(a) implies ce A nV(a)
This is a contradiction. (Cf. [2].)

Remark. L. M8ik [4] has proved that a convergence group (L, £*, 4, .) is
a topological space if and only if there is no g-point in L. Since each convergence
belonging to the class [€] induces the same convergence closure on L and because,
by Lemma 3, both conditions (y) and (non ) are equivalent, it follows

Corollary 3. The convergence group (L, 8,4, .) is a topolaglcal space if and only
if each point of L. has a cross-subsequence property.
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Let (L, £, A) be a convergence space in which a group operation . is defined.
Denote?) A;; the convergence product closure for L x Land by 4 x A the T,-closure
for L x L defined by the product of A-neighbourhoods. From (D,) and (D,) it
follows that if (L, &, 1) fulfills (TG), then (SG) is fulfilled as well. If 2 x A= A,,,
then both systems are equivalent: the system of all A x A-neighbourhoods and the
system of all 4;,-neighbourhoods; in this case both conditions (TG) and (SG) are
equivalent®).

From this it can be deduced that the theory of convergence groups (L, €, 4, .)
such that 4 x A = 4, is involved in the theory of topological groups. All such
convergence groups fulfil the axiom of closed closure (F), by Lemma 12.

There are, however, convergence groups containing non-closed closures as subsets,
for example the convergence group (R, R,, 0,, +). The group operations xy~* in
such convergence groups are sequentially continuous in the Cartesian convergence
product closure A,, without being continuous in the Cartesian neighbourhood
closure A x A. This is possible only in the case when A x A4 # 4,,. A convergence

group (R, R,, ¢,, +) mentioned above is the case like this.

The existence of some convergence nontopological groups of quite another kind
follows from the fact that the set R of all rational numbers r,, n =1, 2, ..., is not G,
in the set of reals and consequently

RellA — AA where A= U (U@, —n"Yre+nh)).

mmup=1 k=1

From this it can be deduced that the following groups are convergence nontopolo-
gical groups: The system of all linear Borel sets, the system 2¥ of all subsets of a given
set of power >2° with the symmetric difference as a group operation and with the
usual convergence of sequences of sets, the class of all Baire functions and the class of
all real-valued functions on a given point set of power =2 with the addition as
a group-operation and with the convergence at each point.

From Corollary 1 and from what has been noticed above it instantly follows

Corollary 4. Let (L, 2,2, .) be a convergence group every point of which has
a countable character. Then (L, 4, .) is a topological group.

Now we are going to construct a convergence group (F, £, 4, +) such that (F, 4, +)
is a topological group every point of which has an uncountable character.

Let X be an infinite point set of power N,. Denote by F the system of all finite
subsets of X ihcluding the empty set 0. Then F is a convergence group with the sym-
metric difference as a group operation. Denote it by (F, £, 1, +).

9) I do not know whether the equivalence of both conditions (TG) and (SG) implies 2 X A =
= 4.
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Let X{H,; x € X} be the product of topological groups H, whereeach H,, x € X,
consists of two elements 0 and 1 with the addition modulo 2 as a group operation.
It is well known that X{H,; x € X} is homeomorphic to the topological group
(2%, u, +). Then (F, v, +) is a subgroup and a subspace of 2¥ with the topology v
such that G = F implies vG = F n uG. Hence (F, v, +) is a topological group.

It is easy to see that the topology v for F can be defined by means of Cartesian
neighbourhoods U(4; B) < F as follows:

The v-neighbourhood U(A; B) of an element A € F where B is any element of F,
B n A =0, is the set of all elements Ze Fsuchthat A « Z <« X — B.

If U(4; B) is any v-neighbourhood of 4 and {A4,} is a sequence of elements 4, € F
such that Lim 4, = A then, evidently, 4 = 4, = X — B for nearly all n. It follows,
by (D,), that 4 is finer than v. Now we shall prove that

(i) A=wv.

Proof 19). Let A< F and AevA — A. If we have chosen v-neighbourhoods
U(A U B; — A) i=1,2,..., k, such that B — A aredisjoint sets and B; belong to A
then there is an element B, ,; € A n U(4; U B;). In such a way we have a sequence of

elements B, € A such that Lim (B, — A) (?) i.e. Lim B, = A. Consequently vA <
< AA and v is finer than A.

.

(i) The character of the zero-element 0 in F is N,.

Proof. First notice that the character of @ in F cannot exceed N,, the collection of
all Cartesian neighbourhoods U(@; B) having the power N,. On the other hand, from
Example 3 it follows that ¥, cannot exceed the character of @ in F.

(ii) (F, £, 4, +) is a o-countably compact space.

Proof. Let p be a natural. It suffices to prove that the system of all sets of the power
<p is countably compact in F. As a matter of fact, suppose that the assertion is true
forallq < r wherer < p. Let {4,} be a sequence of sets A, = X of powers < r + 1.
If Limsup A4, = @ then Lim A4, e F. If there is a point x, € Lim sup 4,, choose
a subsequence {4, } of all 4, which contain x,. By our supposition there is a sub-
sequence {4, — (Xo)}¢; of the sequence {4,, — (xo)};2; and a set B = X of
power < 1 such that Lim (4, — (xo)) = B. Consequently, Lim A, =By (xo)and
the power of B U (xo)is £ r . X

From (i), (ii) and (iii) it follows that the convergence group (F, £, 1, +) is a topo-
logical group which is o-countably compact and each element has the character ¥,.

lo) For the shortening of the proof I am indebted to V. KouTnik.
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Remark. The notion of convergenceringis defined in an analogous way as the notion
of convergence group. A convergence ring (L, €, A. +, .) is a convergence space and
a ring such that both maps ¢(x, y) = x — y and Y(x, y) = x .y are sequentially
continuous on the convergence product L x L, i.e. if lim x, = x and lim y, = y then
there is an increasing sequence of naturals n; such that lim (x,, — y,) = x — y and
lim (x,,. y,,) = xy.
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