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MIXED ABELIAN GROUPS OF TORSION FREE RANK ONE

LAbpISLAV BICAN, Praha
(Received February 6, 1969)

In this paper Baer’s lemma (see Lemma 46.3 in [1]) is generalized and, by means
of this generalization, necessary and sufficient conditions for splittingness of the mixed
abelian group of torsion free rank one are given. Further, all the mixed groups of
torsion free rank one, any pure subgroup of which splits are characterized. The
obtained results are applied to the mixed abelian group G with maximal torsion
subgroup T such that G/T is completely decomposable.

By the word ‘“‘group” we mean always an additively written abelian group. We
say that a mixed group G with maximal torsion subgroup T'is of torsion free rank one
if the factor-group G/T'is of rank one.

The definitions of the characteristic and of the type of an element may be extended
to arbitrary (mixed) groups, but some properties of these notions do not hold in
general. However, those properties which are satisfied in an arbitrary group are
applied here to the study of the groups mentioned above. In this paper we shall denote
by h$(g), tg), t°(g) the p-height, the characteristic and the type of the element g
in the group G, respectively. In general, we shall adopt the notation used in [1]

Lemma 1. Let K be a subgroup of G such that G = G|K is torsion free and let
0 + he G be an arbitrary element. If for some x € h there is 1°(x) = t(R), then
1%(ox) = 1%gh) for any integer g. Similarly, if for some x € b there is t%(x) =
= (R), then t°(ox) = t%(oh) for any integer o.

Proof. We shall simply write 7(x), #(x), 2(X) etc. in place of 7%(x), £%(x), (%) etc.
because no confusion can arise.
First, let us show that for any prime p with (p, ¢) = 1 the equation

(1) pky =x, xeG
has a solution in G if and only if the equation

2@ Pz =9x, xeG
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has a solution in G. It clearly suffices to prove that the solvability of (2) implies the
solvability of (1). However, from (p, ¢) = 1 the existence of integers s, ¢ follows
for which p*s + ot = 1. By multiplying (2) by t we get p‘tz = otx = x — p“sx,
hence p'(tz + sx) = x.

Further, from ox € gh it follows

€)) w(ox) < (gh) .

If h(h) = oo, then h(x) = o by hypothesis, and hence h(ox) = h,(¢h) and the
second part of our assertion now easily follows.
Finally, if k is the greatest exponent for which p*|¢ and if hy(h) < o then
(G is torsion free!) it is h,(oh) = h,(h) + k. Now it is easy to see that h,(ox) =
= h,(x) + k = h,(¢h), which together with (3) proves our assertion.

Lemma 2. Let K be a subgroup of G such that G = G[K is torsion free. If h + 0
is an element of G containing x with t%(x) = t%(h), then there exist non-zero
integers m, n such that ©°(mnx) = t%(nh).

Proof. Let M be the set of all pairs (y, k) where y € k, k = sh, y = sx for some
non-zero integer s, and %(y) = %(E) (the last symbols have the same meaning as in the
preceding proof). Then clearly 7(y) < (k) and with any (y, k) € M we may associate
a natural integer n(y, k) in the following way: If py, p,, ..., p, are all primes with
hy,(k) — h,(y) =1; >0, i=1,2,...,r, then we put n(y, k) = ph.pl. .
Let us denote ny = n(yo, ko) = min {n(y, k); (y, k) € M}. Lemma 2 will be proved
by showing that ©(roy0) = (ko). Clearly, only the case n, > 1 must be discussed.
If the equality t(noy,) = ©(k,) does not hold, then it may be easily shown that
1(noko) = 1(noyo) > ©(Ko)- Now n(noyq, noko) < no which contradicts the minimality
of ng, because #(noyo) = #(noko) by Lemma 1 and hence (1Yo, noko) € M.

Lemma 3. Let K be a subgroup of G such that G = G[K is torsion free. If to any
g € G = K there exists a non-zero integer m such that £%(mg) = t%(g), then to any
g € G = K there exists a non-zero integer o and an element h € g such that t (cxh)
= 1%(0g).

Proof. As in the preceding proofs we shall use brief symbols ©(x), 7(g) etc. Let
g € G — K be an arbitrary element. By hypothesis there exists a non-zero integer m
such that #(mg) = %(g) = #(mg). Lemma 2 guarantees the existence of non-zero
mtegers 0, o with t(gamg) = T(ng) Let us write ¢ in the form ¢ = @' . ¢” where ¢’
is relatively prime to any prime p with h (g) = o0 and g is ¢"-divisible.

Then it holds

€] 1(¢'e"omg) = W(amg) = 1(¢"omg) .
Let Q = p1 . p . "r be the canonical decomposition of ¢’ and let us put g =
=pht.pk.....p" Where I, = h,(3), i = 1,2,...,r. Then there exists an element
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ke G such that gk = g and h,(k) =0, i = 1,2,...,r. Let k ek be an arbitrary
element. By hypothesis there exists a non-zero integer n with #(nk) = #(k) = #(nk).
By Lemma 2 there exist non-zero integers y, v such that

(%) t(uvnk) = 1(vnk).

Let p be a prime with p | o'. Suppose that u is the greatest exponent for which
p"| vn. For p|p we have h,(uvnk) = u + 1 while h,(vak) = u. This contradiction
(with (5)) shows that (u, Q') = 1 sothat o't + us = 1 for suitable non-zero integers t, s.
Let us put

(6) h = o'tg + usgk .

In view of gk = g there is gk — ge K and h — g = @'tg + usgk — Q'tg — usg =
= us(@k — g) € K which implies h € g. Finally, if we put « = vng"om we have by
@, (5), (6) t(ah) = («g) = t(vne"omg) = t(vn'e"omg) N 1(uve"omngk <
< t(vng'o"omtg) n t(uvg"omngsk) < t(vng"om(o’'tg + usgk)) = t(ah). Hence
t(ah) = t(ag) which completes the proof.

Theorem 1. Let K be a subgroup of G such that G = G/K is a torsion free groupv
of rank one. If

1) to any g € G = K there exists a non-zero integer m such that t°(mg) = t%(g) and

2) to any g € G = K there exists a non-zero integer m’ such that for any prime p
with h$(g) = oo there exist elements hy? = m'g, W\, hY", ... such that ph{?), =
— AP n=0,1,2,...

then K is a direct summand of G.

Proof. By the condition 1) and Lemma 3 there exists a coset /i & 0 containing an
element h such that 7(h) = t(h) (the notation is the same as in the preceding proofs).
In view of Lemma 1 the elements h and h can be chosen so that 1 can be taken as the
integer m’ belonging to h which appears in the condition 2).

For the sake of simplicity let us denote h,(h) = n(p) for all primes p such that n(p)
is either natural integer or zero or the symibol co. For any prime p let us define the
elements h{”, 0 < k < n(p) + 1 (where 0 + 1 = o0) in the following way: h{” = h
for all primes p. If n(p) is a natural integer, then let h{/) be some solution of the
equation p"®x = h lying in G and for 1 < k < n(p) we put h{" = p"@~*p{) If
n(p) = oo, then let h{” be those elements from G whose existence is guaranteed by 2).

Now we shall define the subgroup H of G in the following way:
(7) H = {h{”; p runs over all primes and 0 < k < n(p) + 1}.
First, we shall prove that

(8) KnH=0.
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Note that if h{P, p» . P i < i, <...< i, are generators of H belonging to

the prlme P, then in view of the definition of these elements it holds ZA h(”)
Jj=

= (Z A;p u) hP.

Now if g is an element in K n H, then g can be written in the form g = Z A; h(’"
l=l
where py, ps, ..., p,, are mutually different primes. If we put r = p . pY . ph

we have rg*(zll [pi)he K A H. Thus we have h + 0, (er/p Yh=0

n i=1

(in G = GJK), so that from the torsion freeness of G it follows Y. A;r/ps* = 0 which
n i=1
implies p§'| A, ie. A, = p{idj, i =1,2,...,n. Hence g = (). A)) he K n H and the
n i=1
same argument as above leads to ) 1} = 0 and then g = 0.
i=1

Now we are going to prove that
(9) G = {K, H}.

Let g € G be an arbitrary element. For g € K there is nothing to prove. In the opposite
case there exist non-zero integers r, s such that rg = sh (in view of the fact that G
is a torsion free group of rank one) and we may assume that r, s are relatively prime
and r > 0. Hence we have

(10) rg=sh+k, kek.

Let r = pi'. p¥..... pi" be the canonical decomposition of r. From (r, s) =1it
easily follows that h,(sh) = h,(h) = h,(h) so that k; < n(p;), i = 1,2,..., 1. The
numbers p%', p%, ..., k¥ are relatlvely prime which 1mphes the ex1stence of

integers gy s -oos such that Z ru;[pt = 1. If we put a = Z u;h?? we have a € H
i=1

and ra = Zu h?? = (Zru,/p,) h = h, hence rsa = sh. In view of (10) we get
i=1

r(g — sa) = k € K. The torsion free character of G now implies that g — sa e K.

Hence (9) is true which together with (8) completes the proof of our Theorem.

Remark. An immediate consequence of Theorem 1 is the so called Baer’s lemma
(see Lemma 46.3 in [1]).

In the sequel we shall deal with the mixed group G with the maximal torsion sub-
group Tand G will denote the factor-group G/T. The bar over the elements will denote
the elements from G. For the sake of simplicity we shall write briefly (g), 7(7),
#(g), #(g) etc. in place of t%(g), %), t%(g), (@) etc. T, will denote the p-primary
component of T.

First of all we shall formulate three conditions.
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Condition («). We say that a mixed group G with the maximal torsion subgroup T
satisfies Condition () if to any g € G + T there exists integer m = 0 (depending on g,
of course) such that #(mg) = #(g).

Condition (). We say that a mixed group G with the maximal torsion subgroup T
satisfies Condition (B) if to any g € G = T there exists an integer m =+ 0 such that
for any prime p with h,(§) = oo there exist elements hS” = mg, h{”, hY, ... such
that ph®, = P, n =0,1,2,....

Condition (y). We say that a mixed group G satisfies Condition (y) if it holds:
if G = G/T contains a non-zero element of infinite p-height, then T, is a direct sum
of a divisible and a bounded groups.

Lemma 4. Let G = T 4 A be a splitting mixed group where T is torsion and A
torsion free. Then G satisfies Conditions (o) and (B).

Proof.Letg =t + a, t & 0 be an arbitrary element from G = T and let m be the
order of t. Then clearly #(mg) = #(ma) = #*(ma) = #%(a) = #(a) = #(g) and Condi-
tion (p) is satisfied in view of the fact that 4 is a direct summand of G.

Theorem 2. Let G be a mixed group of torsion free rank one. Then G splits if and
only if G satisfies Conditions () and (B).

Proof. Conditions (x) and (f) are sufficient according to Theorem 1 and necessary
according to Lemma 4.

Lemma 5. Let G be a mixed group satisfying Conditions («) and (y). Then G
satisfies Condition (B).

Proof. In view of the torsion freeness of G and of Condition () we may restrict
ourselves to such elements g € G = T for which #(g) = #(g). Let p be an arbitrary
prime with h,(g) = h,(g) = oo and let T, = D + U where D is divisible and p*U =
= 0. Using the method of induction we shall construct a sequence of elements
ho = g, hy, hy, ... such that ph,., = h,,n=0,1,2,.... Put h, = g and assume that
we have constructed the elements hy, hy, ..., h, such that

(11) ho, hy, ..., h, are of infinite p-height in G ,
(12) physs=hy, 1=0,1,...,n—1.

Since h, is of infinite p-height in G, there exists an element ") such that p*+1p1) _
= h,. Put : '

(13) hpiy = R

236



First, ph,,, = p**'h") = h,, hence h,, satisfies (12). It suffices to prove that f,+ 1
is of infinite p-height in G. Due to (11) there exist in G elements ), s = 1,2, ...
such that p***h® = h,. Then p***h® — p**'h™") = 0, ie. p**'(p* 'h® — K) =0
so that p*"*h® — k") e G[p**'] = T,. Hence we can write

(14) PR — B = d® 4 y® where d9eD, u®eU.

(s)

From the divisibility of D the existence of elements d” ,, follows for which

(15) PR, = dY .

If we put ) = h® — d,, then by using (15), (14), (13) and the relation p*U = 0
we get pk+s—1h£:) — pk+s—l(h(s) _ d_(gs—)l) — pk(ps—lh(s) . d(s)) — pk(h(l) + u(s)) —
= h,+, and h, . satisfies (11), which completes the proof of the lemma.

Theorem 3. Let G be a mixed group of torsion free rank one. If G satisfies Condi-
tions () and (y), then G splits.

Proof. It suffices to use Lemma 5 and Theorem 2.

Recall that WANG [3] has called a subgroup H of a torsion free group G regular
in G if any element of H has in H the same type as in G.

Lemma 6. Let G be a mixed group satisfying Condition (oc) Then any subgroup S
pure in G satisfies («), too, and S = S[S N T is isomorphic to some regular subgroup
of G.

Proof. Let se S = S n T be an arbitrary element. By Condition () there exists
a non-zero integer m such that

(16) %(ms) = 25(5) .
Now by the isomorphism theorem it is
(17) S[SnTx={S, T}/T< G|T.

Using (16), (17), the well-known properties of the types of elements in a torsion free
group and the purity of S in G we get t%(ms) = 2%(5) = #%(s + S n T) = t%(ms +
+ S A T) = #%(ms) = t%(ms) which completes the proof of the lemma.

Lemma 7. Let G be a mixed group with the maximal torsion subgroup T.If S is
a pure subgroup of G, then (S n T), is pure in T,.

Proof. Let the equation p*x = s, s € (S n T), be solvable in T,. From the purity
of S in G the existence of y € S follows for which p*y = s. If p' is the order of s then
p**'y = 0so that ye(Sn T),.
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Lemma 8. Let T be a p-primary group of the form T = D 4 U where D is divisible
and U bounded. If S is a pure subgroup of T, then S n D is divisible.

Proof. Suppose that
(18) U =0

and let s € S n D be an arbitrary element. From the divisibility of D the existence of
elements d, € D follows such that p**!q, = s, 1 =1,2,....Now in view of the purity
of S in T there exist elements s, € S such that

(]9) PH'S, =5.

Then

(20) ' d—s,=dy+u,, djeD, ueU.
If we put '

(1) st = ps,,

it holds on the one hand by (19) p's; = p**!s, = s and on the other hand by (21),
(20) and (18) s7 = p*s, = p(d, — dj — u) = pd, —dj)e D S, so that s has
in S N D an infinite p-height. Because s was an arbitrary element from S n D, our
Lemma is proved.

Lemma 9. Let T be a p-primary group of the form T = D + U where D is divisible
and U bounded. Then any subgroup S pure in T is a direct sum of divisible and
bounded groups again.

Proof. S n D is divisible by Lemma 8, hence
(22) S=(nD)+5".
It suffices to prove that S’ is bounded. First of all let us note that
(23) {5, D} = D + ({5, D} N V).

Using the well-known isomorphism theorems and the relations (22) and (23) we
get '~ S[SnD=x{S,D}D=D+({S,D}n U)/D = {S, D} nU = U, which
completes the proof.

Remark. From Lemmas 7 and 9 and from Theorem 50.3 from [1], the following
assertion follows immediately: If a torsion group T'is a direct sum of a divisible and
a bounded groups, then any pure subgroup of an arbitrary mixed group G con-
taining T as a maximal torsion subgroup splits.

Lemma 10. Let G be a mixed group satisfying Condition (y). Then any subgroup S
pure in G satisfies Condition (y).
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Proof. Let S be a pure subgroup of G. If § = S/S n T contains an element of
infinite p-height, then by Lemma 6 G contains an element of infinite p-height, too.
Hence by hypothesis T, is a direct sum of a divisible and a bounded groups and
Lemmas 7 and 9 complete the proof.

Lemma 11. Let T be a reduced p-primary group containing elements of arbitrary
great orders. Then an arbitrary basic subgroup B of T contains elements of arbi-
trary great orders, t0o.

Proof. In view of the fact that two basic subgroups of T are isomorphic it suffices
to observe one basic subgroup B. Suppose that B is bounded. From the purity of B
in Tt follows by Theorem 24.5 from [1] that B is a direct summand of T, T = B 4 D
where D =~ T/B is divisible. Due to reducedness of T'itis D = 0, hence T = B which
contradicts our hypothesis.

Lemma 12. Let G be a mixed group of the form G =Y {b;} + A where {b} is
i=1

a cyclic group of order p% 1, < livy, i=1,2,... and A is a p-divisible rank one
torsion free group. Then G contains a non-splitting pure subgroup.

Proof. We shall prove this Lemma in several steps.

a) Let a € A be an arbitrary non-zero element and let a; € A be such elements that
pla;=a, i=1,2,....Puts,=a, +b, i=12..,andU = {s;, i = 1,2,...}.
Now let S be a subgroup of G generated by U and by all solutions (if they exist) of

the equations of the form ¢g*x = u where u € U, g # p and k is a natural integer.
We show now that S is precisely the set of those elements s € G for which ms e U
for a suitable non-zero integer m relatively prime to p. It is easy to see that any element
from S has the property just mentioned. Conversely, let s be an element of G such
that ms € U for a suitable non-zero integer m relatively prime to p. Let m = p;".
. P ... pi~ be the canonical decomposition of m (m can be assumed positive). In
view of (m/[p'', m[p%, ..., m|p;") = 1 there exist integers n;, i = 1,2, ..., r such that

Y mn,/pit = 1. Further, pii(ms/pi’) = mseU so that ms[pi'eS, i =1,2,..,r
i=1 r
in view of the definition of S. Then s = Y. mms/p'g" € S, which was to prove.

i=1

b) From the preceding part, the g-purity of S in G immediately follows for all
primes ¢ + p. Now we shall deal with the p-purity of S in G.
Suppose, at first, that the equation
(24) Px=u, uelU

has the solution x in G. We are going to show that this equation has a solution in U.
Let
(25) x=ywb;+a, aed

i=1
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and

A.S:

Pl B

M=z

(26) u=

i

1
It is easy to see that there is no loss of generality in assuming that m = n. If we sub-

stitute (25) and (26) into (24), we obtain Y. p*u;b; + p*a’ =Y Aa; + Y, A;b;. In view
=1 i=1 i=1

of the form of G this equality holds if and only if p*a’ = ¥ A,a; and p" |4 — Prus
i=1

i=1,2,..., n. The last relation implies the existence of integers v;,i = 1,2, ... n such
that

(27) A = i + plvi, i=1,2..,n

Now if /; is some of integers I;, i = 1,2, ... with I; > k, then we put

(28) v=3v

i
1

1M =

i

and u' = Z is; + vpl7*s; so that u' e U. Then by (27) by the deﬁmtlons of s;
and b;, and further by (26) and (28), there is p*u’ = Z P + vplis; = Z s —
—Zp v;S; +va=u—-2va+va—u Now let the equation p*y =s, seS

have a solution in G. Then for a suitable non-zero integer m with (m, p) = 1 there
is ms = u e U so that the equation (24) has a solution in G. Hence the equation (24)
has a solution u’ in U < S. The integers m, p are relatively prime so that mo +
+ p*e = 1 for suitable integers o, o. Then p*ou’ = ou = mgs = s — p*ss, hence
pM(ov’ + os) = s with gu’ + s € S which proves the purity of S in G.

c¢) Now we shall prove that

(29) by ¢5.
There exists an mteger m relatlvely prlme to p (see part a) of this proof) such that

mb, e U,ie. mb, = le = Zia + Z/lb In view of the form of G this equality
holds if and only if

(30) pi(m —2y), p|A, i—23,..,n
(31) 3 ha, = 0.

From (m, p) = 1 it follows

(32) (p,2y) =1.
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Further, (30) implies the ex1stence of mtegers A, i=2,3,...,nsuch that 1; = p'i1,
i=2,3,...,n so that Zla = la, + Zl ‘a; = Aa, + (Zl’)a = 0. Multi-

12n

plying this equality by p'* we obtain (4, + p"* ) A})a = 0. a is an element of infinite
n i=2
order, hence 4, + p" Y 1} = 0 which implies p/4;, a contradiction to (32).
i=2
d) Suppose now that the group S splits,

(33) S=P4B

where P is torsion and B torsion free. Then a can be written in the forma =t + b,
te P, be B (because a = p's, € S). a is of infinite p-height in G, hence in S as well,

so that by (33) t is of infinite p-height, too. In view of the inclusion P < Y, {b;} this
i=1

may happen only if ¢t = 0. Hence a € B and the purity of B in G guarantees the
existence of c; € B such that pl’cj =a Alc;, j=1,2,... are clearly of infinite
p-height in G, so that a; — ¢;, j = 1,2, ... are of infinite p-height in G, too. But

e}
pa; — ¢;) =0 ie. a; — c;e G[p“] = ¥ {b;}, so that it is necessarily a; = c;.
i=1

Particularly it is a; = c¢; € B< S and hence b; = s; — a, € S which contradicts
(29). This contradiction completes the proof of Lemma 12.

Theorem 4. Let G be a mixed group of torsion free rank one. Then any pure
subgroup of G splits if and only if G satisfies Conditions () and ().

Proof. Let S be a pure subgroup of G. By Lemmas 6 and 10 and by Theorem 3
S splits and the proof of the sufficiency is obvious.

Condition (a) is necessary by Theorem 2. To prove the necessity of (y) let us suppose
that G does not satisfy (7). Hence there exists a prime p such that G/T is p-divisible
and T, is not a direct sum of a divisible and a bounded groups. If G does not split,
the proof is complete. In the opposite case let be G = T + A where T'is torsion and 4
a p-divisible torsion free group of rank one. We can write T, in the form T, = T, + D
where D is divisible and T, reduced. The orders of elements are not bounded (by our
hypothesis), hence by Lemma 11 the basic subgroup B of T, contains elements of
arbitrary great orders. Hence there exists a direct summand Q of B which is of the

o]
form Q =) {b;} where {b;} is a cyclic group of order p", I, < l;1, i =1,2,....
i=1

It is clear that Q is pure in T from where it is easy to derive that Q + A is pure in
G = T 4 A. The application of Lemma 12 completes the proof of necessity of Condi-

tion (7).

Theorem 5. Let G be a mixed group with the maximal torsion subgroup T.
If G|Tis a completely decomposable torsion free group, then Conditions (:x) and (/3)
are necessary and sufficient for the splittingness of G.
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Proof. Conditions («) and (f) are necessary by Lemma 4.
To prove the sufficiency suppose that G satisfies Conditions («) and (f) and that
GIT=G=3,G, =Y4G,/Twhere r(G;) = 1, 2 e A. For an arbitrary ge G, = T
AeA ieA

there exists a non-zero integer m such that t%(mg) = t%(g). In view of the purity
of G, in G there is t%(mg) = t%(mg) = %) = ©94(g) so that G, satisfies Condition
(o) for any A € 4.

Further, to any g € G, 4+ T there exists an integer m such that for any prime p
with h‘,’,"(g) = oo there exist in G elements h{” = mg, h'?, ... such that ph?®, =

n+1 —
=h{”, n=0,1,2,....In view of the purity of G, in G there exist elements g” € G,
with p"g” = mg, n = 1,2, ... Then g — h{” € G[p"] = T < G,, which implies
h” € G, n=0,1,2,... so that G, satisfies Condition (f) for any 4 e A. Hence G,

splits by Theorem 2 for any Ae A and Lemma 2.2 from [1] completes the proof.

Theorem 6. Let G be a mixed group with the maximal torsion subgroup T. If G/T
is a completely decomposable torsion free group whose type set is ordered and
satisfies the maximum condition, then any pure subgroup of G splits if and only
if G satisfies Conditions (o) and (7).

Proof. Condition () is necessary by Lemma 4. Let G/T =G = Y 4G, = Y4 G,|T
Aed AeA
be a complete decompositition of G/T. Suppose that G, [T is a rank one direct
summand of this complete decomposition, the type of which is maximal in the type
set of G. If G contains an element of infinite p-height, then clearly G, [T'is p-divisible.
Now G, is pure in G, hence Condition (y) is necessary by Theorem 4.

Conversely, let Conditions (x) and (y) be satisfied and let S be a pure subgroup
of G. We are going to prove that S splits. By Lemma 6 S satisfies Condition (o) and
S = S[S n T is isomorphic to a regular subgroup of G. Hence S is completely
decomposable by Theorem 1 from [3]. By Lemma 10, S satisfies Condition (y).

Hence S satisfies Condition () by Lemma 5 and Theorem 5 completes the proof.
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