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0. In what follows, K always denotes a compact interval on the real line &;
<0, 1) will be specified by I. All functions considered are finite, to avoid noninteresting
discussions of infinities. We say that f is Newton-integrable in the generalized sense
over K, if there exists a function F continuous on K such that F'(x) = f(x) on K,
with possible exception of a countable subset 4 = K; for 4 = @ we say that f is
Newton-integrable over K. Some function families will now be introduced; by defini-
tion:

fe #(K) < fis a Lebesgue measurable function on K,

v e B (K) <> the variation Var (v; K) of v on K is finite,

n e #/(K) <> n is Newton-integrable over K,

n* e /*(K) < n* is Newton-integrable in the generalized sense over K,
fe ?(K) < fis Perron-integrable over K, — oo < (P) [xf < oo,

le #(K) < lis Lebesgue-integrable over K, (L) [ |f] < .

In what follows, we write e.g. #(a, b) instead of Z(<a, b)); also, we put [Jf =
= [¢any f- For each fe ¥(K), o(f) denotes the set of L — singular points of f
(see [2], p. 255). Given a mapping f of a set 4 and a nonvoid set B, then f | B denotes
the mapping of 4 n B (if + ) coinciding there with f.

1. We begin with a problem posed in [1], concerning the possibility of multiplica-
tion within the class of # — integrable functions.

An integration (&, ¢) on £, in the sense of [1], is a correspondence assigning to
each K a linear subset #(K) of #(K) and a finite functional f — (¢) [ f, f € #(K),
so that the following is satisfied:

(1] (¢) fx is linear on F(K),
(1) feZ(K)=feZ#(K) and (1) [x f = (L) fx f.
(I fe#(K),{c,d) = K= f|<c,dy e #(c, d),

745



(IV) a<b<eg, f| {a, b) e #(a, b), f| (b, ey e Z(b,c) =>f| {a,cye F(a,c)
v and () [af + () [if = () [if,

(V)  feF(a,b), fz0=feZ(a b),

(VI)  feF(a, b)=>(¢) i f is continuous on {a, b).

Now the above mentioned problem reads as follows (Problem B of [1]): Do there
exist an integration (%, ¢), f € #(I) and ¢ which is absolutely continuous on I such

that fo ¢ #(I)?
In the next section we answer to this positively.

2. Let ne A/ (I) — Z(I) be such that o(n) = {0, 1}; put further n(t) =0 for
te® — 1. Define F(K) = {l + n|K; le #(K), LeR}, (1) [«f = (P)[xf for
fe ?(K) We show that & is the desired integration. For, given a suitable ¢,
absolutely continuous on I, it is not possible to write ng = I + An, as o(np) may be
e.g. equal to {0}, while for A = 0 we have o(I + in) = {0, 1}.

3. On the other hand, the smallest & containing 4" and fulfilling
(vin) fe‘.%"(K), ve BY(K) = fve F(K)
is evidently 7 defined as follows:
(3.1) feT(K)ef=1+ ._iln,.v,. . le2(K),
ne /(K), v,eBV(K), i=1...r.

L

Asitis well known, 7 < £, and the question arises whether the inclusion is proper.

4. We prove a stronger result. Write

1) feTHK)ef =1+ Y nfo. leZ(K).
i=1
‘ n*e NHK), vieBV(K). i=1,.,r.
Then
4.2) T cT*c P

and first we show that J* lies properly in £.

Remark. Now, all will be related to I; so we write simply % instead of #(I), etc.

5. Lemma. Let fe P, ve BY". Put F(x)= [5f, H(x) =4 fv. Suppose that
F(x) = O(x), x - 0+. Put S(x) = H(x) — v(0+) F(x). Then S’*(0) = 0.
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Proof. 1° Suppose first that v is nondecreasing, v(0) = v(0+) = 0. Let ¢ € 2 be
such that Ix_1 F(x)[ < ¢. We have H(x) = v(x) (F(x) — F(¢)), 0 < & < x; hence
Ix_l H(x)| < 2cv(x), S'*(0) = 0.

2° In the general case there are nondecreasing vy, v, such that v(0) = v;(0+) = 0,
j=1,2, and v =v(0+) + v, — v, on (0,1>. Put Syx) = [3fv,, Then H =
=9(0+)F + S, —'S,, etc.

6. Corollary. 1° n* e /' *, ve BV = n*fve & *.
2° Let fe /', ve B9, H(x) = [3 fo. Then H'*(0) = v(0+) f(0).

From 1° we infer that it is sufficient to prove the following theorem.

7. Theorem. There exists f € P not expressible in the form f =1l+n* le?,
n*eN*.

Proof. Let D denote the Cantor discontinuum. To each interval J = (a, b)
contiguous to D there exists a natural number r such that r(b — a) > 1. To each
such J and r there exist numbers a; and a continuously differentiable function ¢,
on J such that ¢(a) = ¢(b) = 0,

(7.1) lo| < 2(b —a) on J,
a<oy <oy <.. <o <band
(7.2) p)(-1Y >b—a, j=0,1,..,r

Now put f(x) = F(x) =0, xe D, and F(x) = ¢,(x), f(x) = ¢j(x) on each J.
Using (7.1), we get from Lemma (3.4) of [2], p. 249, that F(x) = (P) [ f. Suppose
now that there exist I € &, n* € /* such that f = | + n* on I; hence also F =
= L+ N*, where L(x) = [§1, N*(x) = [5 n*. As N* is differentiable on I with
possible exception of a denumerable set, there exists f € D such that N *’(ﬁ) exists and

(7.3)  there are infinitely many intervals (a, b) contiguous to D such that 2a —b<
<pf<a<hb

We may assume that N*(8) = N*'(8) = 0. Let y > f be such that

(7.4) xe(B,y)= [N*(x)| <27%(x — B).
Then, according to (7.2), (7.3) and (7.4), Var (F — N*; {a, b)) _>__\Z':, I(F — N¥).
@) = (6 = 3 o) 2 510 = Flo)| = £ ] - SN 2

= Z 2(b—a)-2 Z 272.2(b — a) = r(b — a) > 1, for each contlguous mterval
i=1

747



(a,b) such that 2a —b < B <b <y Hence Var(L;I) = Var(F — N*;I) >
= Var (F — N*; (B, 1)) = o0; a contradiction.

8. We are now going to show that also the first inclusion in (4.2) is proper. First,
we prove a lemma.

9. Lemma. Let 1 > x; > y; > X, > y, > ..., X, = 0, Zx = 0. Let F,H be

functions on I. Let F(x,) = x,, F(y,) £ —y.r=1,2,. let H'*(0) be finite. Then
Var (F + H;I) =

Proof. Put Hy(x) = H(x) — H(0) — xH'*(0). Then H,(0) = H;"(0) = 0. There
exists an index m such that x (0, x,,) = IHI(X)l < 4x. Put R = F + H,. Then
p > m= |R(y,) — R(x,+1)| + |R(x,) — R(y,,)| + .. + [R(yw) — R(%ps1)| +
+ [R(xm) = R(¥m)| > 2(xp41 + ... + Xms1); hence Var (R;I) = oo, and also
Var (F + H;I) = .

10. Theorem. Let F(x) = x sin x“,f(x) =F'(x), x > 0. Then fe /'* — F.
Proof. Let on the contrary f = [ + va,, le®, neN,v,eBY,i=1,
Put H(x) = Z fo nv;; then, accordmg to 2° in corollary 6, a finite H’*(O) exists.

Put F(0) = 0. From Lemma 9 we infer that Var (F — H;I) = oo; hence contradic-
tion.

11. Comparing theorems 6 and 10, a natural problem arises: Let n; € A", v; € BY"
i = 1, 2. Do there exist n € A, v e £ such that nv = nv, + n,v,?

12. We close this paper with a theorem asserting that the representation of a Perron
integrable function f in the form f = [ + n* is possible, supposing o(f) is countable.

13. Lemma. Let e > 0, let J < R be an open interval and let f be a function on J.
Then there exists a function g on J such that 1° g is continuous on J — o(f)
2°L|f—gl <e.

Proof. Let ¥ denote the system of components of J — o(f). Let ¢, > 0 cor-

respond to Ae U so that Y ¢, <& Let AeU, a =inf 4, b = sup 4. For each
At

r=0,+1,+2,... let ¢,e® be such that ... <c¢,_, <¢, < ..., a=infe, b=
= sup c,. Further, let g, be continuous on J, with compact support in (c,_;, ¢,),
and such that Z fa ]f — g <ée4 Putg, = Zg,. Then evidently [ |f — g4 < &4

and g, is contmuous on A. Let further yx denote the characterlstlc function of the

set o(f). Now it is sufficient to put g = xf + ) g4
AeA
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14. Theorem. Let fe 2 and let ¢ > 0. Let o(f) be countable. Then there exist
leZ and n* e N suchthatf = | + n*, [;|l| <e.

Proof. Let n* = g of Lemma 13 and put | = f — n*, G(x) = [ n* Then G is
continuous on I, G'(x) = n*(x) on I — o(f); hence the theorem.
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