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ON THE ACCESSIBILITY OF CONTROL SYSTEM x € Q(x)

JAN KUCEerA, Praha
(Received March 27, 1969)

In this paper we present an algebraic condition under which the set of all points
which are reachable from a fixed point w at a constant time along solutions of
a system (1) is a closed manifold whose dimension depends only on algebraic proper-
ties of w. At the same time we present an explicit formula for this manifold.

Notations. E, denotes a Euclidean n-dimensional space with a norm ”H The
dimension of a (finite dimensional) vector space V is written dim V. {p € P; P(p)} is
the set of all points p e P with property P(p). We use only Lebesgue measures and
integrals.

In the space €, of all n-by-n matrices we define a “bracket’ operation [A, B] =
= BA — AB, A, B e €,, which makes €, a Lie algebra. Remind, Lis a Lie algebra
if itisalinear space with a bilinear anticommutative operation[.,.]: L x L - Lsuch
that

[4,[B.C]] + [B,[C, A]] + [C,[4,B]] =0, A,B,CelL.

For Ay, A, ..., A, € €, we write [A4y, 45, ..., 4] = [A4;, [42, ... [4,-1, 4,] ...]]-
We often meet a matrix [Ay, A,, ..., 4,], where A; = A, = ... = A,_,. Then in the
case that there is no danger of misunderstanding we write it simply [4]7"'4,]. Zero
matrix is denoted by O, unit matrix by I, and the inverse of a nonsingular matrix 4
by A71. '

A connected set S < E, is called an r-dimensional manifold if for each xe€ S
there is an open nonempty set G < E, and an injection ¢ : G — S such that:

1. x e ¢(G),
2. ¢(G)is open in S,
3. Jacobian 6<p/6t is continuous and has rank r on G.

Given an r-dimensional manifold S < E, then the closure of S is called an r-
dimensional closed manifold. A set S = E, which contains only one element is said
to be a 0-dimensional manifold.
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Definition 1. Let B < €, be a linear space. Then a mapping V defined on E, by
V(x) = {Ax; A e B} is called a linear distribution created by 8. If among all linear
subspaces of €, which create the same linear distribution V at least one is closed with
respect to the bracket operation then we call Vinvolutive.

Definition 2. Let V be a linear distribution and S < E, a manifold. If for each x € S
the tangent space T(x) to S at x equals to V(x) then we call S an integral manifold of V.

Let Vbe a linear distribution. It was shown in [3] that then each x € E,, is contained
in an integral manifold of Vif and only if V'is involutive. Moreover, if Vis involutive
then each x € E,, is contained in a unique integral manifold M, of V which is maximal
in the sense that any integral manifold M of ¥ containing x is contained in M,.
Furthermore, let V be created by a Lie algebra 8 and let P;e®B, i =1,2,...,k,
be chosen so that P;x, P,x, ..., P,x form a base of ¥(x). Then there exists an open
set G = E, such that the mapping ¢(f) = e"*"e"" ... "™, t € G, describes an in-
tegral manifold ¢(G) of V.

Formulation of the problem. Let us have a compact, convex set A < €,. Denote
O(x) = {4x; AcA}, x € E,. Then for each xeE, Q(x) is compact and convex and
the mapping Q(.) is continuous on E, if we equip the image of Q with Hausdorff
topology. Hence existence of solutions of an equation

(1) xeQ(x), x(0)=ow,

makes no problem. By a solution of (1) we mean any vector function x(.), absolutely
continuous on an interval J < E,, which fulfils %(t) € Q(x(t)) for almost all t € J.

Denote % = {u : [0, o) — A; u measurable}. Then to each ue# and weE, it
coresponds a unique solution of an equation

(2 ¥=ux, x(0)=o.

Without any ambiguity we denote this solution by x(., u, ). According to implicit
function theorem [4] for any solution x(.) of (1) there exists u € % such that x(f) =
= x(t, u, w), teJ.

Let 8 be the smallest Lie algebra which contains 2 and 2 the smallest linear space
which contains the set 8 = {4 — B; 4, Be A} and is closed with respect to bracket
multiplication by elements from B. Then evidently 23 < B and 2B is a Lie algebra.
Hence, mappings V and ¥, defined by V(x) = {4x; 4 € B}, ¥(x) = {Bx; Be W},
x € E,, are involutive linear distributions.

For a given T 2 0 write & ,(T) = {x(T, u, )); ue %} and S,(T) = U L)

te[0,T
According to [3] the reachable cone U S,(T) of (1) is contained in the m;.xir]nal in-
T20

tegral manifold of ¥ which passes thr:)ugh w. We are now looking for a condition
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which guarantees that for any T > 0 the set S,(T), resp. Vu,(T), is a closure of an
integral manifold of V, resp. 7.

Auxiliaries. Lemma 1. Denote by Z, the fundamental matrix solution of (2)
corresponding to u €U, for which Z,,(O) = I. Then for any Ae®B and any t = 0
we have Z,(t) AZ; (1) — Ae W and Z;'(1) A Z,(t) — Ae W.

Proof. If u(.) is piecewise constant then the assertion of Lemma 1 follows im-
mediately from an identity e”“Be® =) (1/k!)[C, C, ..., C, B] which holds for
any B, Ce €,. k=0 Trtme

If u() is not piecewise constant then we take a sequence u, e, k = 1,2, ..., of
piecewise constant functions which converges to u locally asymptotically on [0, o).
For any k and any t = 0 we have Z,,(f) A Z,'(1) — Ae W, Z,, 1(t)AZ () — A e .
The sequence Z,,, resp. Z, ', k = 1,2, ..., converges to Z,, resp. Z, *, locally uniformly
on [0, oo). The space 2B is finite dimensional, hence it is closed and the proof is
complete.

Remark. We can similarly show that for Be I, u € % and ¢t = 0 it holds Z,,(t) .
Z;'(t)e MW and Z; (1) BZ,(1) e .

Lemma 2. dim ¥(x(¢, u, w)) = dim ¥ (o) for any t =2 0 and any ue .

Proof. According to [3] all points x(t, u, w) are contained in the maximal integral
manifold of ¥ which passes through w. Therefore it suffices to prove an equivalence
Aw € ¥ (0) iff A x(t, u, w) € ¥"(x(t, u, ®)), where Ae B, ue¥ and t = 0.

Fix Ae®B, ue and t = 0. Put, for brevity, B = Z,(t) A Z;'(t) — A. Then we
can write Ao = Z,'(1)(ZL)AZ;'(t) — A+ A) Z() o = Z]'(1) (B + A) Z(1) o

Assume Aw € ¥ (w). As Be W we have Z, () BZ,(1)e Wand Z; (1) A Z,(t) » =
= Aw — Z;'(t) B Z,(t) w € ¥ (). This implies existence of such B; €W and real

numbers b, i = 1,2, ..., p, that Z_ 1(r)AZ(t)cu = ZbBw Hence Ax(t, u, o) =
=Z()Z () AZ[1) w = Z,[1) Z biBw = Z b(Z(t) BZ; (1) x(t, u, w) €

€ 7°(x(t, u, w)), due to the remark to Lemma "
The inverse implication can be obtained by the same way.

Denote %, the set of all u € % which are piecewise continuous on [0, o) and more-
over at each point of discontinuity continuous from the right. Till the end of this
paragraph fix T> 0 and uy€#,. For any ved = {u — uy; ue} and any ¢e€
€ [0, 1] we have u, = u, + eve . The solution (x., u,, w) of (2) is analytically
dependent on ¢ and can be expanded into a power series

(3) x(., ug w) =x§o€kx"(" v)
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where the coefficients x(., v) solve an equation
(4) Xp = UgXy + UXp—y xk(O, U)=0, k=12,...

Here we write for brevity xo(t, v) = X(t, uo, ®).

If we put a = max {||4]; 4 €} then |xo(t, v)[| < |o] e* and for k = 1,2, ...,
we have (d/df) |x] = a”xk] + 2al|x,_ 4|, which implies |x,(t, v)] < 2a f§ "™
. |%k=1] d. Finally [x(t, v)| £ o] 2a)* (1/k!) t*¢™, t = 0. Hence |x(t, u,, w)|| £
< Y &|xt, v)| < ||w] € and the series (3) is locally uniformly absolutely con-

k=20

vergent on [0, o).

Using the variation of constants formula we get x,(T,v) = Z(T) [§ Z7'(1).
(1) x(t, ug, w) dt = Z(T) oz (1) v(t) Z(t) dt . Z7(T) x(T, uo, w), where we, for
brevity, write Z instead of Z,,,.

Lemma 3. The linear hull M(T, u,) of set {[¢ Z7'(t) v(r) Z(t) dt; v € 4} equals to
the linear hull of {Z7'(f) B Z(t); te [0, T], Be B}.

Proof. Take B € B. There are matrices A, , € 2 such that B = A, — 4,. As A
is convex we have u(t) = 3(4; + uo(t)) e, i = 1,2,andv; = u; —uged,i = 1,2.
The function u, € %, is everywhere continuous from the right therefore v, , are
continuous from the right too.

Take t, € [0, T) and for any a € (0, T — t,) denote

O N b PR

0 for t¢ [t to + @)

Then v; , € 4. Due to continuity from the right of functins v; we get

lim 1 J "2 (0) 0ua(t) Z(0) dt = 27 (1) vto) Z(to) € M(T; o)

and
Z7(to) B Z(to) = 2 Z7(to) (v1(t0) — va(to)) Z(t0) € M(T, u) -
Finally
lim_Z‘l(to) BZ(t,) = Z7'(T) B Z(T) € M(T, uy) .

The inverse inclusion follows immediately from the fact that the values of any
vedlie in B.

Definition. We say that a compact convex set A = €, has a property (A) if such
matrices 4; €, i =1,2,...,p, and B;e B, j = 1,2,..., q, exists that the linear
space generated by matrices [47B;], i = 1,2,...,p, j=1,2,...,q, r =0,1,2, ...,
equals to the Lie algebra 8.
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Lemma 4. If U < €, has property (A) then for any T > 0 there exists such up e,
that M(T, uy) = W.

Proof. Take T > 0 and a partition 0 = 1, < 1 < ... < Iy = T of interval
[0, T]. Choose an arbitrary matrix from 2 and denote it by 4, . Define u(t) =
=Antetio, )i =1,2,...,p + 1,u(T) = Ap+1 Evidently u € %, and Z(t) =
= T i-Dpdi-iti-i=ti-2) | pAi(ti=ho) for f e [ti-1 t:]-

For te[t;_y, t;] and B e B we have

ZN()BZ(t) =2, (t;y) e A 1-0BACT 0 Z (1) =
=Z7 ()Y (’_i_~_"i-1)' [AB] Z,(t:-,) -
r=0 r.

By differentiation with respect to t we get Z, '(1;—y) [AiB] Z,(t;-,) € (T, u),
r=0,1,....

If we take t, sufficiently small then the dimension of a linear space generated by
matrices Z, '(t;-y) [AiB;]1 Z(t;=y), i=1,2,...p, j=1,2,...,q, r=0,1,...,
equals to the dimension of a linear space L generated by matrices [A:Bj], i=1.2,...,
j=12,...,4q,r=0,1,... It implies dim IMM(T, u) = dim L. Lut YT, u) < W and
we have assumed L = 2. This gives us the desired equality 2(7; u) = 2B.

Lemma 5. Let A, € A be an arbitrary matrix. Then B is a linear hull of A,
and W.

Proof. One inclusion istrivial. As B isalinear hull of matrices of a type [Al, Ay, ...
e Ak], where A; e, i =1,2,..., k, it suffices to show that each such matrix
belongs to the linear hull of 4, and . If k = 1then 4, = A, + (4, — Ao), where
Ay — AgeW. If k> 1 then [Ay, ..., Ay, A] = [Ars ooy Aroq, Ak — Ai—1] €W
which completes the proof.

Main result. Let U < €, have property (A) Construct distributions ¥~ and V.
For given T > 0 and w € E, let &,,(T), resp. S,(T), be the set of all points which are
reachable at the time T, resp. at any time t € [0, T]. from w along solutions of (1).
Denote dim 7" (w) = g and dim V(w) = r.

Then & ,(T), resp. S,(T), is a closed g-, resp. r-, dimensional integral manifold
of the distribution ¥, resp. V.

Proof. Let T > 0. Take x € #,(T) and ¢ > 0. By implicit function theorem there
exists such u e % that x = x(T, u, ). According to Lemma 4 for any 4 > 0 there

. _fu(®), t>2 .
exists ¢, € %, such that 9R(4, = M. Define u,(t) = . As U is
PuE o e 0= ot o)

bounded the functions u,(.) converge asymptotically to u(.) on [0, T] with A - 0+.
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Therefore lim x(T, u;, ®) = (T, u, ®) = x and we can fix such 4, that |x(T, u,,, w) —
A-0+
- x| <e

Denote, for brevity, by Z(.) the fundamental matrix solution of (2), corresponding
to u,,. According to Lemma 3 there are functions v; € {u —~ Uj UE J?l}, i=12,...

., k, such that matrices [¢° Z~'(f) v/(t) Z(£)dt, i = 1,2, ..., k, form a base of 2B.
Define w(1) = {v,-(t), tefo, )'0]}, i=1,2,...,k. Then evidently also wyf)e

’ 0, 1>/
e{u —u,;ue}.

The matrices B; = Z(T) ¢ Z7'(t) wi(t) Z(1) dt Z7'(T), i =1, 2, ..., k, are linearly
independent and according to Lemma 1 they belong into 28. Hence they form
a base of W and vectors B; x(T, Uz w), i =1,2,..., k, generate the linear space
¥ (X(T, u,, ®)). According to Lemma 2 we have dim ¥ (x(T, u;,, »)) = dim ¥ (0) =
= q. Assume that vectors B; x(T, u;,, ®),i = 1,2, ..., g, form a base of ¥"(x(T, u,,,0)).

Now

q q
(5) x(T,u;, + Y 1w, @), where 1eG={teE;) |t]| <1},
i=1 i=1

represents a mapping of an openset G = E,into &,(T). It has continuous first partial
derivatives with respect to 7, which are for T = 0 solutions of a corresponding equation

d ox 0x 0x
6 —— = u; — + w; x(t,u, w), — =0, i=12,...,9.
(©) dt dt; © ot (t i ) 0Tie=0 !

If we compare (6) with (4) we see that the vectors B; x(T, u;,. w), i = 1,2,..., ¢,
are columns of Jacobian Dx/Dr at T = 0. Therefore there exists a neighborhood
G, < G of origin in E, such that Dx/Dr has rank g at any point of G,.

Denote X, the fundamental matrix solution of (2) corresponding to u,, + z W
for which X,(0) = I. Then we can write

2 x(T Uy + Z W, ) = Xt(T)JTX;I(r)iilriwiX,(r)drX:I(T) .

ot;

q
x(T, u;, + ._eriw,., w) € ¥V (x(T, uzy + Z W5, @) .

Thus, & ,(T) is a closure of a union of a family of g-dimensional integral manifolds
of distribution 7. )

Let &,,; be two manifolds of this family. Choose x(T, u;, w) € &;, i = 0, 1, so that
there exists to € (0, T] such that uy(t) = u,(t) for t€[0, t,] and M(t,, uy) = W
Denote u; = (1 — A)ug + Auy, A€[0,1]. Then the curve I'(2) = x(T, u;, o),
2 € [0, 1] links points x(T; u;, ®), i = 0, 1, and each its point is contained in &,(T).
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Let us prove that dI'(2)/dA € ¥"(I'(2)) for 2 € [0, 1]. It holds

d dx(1, u;, o) dx(t, u,, o) dx(t, u;, o)
— 22 = () 2 (u, (8) = ug() x(6 uy, ), R = 0.
& ) =5 (1 (6) = uo(0) x{t w0 0), ==

t=0

Using variation of constants formula we gei

dr(2)  dx(T, u;, o) _
di di

=Z,(T) J‘:Z;;(t) (u, (1) = uo(1)) Z, (1) dt Z,,)(T) x(T, u;, w) e ¥ ([(2)), Ae[0,1].

We have proved that I'(1), 4 € [0, 1], is contained in the maximal integral manifold ./
of ¥~ which passes through x(T, uy, ®). As &, n M + 0 for any 2 € [0, 1] it follows

from [3] that &, = 4, A€[0,1]. Hence ¥ = U &, = #,(T) is an integral
2e[0,1]

manifold of ¥~ which contains both points x(T, u, w), i =0, 1. First part of the

theorem is proved.

Take x € S,(T) and & > 0. Again there exists u e % and t, € [0, T] such that
X = x(to, u, ). By the same way we find functions uo €%, w; e {u — uy; u e},
i=1,2,...,9, a number t; >0 and a neighborhood G < E, of origin such that

Jacobian of a mapping x(t,, u, + Z W, ) : G > E, has rank q at any point of G,

=1
and moreover u(t;) + 0 and || Y(tl, g, w) — x| <e.

If dim V(w) = g there is nothing to be proved. Assume dim V(w) > g. Investigate
a mapping

(7) (tuo-FZTl b)), [t—1t] <8, 1€G.
We know that forany i = 1,2,...,¢q
q q
— X(t, ug + Y, Twi, @) € V(x(t, ug + Y, 1w, 0))
i=1 . i=1
But

_x(t “0+ZT. i (1))=
q q
= (ug + Y, t;w;) x(t, uy + Z Tw;, w)eV(x(tug + Y 1w, ).
i=1 i=1 i=1

If we take 6 and an open set G, = G, 0€ G,, so small that A(t, t) = u,(f) +
q
+ Y 1;wt) +0 for te(t; — 9, t; + ), 1€ G,, then according to Lemma 5 the
i=1
space B is equal to the linear hull of W and A(z, t) forany t € (t, — 6, t, + 9), 7 € G,.
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Hence Jacobian of the mapping (7) has at any point from (t; — J, t; + 6) x G,
rank r.

Similarly as in the first part we find out that S,(T) is a closure of a union of a family
of r-dimensional integral manifolds of the distribution V. Let again we have two
manifolds Sy, Sy, of this family. Then we can choose points x(t;, u;, )€ S;, i = 0, 1,
so that t, = min (o, t,) > 0 and there exists t; € (0, t,] such that uy(r) = u,(t) for
te [0, t;] and M(t3, up) = W. The case t, = t; has been already treated, therefore
assume t, < t;. Then a curve I' consisting of arches I'y(f) = x(t, uo, ®), t € [to, t,],
and TI'y(2) = x(t;, (1 — 2) ue + Auy, ®), 1€[0, 1], again links points x(t;, u;, ),
i =0, 1, is contained in S,(T), and through each of its points there passes an integral
manifold of V. Hence the union of these manifolds is again an integral manifold of V,
contains S, and Sy, and is contained in S,(T). Q.E.D.
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