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In recent years there have appeared many publications concerning the formation
of the foundations of Network Theory. In the papers by R. W. Newcoms [1], that by
A. H. ZemaNIAN [2] and M. R. WoHLERs, E. J. BELTRAMI [3], the fundamental
concepts of Network Theory were formulated by means of the Theory of distribu-
tions.

As a principal theorem in this theory it was proved that every single-valued, linear,
continuous and time-invariant system T is convolutional, i.e.

T[x]=x=xf

for some distribution f and for all distributions x. On the other hand, in the book
by V. DoLEZAL [4] there are considered operators constructed over the space of
distributions which are not time-invariant. In this paper we shall give an analogous
theorem about the meaning of convolution for a single-valued, linear and continuous
system T which is not time-invariant, i.e.

+ o0
T[x] = J (x,f,) da
- o0
for some set { f,,} of distributions depending on a parameter a and for all distribu-

tions Xx.

While a single-valued, linear, continuous and time-invariant system is determined
by the response f = T[] to the Dirac’s distribution § = &, it turns out that a system,
which is not time-invariant, is determined by responses f, = T[§,] to the shifted
Dirac’s distributions 4,.

1. INTRODUCTION

The notation and terminology of the book [4] will, with a few minor exceptions,
be used throughout. Let K denote the set of all infinitely differentiable real functions
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¢(1) on the interval (— oo, + o0) such that every ¢(¢) vanishes identically outside some
finite interval (which in general depends on ¢). Further let D be the corresponding
space of all distributions over K — that is the space of all linear and continuous
functionals on K. We shall write {f, ¢) as the value of the functional f e D for ¢ € K.

The linear combination, product of a distribution with an infinitely differentiable
function (see p. 40 in [4]), n-th distributional derivative (see p. 45 in [4]) and a shifted
distribution (see p. 51 in [4]) will be denoted by af + Bg, «(t) f, /™ and P,[f],
respectively. Clearly the set D is a linear space (see p. 128 in [4]).

Let f,eD, n = 1,2,... be a sequence of distributions. If f € D then the symbol
fn — f means that the sequence converges to the distribution f (see p. 43 in [4]).
Let us recall the theorem on completeness of the space D.

Lemma 1.1. Let f,e D, n = 1,2, ... be a sequence of distributions. If {f,, ¢,
n =1,2,... is a convergent sequence of real numbers for every ¢ € K, then there
exists (a unique) distribution f € D such that f, - f.

Proof see p. 457 in [5].

Definition 1.1. Let n = 0 be an integer, and let D, be the set of all distributions

having the following property: if f € D,, then there exists a real continuous function
z(f) on (— o0, + o) such that f = z®, i.e.

g = (~1y f ) o) ar

for every ¢ € K. Let us also remark that in this article x(r) for x € D, always means

a continuous function on (—oo, +oo). Furthermore, let D, = {J D,. Obviously,
D,(n=0,1,...)and D, are linear subspaces of D. n=1

Lemma 1.2. Let f e D; then there is a sequence f,€ Dy, n = 1,2, ... such that

fam f.

Proof. Let rx,,(t), n =1,2,... be a sequence of infinitely differentiable functions
with properties a,(t) = 1 for —n <t <n, 0 <a, ) <1 for n <t<n+1 and
-n—1<t< —n,at)=0fort2n+ landt £ —n — 1. The rest of the proof
is analogous to that of Lemma 5.4.5 in [4]. We get «,f € D, and o, f — f.

If f, g € D and b is a real number, then the equality f = g on the interval (— oo, b)
means that f — g = 0 on (— oo, b) (see p. 41 in [4]).

From Lemma 3.1.2 [4] it follows that:

Lemma 1.3. Let b be a real number, fe D; then f = 0 on the interval (— oo, b)

if and only if {f, > = 0 for every ¢ € K with ¢(t) = 0 on the interval (c, + o),
where ¢ < b.
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Definition 1.2. Let {f,} be a set of distributions from D depending on a para-
meter a, where a is an arbitrary real number. The distribution g, € D will be called
the partial derivative of f, with respect to the parameter a, if

Gor 0y = lim (Lexn =Ta
B0 h

for every ¢ € K. We shall write g, = of,/0a.

Lemma 1.4. Let f, € D for an arbitrary real number a; then the partial derivative
0f J0a exists if and only if the function y(t) has a derivative y'() on the interval
(=00, + ) for every ¢ € K, where y(a) = {f,, ¢) for every real number a.

Proof follows from the equation

<fa_+1h:_fa,(p> Zw (h + 0).

Note. Clearly

<% : <p> =¥'(a)

da

for every ¢ € K, where y(a) = <{f,, ¢) for every real number a.

Lemma 1.5. Let f, € D for an arbitrary real number a; then g, = 6fn/6a if and
only if
(an — @)™ (fa, = f2) = 9a
for all convergent sequences of real numbers a, — a (ap #a),n=1,2,..

Proof follows immediately from Lemma 1.4.

Definition 1.3. Let {f,} be a set of distributions from D depending on a para-
meter a, where a is an arbitrary real number. If n = 0 is an integer, then the distribu-
tion 9"f,[0a" € D will be called the n-th partial derivative of f, with respect to the
parameter a, if

oy Va_ ?LJ:(LL) (nz2).

da® - dal  da’ da" da \da"!

Lemma 1.6. Let f, e D for an arbitrary real number a. If n = C is an integer,
then the n-th partial derivative 0'f,[0a" exists if and only if the function Y(t) has
an n-th derivative y™(t) on the interval (— o, + o) for every ¢ € K, where y(a) =
= {f,, @) for every real number a.

Proof follows from Lemma 1.4.

699



Note. Evidently

a"f,
a — ;")
<aan ’ (P> 'p (a)
for every ¢ € K, where y(a) = {fa @) for every real number a.

Example. Let §, be the Dirac distribution (a being a real number). It is clear
that y(a) = {8,, 9> = ¢(a) for every ¢ € K (see p. 40 in [4]). From Lemma 1.6 it
follows that

"
1.1 2 = (—1) s
(1.1 = (-1)
forn=20,1,...
Definition 1.4. Let a;, i = 0,1,...,m; &;, i = 1,2,..., m be real numbers, where

a;_y <a; and a;_; S & < a; for i=1,2,...,m. The set 9 = {ay, ay, ..., a,;
&y, &g, ..., &} will be called a division (partial and with the points &;) of the interval
(=0, + o). Let us put

W2) = max (a; —a;,—,), (2)=a, and 1(2)=a,.
i=1,2,....m .

i=1,

Let {f,} be a set of distributions from D depending on a parameter a, where a is
an arbitrary. real number. The distribution

s(2) =i§1(ai = a;-9) fe,

will be called the integral sum of {f,} with respect to the division 2.

The sequence 2,, n = 1,2, ... of divisions of the interval (— oo, + c0) will be called
the zero sequence, if p(2,) - 0,1(2,) > — oo and 1(2,) > +oo. Let {f,} be a set of
distributions from D depending on a parameter a, where a is an arbitrary real number.
The distribution g € D will be called the integral of {f,}, if s(2,) — g for an arbitrary
zero sequence of divisions of the interval (— oo, + o). We shall write g = [£% f, da.

Lemma 1.7. Let f,€ D for an arbitrary real number a. If \ is a continuous
function on the interval (— oo, +o0) and \ vanishes identically outside some finite
interval for every ¢ € K, where yy(a) = {f., 9>, then there exists the integral {*7 f,da.

Proof. Let 2,, n = 1,2, ... be an arbitrary zero sequence of divisions of (—oo,

+o0). If we put g, = 5(2,) = Y. (a; — a;_1) fs,, then we get
i=1

(1-2) {Gn ©> =.‘_§1¢(5i) (ai - ai—x)
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for ¢ € K. By the assumption there exist real numbers c, d such that y(¢) = 0 on
(=0, ¢) U (d, + o). Thus there exists a positive integer n, such that (2,) < ¢ and
1(2,) = d for every positive integer n > n,. From (1.2) it follows that

(gu @) - J J(a) da = j " () da.

According to Lemma 1.1 there exists a distribution g € D such that g, — g. Hence
(g, > = [Z2 Y(a) da for every ¢ € K. Consequently, the distribution g does not
depend on the choice of the zero sequence 9,, n = 1,2, ... of divisions. Therefore

g=[12f,da.
<f f. da, ¢> =j " fn 9> da

Note. Clearly
+ o0
f O,da =1,

= o0

for every ¢ € K.

Example. We have

where (1, ¢y = [12 ¢(t) dt for every ¢ eK.
Let & be the set of all distributions {f,} from D depending on a parameter a
(where a is an arbitrary real number) such that y € K for every ¢ € K, where y/(a) =

= {fu 0>

Theorem 1.1. Let f,e D for an arbitrary real number a. The necessary and
sufficient condition that {f,} € F is the fulfillment of conditions:

1. The partial derivative a"f,,/(?a" exists for every positive integer n.

2. o,f,, = O for every two sequences of real numbers a,, a,, ]a,,| — +00, n =
=12,...

Proof. By Lemma 1.6 condition 1 is satisfied if and only if the function ¥ is
infinitely differentiable on the interval (— oo, +o0) for every ¢ € K, where Y(a) =
= {f,, >. We shall prove that condition 2 is satisfied if and only if the function ¥
vanishes identically outside some finite interval for every ¢ € K.

Let /' vanish identically outside some finite interval for every ¢ € K. Let a,,, a,, n =
=1, 2, ... be two sequences of real numbers and let ]a,,l — +o00. Then {a,f,, 9> =
= ,{fo., ©> = o, ¥(a,) — 0 for every ¢ € K. Hence a,f,, = 0.

Let now a,f, — 0 for every two sequences of real numbers «,, a,,,‘|a,,| - + 00,
n = 1,2, ... If there exists ¢ € K such that the corresponding function y does not
vanish identically outside some finite interval, then there exists a sequence of real
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numbers a,, lanl — +00, n = 1,2,... such that y(a,) + 0. Put o, ' = y(a,). Hence
fas @ = tfap @ = @, ¥(a,) = 14> 0, which is a contradiction. The Theorem

is thus proved.
Theorem 1.2. Let {f,}, {g.} € 7.

1. If o, B are real numbers, then {of,, + Pg.} € F.

2. If n is a positive integer, then {3"f,[0a"} € F.

3. If‘b is a real number, then {h,} € #, where h, = Py f.]-
4. If b is a real number, then {h,} € #, where h, = f,—y.

Proof. Put Y(a) = {f,, ¢) and x(a) = {ga, @) for every ¢ € K. Evidently ¥, x € K.

1. If o, § are real numbers, then w(a) = <af, + Bg,, ®> = «y(a) + B x(a). Thus
o = af + By e K. Hence {of, + Bg,} € Z.

2. If n is a positive integer, then from Lemma 1.6 it follows that w(a) =
= (3"f,|0a", 9> = Y™(a). Thus w = Y™ e K. Hence {0"f,[0a"} € Z.

3. If b is a real number, then w(a) = {h, @) = (P fal: @ = {fu @(t + b)).
Clearly ¢(t + b) € K. Thus, we have w € K. Hence {h,} € #.

4. If b is a real number, then w(a) = <{hy > = {facp @) = Y(a — b). Thus
w e K. Hence {h,} e #.

Theorem 1.3. Let {f,} € # and a € D,; then there exists the integral

g = J‘+mcx(a)f,‘ da

- @

and for every ¢ € K we have

(g, 9> = jma(a) Y(a) da,

where Y(a) = {fa ¢).

Proof follows from Lemma 1.7 because {a(a) f,, ¢y = (a) ¥(a) for every ¢ € K.

Example. Evidently {5,} € # and for every o € D, we have

J‘+wa(a) 5.da=a.

=00
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2. INTEGRAL

Theorem 2.1. Let {f,} € # and x € D; then there is a unique distribution y € D
such that

(2.1) s 0) = <x )

for every ¢ € K, where Y(a) = {f,, ¢ for every real number a.

Proof. 1. Let x e D, (n = 0); then there exists a distribution z € D, such that
z®™ = x. By Theorem 1.2 it follows that {0"f,J0a"} € #. According to Theorem 1.3
there exists a distribution y = (—1)" [*2 z(a) (6"f,/0a") da. We have therefore
9y = [12 x(a) da for every ¢ € K, where y(a) = <(—1)" z(a) (9"f.[0a"), 0> =
= (=1)" z(a) (0"f.[0a"), @> = (—1)" z(a) y™(a). Hence {y, @> = (=1)" [1% z(a).
Y(a)da = {z, (= 1) Y™y = 2™, §) = {x, ) for every ¢ € K.

2. Let x € D; then according to Lemma 1.2 there is asequence x, € Dy, n = 1,2, ...
such that x,, — x. By the first part of the proof there exist y, € D such that {y,, 9> =

= {x,,, ¥ for every ¢ € K. However, since Y € K, then {y,, 9> = {x,, ¥> = {x, ¥).
By Lemma 1.1 there exists a distribution y € D such that {y,, 9> = {y, ¢)>. Hence
{y, > = {x, Yy for every ¢ € K.

3. The uniqueness of distribution y follows from (2.1)

Definition 2.1. Let {f,} € # and x e D; then the distribution y (see Theorem 2.1)
will be denoted by [ (x, f,) da.

Note. Clearly
(22) <'f " (x. £.) da, <p> = (x b

for every ¢ € K, where y(a) = {f,, @) for every real number a.

Examples. 1. Evidently

(2.3) .= j (%, 6,) da

— 0

for every x e D. The proof follows from ¢(a) = <3, ¢) for every ¢ € K and for
every real number a.

2. Let {f,} e #. Using (2.2) we have <[22 (3,,f,) da, 9> = {3, ¥> = y(b) =
= {fy» @) for every ¢ € K and for every real number b. Thus

(2.4) fy = J

’ Oo(5b’ fa) da.
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Theorem 2.2. If o, f§ are real numbers, {f,,} €% and x, y € D, then

'rw(ocx + By, f,) da = aj

- 0

+

" f)da + ,BJ

(v, fa) da.
Proof. Putw = [X% (ax + By, f,)da,u = [1% (x,f.)daand v = [X2 (y,f,) da.
Then {w, @) = {oax + By, ¥) = alx, ¥> + By, ¥)> = alu, ¢> + v, @) for every

@ € K, where y(a) = {f,, @) for every real number a. Hence w = au + fv which
completes the proof. '

Theorem 2.3. If «, B are real numbers, {fa}, {ga} € # and x € D, then

J+w(x, of, + Bg,) da = aj

=0

" fo) da + B j( g da.

Proof. According to Theorem 1.2, {af, + Bg.} € #. Denote w = (13 (x, af, +
+ Bg.)da, u = [*2(x f)da and v = [I% (x,g,) da. Then <{w, @) = <{x,af +

+ By = alx, ¥ + Bx, 1> = alu, @) + B, ) for every ¢ € K, where Y(a) =

= {f,, ¢> and x(a) = {g,, @) for every real number a. Hence w = au + fv which
completes the proof.

Theorem 2.4. If X, x,e D, n = 1,2, ..., x, = x and {f.} € #, then
+ 0 + o0
j (on 1) da—-»J‘ (x, ) da .

Proof. Denote y = [*2(x,f,)da and y, = [1%(x,f)da for n~1,2,...
Then {¥,, @D = {x,, ¥> = {x,¥> = (y, @) for every ¢ € K, where y(a) ~ Sa 0>
for every real number a. We have y, — y, q.e.d.

Theorem 2.5. If x € D and {f,} € #, then

Jj:(x"‘),fa) da = (-1) f+m(x, ZZ:) da.

-0

Proof. By Theorem 1.2 we have {@"f,[0a"}eZ. Put u = [*3 (. fo) da
andv = [*% (x, 8"f,/0a") da. Then (u, @) = x™, ¥> = {x, (1) y" v (=1y.
X Y™ = (=1)" (v, @) for every ¢ K, where ¥(a) = (f,, o> and (//(n)(a) =
= (6”fa/6a", @) for every real number a. Therefore u = (—1)" v, q.e.d.

Example. We have

+to
x® — J (x’ 55::)) da

)
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for every x e D. By (2.3), Theorem 2.5, Theorem 2.3 and (1.1),
+ + o s + o
X = J (x®, 5,) da = (~ 1" j (x, : :) da = J (x. 6) 4
- ~ a -

Theorem 2.6. If b is a real number, {f.} € # and x € D, then

PLy] = J j:(x, 40 da,

where y = [12(x, f,)da and g, = P[f.].

Proof. According to Theorem 1.2, {ga} € #. Then <(P,[y], 9> = (¥, ot + b)> <

= <x, x> for every ¢ e K, where y(a) = <f,, o(t + b)) = (Po[fa]: ¥> = {gu 0.
Hence it follows that P,[y] = [ % (x, g) da. The theorem is proved.

Example. From Theorem 2.6 and (2.3) it follows that

Pfx] = j j:(x, Sasp) da

[

for every x € D and for an arbitrary real number b.

Theorem 2.7. If b is a real number, {f,,} € % and x € D, then

j : (x.fa) da = r:(l’b[x],f,,-,,) da.

Proof. By Theorem 1.2, {g,} € #, where g, = f,_;. Denote y = Jie (x,fa) da
and z = (12 (P[x], fop) da. Then <y, @) = {x, > = <(Pp[x], ¥(t — b)>=
= (Py[x], 1> = <z, ¢) for every ¢eK, where y(a) = {fs > and x(a) =
= yY(a — b) = {fa-p, @) for every real number a. Thus y = z, q.e.d.

Theorem 2.8. Let {f,} € # and let f, vanish on (= o0, a) for every real number a.
If b is a real number, x € D and x vanishes on (— o, b), then [*% (x, f,) da vanishes
on (—o0, b).

Proof. Let p e K. If (0(1) =0 on (c, + o), where ¢ <. b, then by Lemma 1.3 it
follows that y(a) = {fa @) = 0 for a > c. Since Y(tf) = 0 on (¢, +0), We have
{x, ¥y = 0.If we put y = [*2(x, f,) da, then, by (2.1), {y, ¢)> = 0. From Lemma
1.3 it follows that y vanishes on (— oo, b).
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3. LINEAR AND CONTINUOUS OPERATORS

Let P be a non-empty subset of the set D of all distributions. A mapping T of P
into D (i.e. a rule whereby to each x € P a unique distribution T[x] € D is assigned)
will be called the operator in P. The set P will be termed the domain of the operator T.

Definition 3.1. Let P be a non-empty subset of D. An operator T on P will be called
continuous if the following implication holds:

(3.1) If x,x,e P, n =1,2,..., x, - x, then T[x,] - T[x].

Definition 3.2. Let P be a linear subspace of D. An operator T on P will be called
linear if the following condition holds:

(3.2) Ifa, B arereal numbers and x, y € P, then T[ax + By] = « T[x] + B T[y]-

Note. From Definition 3.2 it follows that O € P and T[O] = 0.

Theorem 3.1. Let T be a linear and continuous operator on a linear subspace
P < D. Let {f,} € # and 0"f,[0a" € P for every n =0, 1,2, ... and for every real
number a. Then {g,} € F and d"g,[0a" = T[d"f,[0a"], where g, = T[f,].

Proof. Leta, — a(a, + a),n = 1,2, ... be a convergent sequence of real numbers.
By Lemma 1.5 we have

o,

(an - a)-l (fa,. - fa) g
da

From this and (3.1), (3.2) it follows that (a, — a)™'(g,, — 9a2) = (a, — a)™".
' '(T[fan] - T[f]) = T[(an - a)_l (fan - fJ] - T[afa/aa]’ where g, = T[fa]'
According to Lemma 1.5 there exists dg,/0a and 0g,/0a = T[0f,/0a]. Similarly we
obtain that there exists d"g,[da" and 0"g,[/0a" = T[0"f,[0a"] for every n = 2,3, ...

Let a,, o, n =1,2,... be two sequences of real numbers and let la,,l — +00.
By Theorem 1.1 we have a,f, — 0. Then it follows from (3.1) and (3.2) that a,g, =
= a, T[fa,] = T[#.f,,] = 0. Finally from Theorem 1.1 it follows that {g,} € #.

Theorem 3.2. Let T be a linear and continuous operator on a linear subspace
P c D. Let {f,} € # and 0"f,[0a" € P for every n = 0,1,2,... and for every real
number a. If xeD, and yeP, where y = [IZ x(a)f,da, then T[y] =
= (1% x(a) g, da, where g, = T[f,]. '

Proof. According to Theorem 3.1, {g,} € #. By Theorem 1.3 there exists u =
= [1% x(a) 9o da. Let @ be an arbitrary division of the interval (— co, + o0). Using

the notation of Definition 1.4 we have for the integral sums sl(@); Z (ai —a;_ 1) .

i=1
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Cx(E) fe 52(2) = i(ai — a;,) x(£) g, From (3.2) it follows that T[s,(2)] =
i=1

= T[VZI(‘%’ —a-)x(&)fe] = -Zl(ai —a;_)x(&) TLf:] = 52(2). If {2,} is an
arbitrary zero sequence of divisions of the interval (— oo, + ), then 5,(2,) - y

and 5,(2,) - u. By (3.1) we have 5,(2,) = T[s,(2,)] » T[y]. Hence u = T[y],
q.e.d.

Theorem 3.3. Let T be a linear and continuous operator on a linear subspace
P = D. Let {f,} € F and 0"f,|0a" € P for every n = 0,1,2,... and for every real
number a.If x € D, and y € P, where y = [*% (x, f,) da, then T[y] = [ (x, g,) da,
where g, = T[f.]

Proof. By Theorem 3.1 we have {g,} € #. Thus, X2 (x, g,) da exists. From the
proof of Theorem 2.1 it follows that there exists z € Dy (z™ = x) such that y =

= (=1)" [*2 z(a) (¢"f,/0a") da. Using Theorem 1.2, Theorem 3.1, Theorem 3.2,
(3.2) and Theorem 2.1 we get T[y] = (—1)" [12 z(a) (¢"g,[0a") da = 13 (x, 9,) da.

Note. If the operator T on a non-empty subset P = D has the form

+
T[x] = J (x.f)da (xeP)
and if J, € P for every real number a, then from (2.4) it follows that f, = T[4,].
Theorem 3.4. Let P = D, be a linear subspace and let 5 € P for every n =

=0,1,2,... and for every real number a. An operator T on P is linear and conti-
nuous if and only if it has the form

(3.3) T[x] = j

and f, = T[4,]

+oo(x,f,,) da (xeP)

Proof follows from Theorem 2.2, Theorem 2.4, (2.3), Theorem 3.3 and (2.4).

Theorem 3.5. Let P (D, = P = D) be a linear space. An operator T on P is linear
and continuous if and only if it has the form

+ o0
(3-3) T[x] = j (x,f))da (xeP)
and f, = T[5,].
Proof. If the operator T has the form (3.3), then by Theorem 2.2 and Theorem 2.4

it is linear and continuous. Conversely, let T'be a linear and continuous operator on P.

Since 6" € D, (D, is a linear space) for every n = 0, 1,2, ... and for every real

707



number a, then by Theorem 3.4 the operator T has the form (3.3) for every x € Dy..
If x e P then according to Lemma 1.2 there is a sequence x,e Dy, n =1,2,...

such that x, - x. From (3.1) we have (*Z2(x,,f,)da = T[x,] - T[x]. Finally
from Theorem 2.4 it follows that the formula (3.3) holds for every x € P. This com-
pletes the proof.

Corollary. If T,, T, are two linear and continuous operators on D and T,[x] =
= T,[x] for every x € Dy, then Ty[x] = T,[x] for every x € D.

Example. Let «(f) be a real function having all derivatives in (— 0, +0); then

ax = '[m(x, a(a)s)da -

for every x € D, because oft) §, = «(a) d,,.
Note. Let f € D. If f vanishes outside some finite interval, then the operator
T[x] = x=f (xeD)

is linear and continuous (see p. 137 in [5]). From Theorem 3.5 it follows that

T[x] = fw(x,f,,) da, (xeD),

where {f,} € # and f, = T[4,] = 6, *f = P,[f] for every real number a.

Definition 3.3. A non-empty subset P = D will be called time-invariant, if the
following implication holds for every real number b:

If xeP, then PJx]eP.

Let P be a time-invariant subset of D. An operator T on P will be called time-
invariant if the condition

(34) : T[Py[x]] = P[T[x]]
holds for every real number b and for every x € P.

Example. If we put

+
Tl[x]=x'+x=[ (x, 0, + é,)da, (xeDy

.
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then clearly the operator T; is time-invariant. On the other hand, it is obvious that
the operator T, given by the formula

+ o
T[x] = tx = f (x,ad,)da (xeD)
is not time-invariant.

Theorem 3.6. Let P = D be a time-invariant linear subspace and let {f,} € #.

L. If f, = P,[f] for some f € D, then the operator T on P given by (3.3) is time-
invariant.

2. If the operator T on P given by (3.3) is time-invariant and 6 € P, then f, =
= P,[f], where f = T[5].

Proof. 1.Iff, = P,[f] for some f € D, then f,,, = P,[ f,] for every real number b.
From Theorem 2.6, Theorem 2.7 and (3.3) it follows that T[Py[x]] = [1% (Py[x],f.).
cda = [I2(x, fasp)da = [12(x, P[f,]) da = P,[T[x]] for every xeP. Thus,
by Definition 3.3, the operator T'is time-invariant.

2. If the operator T on P given by (3.3) is time-invariant and & € P, then from (3.4)
it follows that T[6,] = T[P,[6]] = P[T[6]] = P,[f]. where f =T[5]. Hence,
Theorem 3.6 is proved.

Definition 3.4. Let P be a non-empty subset of D. An operator T on P will be called
causal, if for every pair of distributions x, y € P, the following implication holds:

(3.5)  If x = y on the interval (— oo, b), then T[x] = T[y] on the same interval.
Example. If we put
+
Ty[x] =x" = J‘ (x,6;)da (xeD),

then the operator T is causal. On the other hand, the operator T, given by

+ o0
(x,6, + 6,-1)da (xeD),

-0

To[x] = x + P_,[x] = f
is evidently not causal.

Lemma 3.1. Let P = D be a linear subspace. A linear operator T on P is causal if .
and only if the following implication holds:

If x € P vanishes on the interval (— 0, b), then T[x] vanishes on the same interval.

Proof. The necessity is obvious. In order to prove the sufficiency, observe that
x =y on the interval (— oo, b) with x, y € P implies that x — y vanishes on the
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interval (—oco, b). By supposition T[x — y] vanishes on the interval (— oo, b).
From (3.2) it follows that T[x] = T[y] on the interval (—co, b). Hence according
to (3.5) the operator T'is causal.

Theorem 3.7. Let P < D be a linear subspace and let {f,} € Z.

1. If f, vanishes on (—oo, a) for every real number a, then the operator T on P
given by (3.3) is causal.

2. If the operator Ton P given by (3.3) is causal and &, € P for every real number a,
then f, vanishes on (— o, a).

Proof follows from Theorem 2.8 and Lemma 3.1.

Theorem 3.8. Let P = D be a time-invariant linear subspace and let {f,} eEZF.

L If f, = P,[f] for some f € D, where f vanishes on (— o, 0), then the operator T
on P given by (3.3) is time-invariant and causal.

2. If the operator T on P given by (3.3) is time-invariant and causal, and if § € P,
then f, = P,[f], where f vanishes on (— 0, 0) and f = T[5].

Proof follows from Theorem 3.7 and Theorem 3.6.
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