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All functions considered in this paper are real-valued.

By Lebesgue sets of a function f defined on a set X we understand sets of the form
L(f) ={peX :f(p) < a} and IX(f) = {pe X : f(p) = a}, where a is an arbitrary
real number. Various classes of functions are characterized in terms of their Lebesgue
sets. Perhaps the most famous result in this direction is the Lebesgue theorem on the
characterization of Baire measurable functions by their Lebesgue sets. In this paper
we shall give a few applications of the results of [1] to theorems of the above type.

Let us briefly analyse the proof of the Lebesgue theorem in light of the results of [1].
For simplicity, we shall consider only the 1st Baire class.

Theorem A. (Lebesgue) A function f on the unit interval [0,1] is of the 1st Baire")
class if, and only if, all the Lebesgue sets of f are G-sets.

The following is shown in [1] (see Theorem 3.3).

Theorem B. Let § be a uniformly closed ring of functions on a set X that contains
all constant functions on X and is closed under inversion. If each of the Lebesgue
sets of a function f on X is a Lebesgue set of some function in F, then f € §.

Now, if & is the 1st Baire class, then § satisfies the assumptions of Theorem B.
Consequently, the difficult part of Theorem A (the “if” part) reduces to the following
proposition.

Proposition C. Each Gyset A = [0,1] is a Lebesgue set of some function of the
st Baire class.

0) The preparation of this paper was partially supported by the U.S. National Science Founda-
tion, Grant GP-5286, The author wishes to express his sincere thanks to Professor H. Shapiro
who rendered a considerable help in preparing the manuscript.

1y We refer here to the inclusive Baire classification; i.e., the 1st Baire class includes all conti-
nuous functions.
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(Perhaps the simplest way to show Proposition C is to write the complement of A
as the union of countably many closed sets, [0,1] — 4 = UF,, and consider the

function g(p) = 0 for pe A and g(p) = ), {1/2": pe F,} for p¢ A. A is a Lebesgue
set of g (in fact, A = {p : g(p) < 0}) and g is of the 1st Baire class. Indeed, for each n
there is a continuous function f,:[0,1] - [0,1] such that pe F, iff f,(p) = 1.
Setting g,(p) = 3f1(p) + (1/2%) f5(p) + ... + (1/2") fi(p) we have g,(p) - g(p) for
every p e [0,1].)%)

It is frequently more convenient to apply Theorem B in a somewhat different form.
Let & be a class of functions on a set X; let A denote the class of all the Lebesgue sets
of functions in &; in turn, let "{;- be the class of all functions whose Lebesgue sets are
in A. Clearly, § < ﬁ- Now, Theorem A tells that if & is the 1st Baire class, then
%- = &. On the other hand, Theorem B yields the following general result in this
direction.

Theorem B'. If § satisfies the assumptions of Theorem B, then § = §.

Clearly, Theorem A (strictly speaking, the “if”” part of this theorem) is an immediate
consequence of Theorem B’ and Proposition C.

In the following sections we shall examine in details conditions leading to the
equality § =§. We shall treat both the case of arbitrary functions and that of
bounded functions.

1. TERMINOLOGY AND NOTATION

The terminology and notation will follow that of [1] We shall also use the fol-
lowing:

Suppose that § is a class of functions on a set X. (We always assume that &
contains all constant functions on X.) Let &* be the class of all bounded functions
in §, let A(F) denote the class of all Lebesgue sets of functions in §, and let_ 3(%)
denote the class of all zero-sets of functions in §. We say that § is lattice-ordered
provided that f, g € § imply that f v ge & and f A g€ & (where v and A stand
for maximum and minimum respectively).

Now suppose that U is a class of subsets of a set X. We shall always assume that @
and X are members of 2. Let () (resp. A*(2A)) denote the class of all (resp. all
bounded) functions on X whose Lebesgue sets belong to 2. Let y() be the set of
all bounded functions on X satisfying the following condition: for every ¢ > 0 there
are Ay, ..., A,€ W such that 4, n...n A4, =0 and

o(f, X = 4;) = sup {|f(p) —f@)|:pgeX — 4} <e.
2) The Lebesgue theorem for functions of a class &, @ < 2, can be derived in the same way

from Theorem B and the corresponding Proposition C,. The proof of Proposition C together
with transfinite induction yields Proposition C, for every a < Q.
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We say that 2 is a ring provided that % is closed under finite unions and finite inter-
section. We say that 2 is a a-ring in case U is closed under finite unions and countable
intersections. We say that U is normal proved that for every 4, Be A withAn B =0
there are C, De W such that CuD =X, AnC=0, and BNn D = 0. Let ¢A
denote the class of all complements of members of 2.

2. ELEMENTARY RESULTS

2.1. Proposition. If N is a ring, then A(A) and A*(A) are lattice ordered.

We omit the obvious proof.

2.2. Proposition. If % is o-ring, then (W) (resp. 2*(N)) is closed under composition
with continuous (resp. bounded continuous) functions defined on open subsets of #°.

Proof. The proof is the same as that of the implication ““(a) implies (b)” of Lemma
3.5in [1].

2.3. Proposition. If U is a o-ring, then AN) and 1*(A) are both uniformly closed
rings. Furthermore, ) is closed under inversion and J*(N) is closed under
bounded inversion.

Proof. Suppose that f, — f uniformly on X. We may assume that If,, - f| < 1/n.
Then clearly L,(f) = N Lyy1,(f,) and I(f) = N L~ /(f,) and therefore A(A) and
neN

neN
A*(W) are uniformly closed. The result now follows from 2.2 in this paper and 3.5

in [1].
2.4. Proposition. If % is a ring, then y(A) is a uniformly closed ring.

Proof. Let f, g € 7() and let & > 0 be given. Let M > 1 be such that |[f| < M
and |g| < M and choose Uy, ..., U, and V, ..., ¥, in ¢ so that U; u... 0 U, =
=V u...uV,=X and o(f,U;) < ¢/2M and (g, V;) < ¢/2M. It follows that
o(f + g, U;nV;) <eand o(f+ g, U; " V;) < e Thus f + g and f - g both belong
to ().

Now let f, € (%) and let £, — f uniformly on X. Choose n, such that |f,, — f] <
< ¢/3 and choose Uy, ..., U, € ¢ so that U; u...u U, = X and o(f, U;) < ¢/3.
It follows that o(f, U;) < &/3 and therefore y() is uniformly closed.

2.5. Proposition. If U is a ring, then A*(A) < p(A).

Proof. Suppose that fe A*(2) and that ¢ > 0 is given. Let I; = (a;, b)), i =
=1,..., n, be a finite number of open intervals covering the range of f and such -
that b; — a; < & Let U; = X \(L,,(f) v L(f)). Clearly U;e ¢¥, U; U ... U U, =
=X, and o(f, U)) < &.

740



~ 2.6. Proposition. If U is a o-ring, then AHU) = y(AN).

Proof. It suffices to show that if f e p(2), then fe A*(A). Let a € #. For every
integer k, choose Uy, ..., U, € ¢ such that U; u ... u U, = X and o(f, U;) < 1/k.
Set G, = X \U{U, :inf {f(p) : pe U;} > a}, and note that

if f(p)<a, then peG, for k=12, ...,
if peG, then f(p) < a + 1/k.

1t follows that L(f) = NG, and hence L,(f) € . In a similar way we can prove that
k
I(f) € A. Thus f e 2*(N).

2.7. Proposition. If & is a laitice-ordered linear space, then A(F) = A(F*) =
= 3(8) = 3(8%.

We omit the obvious proof.

2.8. Proposition. If & is a lattice-order linear space, then A(F) is a ring.

Again, we omit the proof.

2.9. Proposition. If § is a lattice-ordered linear space and if § is closed under
bounded inversion, then A(?}) is normal.

Proof. Let A4, Be A(F) such that 4 n B = 0. By 2.7, there are f, g € § such that
A = Z(f) and B = Z(g). Set h = |f|/(|f] + |9]) and note that he §. Let C =
= I!3(h) and D = L,5(h) and observe that C, De A(§), An C = Bn D = 0 and
CuD=X.

2.10. Proposition. If § is a lattice-ordered uniformly closed linear space, then
A(F) is a o-ring.

Proof. It suffices to show that A(§) is closed under countable intersections. By
2.7, let A, = Z(f,), where f,e F. Set f =Y (1/2") (1 A |f,]). Clearly NA, = Z(f)
and fe @. " "

We conclude this section with an abstract version of the Urysohn lemma.

2.11. Proposition. Suppose that U is a ring. Then W is normal if and only if for
every two disjoint members A and B of U, there exists an f € () such that f(p) = 0
forpe A, f(p) =1forpeB,and 0 S f < 1.

Proof. The existence of f is proved by repetition of the Urysohn procedure. To
prove the converse, assume that 4 and B are both non-empty (otherwise there is
nothing to prove) and choose Ay, ..., 4, in A such that 4, n...Nn A, = 0 and
off, X —A4) <1 SetC=N{A4:(X-A4)nA+0and D =N{4;: (X — 4)n
NB*0}. ThenC,DeN, AnC=BnD=0,and CuD =X,
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3. MAIN RESULTS

3.1. Theorem. If § = FX(X) is a uniformly closed ring, then 2*(A(%)) is the
smallest uniformly closed ring that contains § and that is closed under bounded
inversion.

Proof. Let ¥ be the smallest uniformly closed ring that contains § and that is
closed under bounded inversion (the existence of § is obvious). It is known that
is a linear lattice (see, for instance, 2.1 in [1]) and therefore, by 2.10, A(%F) is a o-ring.
It follows by 2.3 that § <= 2*(A(F)). Conversely, suppose that f e 2*(A(%)) and that
a,be# with a < b. Let gy, g, € § be such that L,(f) and I’(f) are Lebesgue sets
of g, and g, respectively. It follows that &, and therefore §, S;-separates L,(f) and
I’(f) and hence by Theorem 2.9 in [1], f€ §. Consequently, § = A*(A(F)).

3.2. Corollary. Suppose that § < F*(X) is a uniformly closed ring. Then
A(A(F)) = & (or equivalently y(A(F)) = &) if and only if & is closed under bounded

inversion.

3.3. Theorem. If § = F*(X) is a lattice-ordered ring that is closed under bounded
inversion, then y(A(%)) = & (the uniform closure of §).

Before proving Theorem 3.3 we need the following lemma.

3.4. Lemma. Suppose that W is a normal ring. If f e y(A) with 0 < f(p) < 1 for

every p € X, then for every integer n there exist A, ..., A, € W such that
(i) Aju...U4,=X.
. i — 4 3i+1
(i) 3 gf(p)§~lj-~ for every ped;, i=1,..,n.
3n ) 3n -
(iif) A,NnA;j=0 for i+2=Zj, i=1,..,n—2.

Proof. Let n be given and let Vi, ..., V; be elements of ¢ such that V; U ...
ouVe=Xando(f,V;) <1/3n,j=1,2,...,k. Fori=1,...n,set

U;=u{lfj:f(vj)n[i“1,i}¢w}.
J n n

Clearly U;ec¥, Uyu...uU, =X, and (3i — 4)/3n < f(p) < (3; + 1)/3n for
pe U,;. Since A is normal, there are A; and A} in A such that 4; < U; u...u U,
Al cU;y;v...uU, and AU A} =X for i =1,...,n — 1. Then set 4; = A},
A;=A;nA]_, fori=2,3,..,n—1, and 4, = 4,_, and note that A,..., 4
satisfy the requirements. )

n
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Proof of Theorem 3.3. By 2.8 and 2.9, A(%) is a normal ring and hence by 2.4,
Y(A(§)) is a uniformly closed ring. Clearly § < y(A(%F)) and therefore & < y(A(F)).
Conversely, suppose that f € y(A(%)) and assume that 0 < f(p) < 1 for every p e X.
Let a, be 2 with 0 £ a < b < 1 and choose an integer n sufficiently large so that
a < (3iy — 4)/3n < (3iy + 1)/3n < b for some iy, 1 < iy < n. Let A4y, ..., 4, be
the sets described in Lemma 3.4. Clearly L(f) = 4; u... U 4;,_, and I(f) <
< Aip+1 Y ... U A,. Moreover 4, U ... U 4;,_; and 4; ,, U ... U 4, are elements
of A(F) = 3(&)and furthermore by (iii) of 3.4, A; U ... L 4, _;and A1, U ... U 4,
are disjoint. Let g, and g, be functions in § with 4, U... U 4, _, = Z(g,) and
Ajyi1 V... U A, =Z(g,) and set g = |g4|/(|g:] + |g2|). Since & is closed under
bounded inversion, g € §. Clearly, g(p) = 0 for pe L(f), g(p) = 1 for pe I)(f),
and 0 < g(p) < 1for p e X. Thus &, and hence &, S,-separates the Lebesgue sets of f.
By the Tietze Approximation Theorem (Theorem 2.7 in [1]), fe &.

3.5. Theorem. If § = F(X) is a lattice-ordered uniformly closed linear space,
then A(A(F)) is the smallest uniformly closed ring that contains § and is closed
under inversion.

Proof. The proof is identical with that of Theorem 3.1 except that now we use
Theorem 3.3 in [1].

3.6. Corollary. Suppose that ® < F*(X) is a uniformly closed ring that is closed
under bounded inversion and let & be the smallest uniformly closed ring that
contains G and is closed under inversion. Then the set of all bounded function in &
coincides with . Furthermore, & can be defined as the set of all f € F(X) such that
each of the truncations f7,i = 1,2, ..., belong to 6.

(The truncation f” is defined by f(p) = —i v (f(p) A i) for every pe X.)

Proof. By Corollary 3.2 we have & = 2*(A4(®)) and by Theorem 3.5, & = A(A(®)).
But A*(A(®)) is obviously the set of all bounded functions in A(A(®)), so the first part
of the corollary is shown. The second part follows the first and Corollary 3.4 in [1].

Let ¢*(X) denote the class of all uniformly closed ring ® = F*(X) that are closed
under bounded inversion and let #(X) denote the class of uniformly closed rings
& < F(X) that are closed under inversion. Corollary 3.6 actually shows the existence
of a natural one-to-one correspondence between ¢*(X) and ¢(X); stating this formally
we obtain:

3.7. Corollary. The map x : ®(X) — D*(X) defined by
x«F) = F* = the set of all bounded functions in F (F € P(X))

is one-to-one and onto. Furthermore the inverse map »~' can be defined by each of
the following formulas
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x”!(G) = the smallest member of ®(X) that contains ®
= A4(G))
= the set of all f € F(X) such that all truncations f", f®, ... belong to ®.

Remark. Actually, a more general form of this corollary is true. For if € = F(X)
is a fixed uniformly closed ring that is closed under inversion and if ®g(X) (resp.
®(X)) denotes the set of all members of ®(X) (resp. #*(X)) that are contained in €,
then the restriction of the map x to @g(X), %, is still a one-to-one map of Pg(X)
onto diéf(X). Furthermore, the inverse map »z ' can still be defined by each of the
formulas in Corollary 3.7.

This more general form of Corollary 3.7 can be applied when, for instance, X is
a topological space and € is the set of all continuous functions on X; or if X is the
unit interval and € is the set of all Lebesgue measurable functions on X.
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