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Czechoslovak Mathematical Journal, 20 (95) 1970, Praha 

A REMARK ON A PROBLEM OF HARARY 

VACLAV CHVATAL, Waterloo 

(Received March 13, 1969) 

F. HARARY [1] pubHcized the following question: 

"For any graph G with p points, how can levels 1,2, ..., p be assigned to the points 
in order to minimize the maximum of the absolute value of the differences between 
the levels of all pairs of adjacent points?'' 

We set 
(p{G) = min max \f{u) — f{v)\ 

where the maximum is taken over all edges (lines) uv and the minimum over all 
1 — 1 mappings (valuations)/ : V(G) -> {1,2, ..., p}; by V(G) we mean a set of all 
vertices (points) of G. 

Otherwise, our notation follows Harary [2]. Particularly, we reserve: a letter p for 
number of points, q for number of lines, d for diameter, x for connectivity, ^o ^^^ 
point independence number, di for degrees of points (<ii ^ <̂2 = ••• = ^p)-

As in [3], we write P^ for the /c*̂  power of the path Pp, in which two points u, v 
of V{Pp) = {1, 2, ..., p} are adjacent if, and only if, 0 < \u ~ v\ й k. 

Theorem 1. (p(G) is the smallest integer к such that G cz P p ' 

Proof. Every inclusion f : G -^ P\ induces a valuation / : V{G) -^ (1, 2, ..., p] 
such that max |/(м) — f{v)\ S к and vice versa. Hence, (p{G) S к if and only if 
G с Pi, q.e.d. 

Theorem 1 reduces — from a theoretical viewpoint — the original question to an 
elementary problem of graph theory: Given a pair of graphs, is one of them a sub­
graph of the other? In practice, however, an answer to the last question becomes 
extremely difficult, even with aid of high-speed computers. Therefore, it does not 
seem likely that one could find an effective algorithm to determine a minimal valuation 
of G. Nevertheless, Theorem 1 will enable us to determine some relations between cp 
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and the other fundamental invariants of graphs. For this purpose, we shall need the 
following lemma; its proof is straightforward and will be omitted. 

Lemma. The invariants of the graph Pp satisfy: 

9 = (p - 1) + (p - 2) + . . . + (p - fc) = k^^l^:±^. 

d= I^Y~^^ '^^k, ßo = i + 
L/C + i j \k + 1 

Ĵ . = min ( 1? - 1, /с + ^-^^^— , 2/c j . 

Theorem 2. For any graph G, we have 

^^p 1 + V((2P - 1)^ - 8^) 

(p ^ , ^ ^ x , (p ^ 1 , 
d ßo 

(О > max max I а,- — h — • 
V L 2 J 2 ; 

Proof. By Theorem 1, G a P^. Now, observe that p{G^) = p(G2), Gi с G2 
implies ^(GO ^ q{G2), d{G,) ^ ^G^) , K<^i) й ^(G^), ßo{G,) ^ ß,{G2) and dj{G,) ^ 
^ djifj^) for each/. The rest follows by our Lemma. 

Theorem 3. If m '^ n > 0 then q){K^r) = \_{^ - l)/2] + n and a valuation 
f : F(iC^„) -^ {1, 2, ..., m + 71} fs minimal whenever 

^<"'={- [iF.fi]^" + 1, ..., m 4- ^ 

where M is the independent set of K^^ having m points. 

Proof. If 1 ef{M), p$f{M) {p = m + n here) then max \f(u) ~ f{^)\ = p ~ 
- 1> (p a n d / i s not minimal (similarly for 1 if{M), p ef{N)). Therefore a minimal 
valuation / satisfies either 

(i) lef(M),pef{M) 

or 

(ii) \$f{Mlptf{M), 
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In case (i), observe that 

max \f{u) - f{v)\ = max {p - min/(iV), max/(N) - l ) . 

Now, obviously,/(AT) = [j + 1, j + 2, . . . , j + /7} for a minimal/. A simple compu­

tation supplies the best values 

; = [^] = [{\. -« l/(«) - /(»)l = [^] + » - 1. 
In case (ii), we get similarly 

max \f{u) - f{v)\ = + m - 1 

and the assumption m ^ n is in favour of (i), q.e.d. 

I thank Professor HARARY for his very valuable comments. 
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